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Abstract
Hyperspectral image contains abundant spectral information with hundreds of spectral con-
tinuous bands that allow us to distinguish different classes with more details. However, the
number of available training samples is limited and the high dimensionality of hyperspectral
data increases the computational complexity and even also may degrade the classification
accuracy. In addition, the bottom line is that only original spectral is difficult to well represent
or reveal intrinsic geometry structure of the hyperspectral image. Thus, feature extraction is
an important step before classification of high dimensional data. In this paper, we proposed
a novel supervised feature extraction method that uses a new geometric mean vector to con-
struct geometric between-class scatter matrix (SGb ) and geometric within-class scatter matrix
(SGw ) instead of traditional mean vector of state-of-the-art methods. The geometric mean vec-
tor not only can reveal intrinsic geometry structure of the hyperspectral image, but also can
improve the ability of learning nonlinear correlation features by maximum likelihood classi-
fication (MLC). The proposed method is called geometric mean feature space discriminant
analysis (GmFSDA) that uses three measures to produce the extracted features. GmFSDA,
at first, maximizes the geometric between-spectral scatter matrix to increase the difference
between extracted features. In the second step of GmFSDA, maximizes the between-class
scatter and minimizes the within-class scatter simultaneously. The experimental results on
three real-world hyperspectral image datasets show the better performance of GmFSDA in
comparison with other feature extraction methods in small sample size situation by using
MLC.

Keywords Hyperspectral image · Feature extraction · Geometric mean vector · Feature
space discriminant analysis · Classification

Mathematics Subject Classification 68T10 · 68U10

1 Introduction

Hyperspectral image is a cube data containing abundant spectral information with hundreds
of contiguous spectral bands. The spectral response curve of each pixel is the plot of bands
intensity values versus band numbers in the hyperspectral image and allow us to better
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distinguish many subtle objects and materials. Therefore, in the practical application field
of land cover classification, hyperspectral imagery technology has been widely applied.
However, there are many challenges for hyperspectral image analysis, such as, the number
of available training samples is limited and the high dimensionality of hyperspectral data
increases the computational complexity and also may degrade the classification accuracy. In
fact, hyperspectral imaging can provide superior capability to discriminate land-cover types
than multispectral does. But, with increasing the number of spectral bands of hyperspectral
image, the classification accuracy will change greatly [1]. Firstly, the classification accuracy
increases slowly and reaches the maximum. And then, it decreases dramatically when a small
number of training samples are available. Generally speaking, feature reduction method
can relieve the Hughes phenomenon and achieve higher classification accuracy in image
classification tasks. Feature reduction method is used to find a transformation that maps the
original data to a lower dimensional space where the essential discriminative information can
be mainly preserved. The feature reduction method can be broadly divided into two groups:
feature selection and feature extraction [2–11]. For feature selection methods, there is no
new features will be generated and only a subset of original features is selected. Inspired by
the clonal selection theory in an artificial immune system, Zhang et al. [11] gave a stochastic
search skill. In this skill, the dimensionality reductionmethod is formulated as an optimization
problem that searches an optimum with less features in a feature space. Feature extraction
mainly aims at reducing the dimensionality of original data while keeping as much intrinsic
information as possible, and also exploring the inherent low-dimensional structure, reducing
the computational complexity, and improving the performance of data analysis. Generally
speaking, features selected by feature selection techniques maintain the physical meaning of
original data while features obtained by feature extraction methods are discriminative than
those selected by feature selection techniques. The authors [7] have been pointed out that
the feature extraction techniques can provide more effective features than by using feature
selection techniques. Therefore, feature extraction is a very important preprocessing step for
hyperspectral image classification.

There are three feature extraction techniques in hyperspectral image processing field, such
as unsupervised, supervised and semi-supervised. Unsupervised feature extraction methods
mainly focus on another representation of the original data in a lower dimensional subspace,
satisfying some criterions, and usually do not concern class discrimination, and without
the need for labeled samples. Principle component analysis (PCA) [12] is one of the best
known unsupervised feature extraction method and widely used for hyperspectral image
[1,13,14]. The main idea of PCA is to project the original data into a new subspace by
minimizing the reconstruction error in the mean squared sense. The nonlinear version of
PCA has shown more effective than PCA in hyperspectral image analysis in addition to
the computational burden [15]. Villa et al. [16] proposed an unsupervised classification
method for hyperspectral image with low spatial resolution. Due to the complicated and
high-dimensional data observation, the hyperspectral remote sensing image unsupervised
classification still leave huge challenges, Zhang et al. [42] proposed a hyperspectral image
unsupervised classification framework based on robust manifold matrix factorization. To
solve the high dimensionality of the hyperspectral image, Zhang et al. gave a unified low-
rank matrix factorization to jointly perform the dimensionality reduction and data clustering.

Supervised feature extraction methods main rely on the existence of labeled samples to
infer class separability. Linear discriminant analysis (LDA) [17] and nonparametric weighted
feature extraction (NWFE) [18] are the most popular supervised feature methods and the two
methods have been widely used in hyperspectral image classification. As we all know, in
LDAmethod, the between-class scatter matrix (Sb) is maximized and the within-class scatter
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matrix (Sw) is minimized simultaneously. But, there are three inherent drawbacks with LDA.
(i) The performance of LDA will be very poor when the Sw is singular, especially in high-
dimensional data. (ii) LDA can extract maximum c − 1 features (where c is the number
of classes), which may not be sufficient to represent essential information of the original
data in hyperspectral image classification. (iii) LDA works very poor when the classes have
non normal-like or multi-modal mixture distributions. NWFE uses the weighted mean for
calculation of nonparametric scatter matrices for extraction of more than c − 1 features.

Kernel principal component analysis (KPCA) [19] and generalized discriminant analysis
(GDA) [20] are the nonlinear forms of PCA and LDA by using kernel trick (mapping the
input data from the original space to a convenient feature space where inner products in the
feature space can be computed by a kernel function). However, the computational burden of
nonlinear representations (KPCA and GDA) is very heavy.

Semi-supervised feature extraction methods need labeled samples and unlabeled samples
[21], and try to find a good projection. This method can preserve certain potential proper-
ties of the original data by adding a regularization term. In addition, there are some local
feature extraction methods have been proposed to preserve the properties of local neighbor-
hoods of hyperspectral images, such as, locality preserving projection (LPP) [22], linear local
tangent space alignment (LLTSA) [23], maximummargin projection (MMP) [24] and mono-
genic binary coding (MBC) [25] with face representation and recognition. Zhou et al. [26]
extracted the discriminant information from the filtered image by using a spectral-domain
regularized local discriminant embedding and a spatial-domain local pixel neighborhood
preserving embedding. Then the spatial-spectral discriminant information is incorporated
to produce multi-scale spatial-spectral features. Of course, in real-world applications, the
precise assessment of the global or local structures of the original data manifold is very dif-
ficult. Hence, all kinds of hybrid criterions are used to process the hyperspectral image such
as [27–32]. In addition, there are some research results based on multiple features, such as
[43–47]. In these papers, the authors gave a unified low-dimensional representation of these
multiple features for subsequent classification.

Recently, from a curve fitting point of view, the geometric aspects of spectral response
curve and the rich feature information of original data has been considered in hyperspectral
image classification by Hosseini et al. [2,3,33,34] and Li et al. [35]. In these methods, the
reflection coefficients vector from a hyperspectral image have been used in classification
process. Hosseini considered the elements of the feature vector are the points of a curve by
using rational function curve fitting (RFCF). Li et al. extracted the feature of hyperspectral
image by using Maclaurin series function curve fitting (MFCF). In [35], Li et al. pointed out
the RFCF feature extraction has three main shortcomings. The RFCF and MFCF two feature
extraction methods do not need to transform the data to the projection subspace. But, the two
feature extraction methods not whole reveal inherent geometric structure of hyperspectral
image, because the Sb and Sw (from the two methods) are formed by using sample average.
In other words, the two methods do not reveal the inherent geometric structure in essence,
especially the existence of outliers in hyperspectral image. Imani et al. [36] proposed a feature
space discriminant analysis (FSDA) to produce the extracted features for hyperspectral image.
The main idea of FSDAmethod is reduce the redundant spectral information in the extracted
features by introducing the between-spectral scatter based on class sample average vector
of hyperspectral image. In fact, for a few of given samples with non-ideal conditions, the
assessment result and the inherent geometric structure in essence are very weak by using the
class sample average vector. Therefore, the classification performance of FSDAmethod with
MLCwill decline significantly. In order to further reveal the inherent geometric structure and
obtain the more robust features from hyperspectral image, we proposed a supervised feature
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Table 1 The information of each class for IPS image

No Class name Number of pixels No Class name Number of pixels

C1 Alfalfa 46 C9 Oats 20

C2 Corn-no till 1428 C10 Soybeans-no till 972

C3 Corn-min till 830 C11 Soybeans-min till 2455

C4 Corn 237 C12 Soybeans-clean till 593

C5 Hay-windowed 483 C13 Wheat 205

C6 Grass/trees 730 C14 Woods 1265

C7 Grass/pasture-mowed 28 C15 Building-grass-tree-drives 386

C8 Grass/pasture 478 C16 Stone-steel towers 93

extraction method in this paper that has good performance using small training set. The
proposed method uses a geometric mean vector to construct geometric between-class scatter
matrix (SGb ) and geometric within-class scatter matrix (SGw ) instead of traditional mean vector
of state-of-the-art methods. Hence, the proposed method is called geometric mean feature
space discriminant analysis (GmFSDA).

Let X = {xi : xi ∈ R
d}Ni=1 be the training dataset with geometric meanm and belonging

to c classes. Each class has a geometric mean mi of ni data points where N = ∑c
i=1 ni . For

extraction of p features from d × 1 original feature vector (x), a transformation matrix A
is used. The extracted feature vector will be: yp×1 = Ap×dxd×1. In other words, GmFSDA
introduce the geometric between-spectral scatter and maximizes it to reduce the redundant
spectral information in the extracted features. Similarly to FSDAmethod, GmFSDA is a two
steps method, at first, uses a primary projection to make features as different from each other
as possible. After that, maximizes the between-class scatter and minimizes the within-class
scatter by using another projection matrix simultaneously.

The rest of this paper is organized as follows. In Sect. 2, we introduce a new feature extrac-
tion method: geometric mean feature space discriminant analysis (GmFSDA). Experimental
results and discussion are shown in Sect. 3. Finally the conclusion of this paper is listed in
Sect. 4.

2 Geometric Mean Feature Space Discriminant Analysis (GmFSDA)

2.1 The Basic Idea of GmFSDA

In this subsection, extracting discriminative spectral features and building powerful
representation framework for hyperspectral image are very important with a few of
given samples. There are some popular feature extraction methods just only use the
class discrimination for feature extraction, such as PCA, KPCA, MMP, NWFE, RFCF
and MFCF. In our proposed GmFSDA method, we further consider the difference
between spectral bands in the transformed fe ature space in addition to separabil-
ity between classes. In other words, there are three main purposes of GmFSDA. (i)
The intrinsic geometry structure of the hyperspectral image can be revealed exactly
and the GmFSDA algorithm can learn nonlinear correlation features with well dis-
criminating power by MLC. (ii) The produced features are as different from each
other as possible. (iii) Separability between classes is increased. The geometric mean
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Fig. 1 a False color image of IPS, b ground truth map (GTM) of IPS, c false color image of Pavia University,
d GTM of Pavia University, e false color image of KSC, f GTM of KSC, g class name of IPS, h class name
of Pavia University, i class name of KSC
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Table 2 The information of each class for Pavia University image

No Class name Number of pixels No Class name Number of pixels

C1 Asphalt 6852 C6 Bare soil 5104

C2 Meadow 18,686 C7 Bitumen 1356

C3 Gravel 2207 C8 Bricks 3878

C4 Tree 3436 C9 Shadow 1026

C5 Metal sheet 1378

Table 3 The information of each class for KSC image

No Class name Number of pixels No Class name Number of pixels

C1 Scrub 761 C8 Graminoid marsh 431

C2 Willow 243 C9 Spartina marsh 520

C3 CP Hammock 256 C10 Cattail marsh 404

C4 CP/oak 252 C11 Salt marsh 419

C5 Slash pine 161 C12 Mud flats 503

C6 Oak/broadleaf 229 C13 water 927

C7 Hardwood swamp 105

Table 4 Parameters of feature extraction methods in the experiments

Method Parameters Method Parameters

PCA – RFCF L = 0, 1, . . . , D − 1, M = D − L − 1

KPCA – MFCF L = 1, 2, . . . , D

MMP G FSDA –

NWFE p = 0.5 GmFSDA –

of n positive numbers x1, x2, . . . , xn is defined as positive n-th root of their product
[37]:

xG = n
√
x1 · x2 · · · · · xn =

( n∏

i=1

xi

) 1
n

(1)

It is important to emphasize that the calculation of geometric mean is either insoluble
or meaning less if a data set contains negative numbers. For instance, the geometric
mean of two numbers 4 and 9, is the square root of their product, i.e., xG = 2

√
4 · 9 =

6.
Let mG

ik be the geometric mean of class k and spectral feature i , the number of classes
and the number of features (spectral bands) are c and d , respectively. The geometric mean
of classes in d dimensions is as follows:
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mG
11 mG

12 mG
13 · · · mG

1c h1

mG
21 mG

22 mG
23 · · · mG

2c h2
...

...
... · · · ...

...

mG
d1 mG

d2 mG
d3 · · · mG

dc hd
M1 M2 M3 · · · Mc

(2)

where the geometric mean mG
ik as following Eq. (3), nk is the number of samples per class,

xik j is the j-th training sample of class k in i-th band.

mG
ik =

( nk∏

j=1

xik j

) 1
nk

, (i = 1, 2, . . . , d; k = 1, 2, . . . , c) (3)

we can observe the difference between classes from the above matrix vertically, and mean-
while we can observe the difference between spectral features from the above matrix
horizontally [formula (2)]. In the first step of GmFSDA, wemaximize the difference between
spectral features and in the second step, we maximize the difference between classes. There-
fore, two types of vectors can be obtained from the above matrix.

hi =
[
mG

i1,m
G
i2, . . . ,m

G
ic

]T
, (i = 1, 2, . . . , d) (4)

Mk =
[
mG

1k,m
G
2k, . . . ,m

G
dk

]T
, (k = 1, 2, . . . , c) (5)

Hence, hi is the geometric mean of c classes in i th dimension andMk is the geometric mean
of class k in d dimensions. That is to say, hi is the representative of feature (band) i andMk

is the representative of class k. In order to produce features as different from each other as
possible and increase the class discrimination in GmFSDA method, we must maximize the
geometric between-spectral scatter and maximize the between-class scatter and then obtain
the projection matrix. The geometric between-spectral scatter matrix (SGf ) can be calculated
by following Eq. (6).

SGf =
d∑

i=1

(hi − h)(hi − h)T (6)

where

h = 1

d

d∑

i=1

hi (7)

(hi )c×1 is a column vector and SGf is a c × c matrix. In the proposed GmFSDA method,
the original feature space can be transformed to a new feature space by using the obtained a
primary projectionmatrixW ∈ R

c×c such that features havemore difference from each other
in the transformed space.Wemaximize the tr(SGf ) and sort the eigenvalues of SGf descending,
then the projection matrix W can be obtained by using the eigenvectors associated with
theses eigenvalues. Hence, in the transformed space, we can obtain the transformed vectors
gi ∈ R

c×1 (i = 1, 2, . . . , d) as follows:

gi = Whi , (i = 1, 2, . . . , d) (8)
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The class geometric mean matrix in formula (2) is transformed to formula (9) with the above
transformations.

rG11 rG12 rG13 · · · rG1c g1

rG21 rG22 rG23 · · · rG2c g2
...

...
... · · · ...

...

rGd1 rGd2 rGd3 · · · rGdc gd
R1 R2 R3 · · · Rc

(9)

The vectors hi and Mk are transformed into vectors gi and Rk in terms of formula (9).

gi = [rGi1, rGi2, . . . , rGic ]T , (i = 1, 2, . . . , d) (10)

Rk = [rG1k, rG2k, . . . , rGdk]T , (k = 1, 2, . . . , c) (11)

In fact, we know that the difference between spectral bands is increased in the obtained
feature space from formula (9). Therefore, in the second step of GmFSDA, we maximize the
between-class scatter matrix (Sb) and increase the class discriminant in the obtained feature
space. The Sb can be calculated as follows:

Sb =
c∑

k=1

(Rk − R)(Rk − R)T (12)

where

R = 1

c

c∑

k=1

Rk (13)

Similar to above analysis, we maximize tr(Sb). For extraction of p features from the original
d × 1 feature vector (x), the projection matrix A can be obtained by using p eigenvectors of
Sb associated with p largest eigenvalues.

yp×1 = Ap×dxd×1 (14)

2.2 The Effective of Geometric Mean

In probability theory and statistics, the geometricmeanof a set ofn positive numbers is defined
as Eq. (1). As sample average, the geometricmean [37] can also be used to accurately estimate
the central tendency. Generally speaking, the geometric mean is more resistant to outliers (or
skewed data). We can see the effective of geometric mean by following example. Suppose we
have Data = [4.3, 4.0, 20, 4.1, 1, 4.2, 4.4] with the outliers “1” and “20” then the average
value xm = 6 and the geometric mean xG ≈ 4.274. So, we observe that 4.274 is more closer
to the central tendency ( 4+4.1+4.2+4.3+4.4

5 = 4.2) than 6. Therefore, the geometric mean is
more effective than average value.

2.3 Development and Improvement of GmFSDA

In order to improve the classification accuracy, we proposed to minimize the within-class
scatter matrix in addition to maximize the between-class scatter matrix simultaneously in
the second step of GmFSDA for class discrimination. But, we only can extract maximum
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Fig. 2 Classification accuracy measures for IPS dataset using different feature extraction methods and various
number of features. a AA, b AV, c OA, d kappa coefficient

c − 1 features from data, because the bank of Sb of Eq. (12) is limited. So, we also gave a
nonparametric geometric mean between-class scatter matrix that allows us to extract more
than c − 1 features. In hyperspectral image process, we use the training samples of classes
instead of the geometric mean of classes in the improved GmFSDA. So, the training sample
matrix is as follows:

X j =

⎡

⎢
⎢
⎢
⎣

x11 j x12 j . . . x1cj
x21 j x22 j . . . x2cj

...
... · · · ...

xd1 j xd2 j . . . xdcj

⎤

⎥
⎥
⎥
⎦

, ( j = 1, 2, . . . , nk) (15)

where xik j (i = 1, 2, . . . , d; k = 1, 2, . . . , c; j = 1, 2, . . . , nk) is the j-th training sample
of class k in i-th band. nk is the number of training samples each class. So, in this case, the
vector hi j is defined as follows:

hi j = [xi1 j , xi2 j , . . . , xicj ]T , (i = 1, 2, . . . , d; j = 1, 2, . . . , nk) (16)

According to aforementioned of Sect. 2.1, hi j must contain a representative from each class
and the representative of each class is the geometric mean of it. Of course, when we want to
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Fig. 3 Classification accuracymeasures for Pavia University dataset using different feature extractionmethods
and various number of features. a AA, b AV, c OA, d kappa coefficient

use the training samples of classes instead of the geometric mean of them, the representative
of each class is a training sample from that class. That is to say, all classes must be involved
in the composing of hi j . In our paper, the same number of training samples must be used in
all classes. Of course, the minimize number of training samples per class can be obtained by
using nt = min{nk}ck=1. According to Sect. 2.1, in the first step of GmFSDA, the geometric
between-spectral scatter matrix (SGf ) is calculated as follows:

SGf =
nt∑

j=1

d∑

i=1

(hi j − h j )(hi j − h j )
T (17)

where h j = 1
d

∑d
i=1 hi j . The projection matrix W ∈ R

c×c can be obtained by maximizing
tr(SGf ). The original feature space of hyperspectral image is transformed into a new feature
space by using obtained projectionmatrixW such that the spectral bands havemore difference
from each other in it. In otherwords, the spectral scatter is increased in the transformed feature
space with using following transformation:

(gi j )c×1 = Whi j , (i = 1, 2, . . . , d; j = 1, 2, . . . , nt ) (18)
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Fig. 4 Classification accuracymeasures forKSCdataset using different feature extractionmethods and various
number of features. a AA, b AV, c OA, d kappa coefficient

The sample matrix X j ( j = 1, 2, . . . , nt ) in (15) is transformed to (19) as follows by using
the above transformations.

R j =

⎡

⎢
⎢
⎢
⎢
⎣

rG11 j r
G
12 j . . . rG1cj

rG21 j r
G
22 j . . . rG2cj

...
... · · · ...

rGd1 j r
G
d2 j . . . rGdcj

⎤

⎥
⎥
⎥
⎥
⎦

, ( j = 1, 2, . . . , nk) (19)

The vectors gi j and Rk j are defined as follows:

gi j =
[
rGi1 j , r

G
i2 j , . . . , r

G
icj

]T
, (i = 1, 2, . . . , d; j = 1, 2, . . . , nt ) (20)

Rk j =
[
rG1k j , r

G
2k j , . . . , r

G
dk j

]T
, (k = 1, 2, . . . , c; j = 1, 2, . . . , nt ) (21)
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Therefore, in the second step of GmFSDA, we maximize the class discrimination and the
scatter matrices Sb and Sw can be obtained in the transformed feature space as follows:

Sb =
nt∑

j=1

c∑

k=1

(Rk j − R)(Rk j − R)T (22)

Sw =
c∑

k=1

nt∑

j=1

nt∑

i=1

(Rki − Rk j )(Rki − Rk j )
T (23)

where

R = 1

c × nt

nt∑

j=1

c∑

k=1

Rk j (24)

We know that the matrix Sw may be singular in high-dimensional small-sized data sets, and
thus, the solution cannot be obtained. Therefore, we use the regularization skill to cope with
it as follows [36]:

Sw = 1

2
Sw + 1

2
diag(Sw) (25)

The projection matrix A is usually transformed into the following eigenvalue problem.

Sb A = λSwA (26)

Therefore, the projection matrix A can be obtained by maximizing tr(S−1
w Sb) with above

Eq. (26) and the Fisher criterion [38,39]. For extracting p features from d×1 original feature
vector (x), the p eigenvectors of S−1

w Sb associated with the largest p eigenvalues of S−1
w Sb

compose the projection matrix A. Thus, we have: yp×1 = Ap×dxd×1.
From above analysis, if the matrix Sw is singular, we also will use the Fisher criterion and

then we will also obtain the projection matrix A, that is because the following theorems 1
and 2 from [39]. In [39], the Fisher’s criterion function F(a) as follows. First of all, theorem
1 shows the subspace where we can derive the discriminant vectors based on maximizing the
Fisher’s criterion. But, we can extract maximum r = rank(Sw) features from original data,
i.e., A ∈ R

r×d .

F(a) = aT Sba

aT Swa + aT Sba
(27)

Theorem 1 Let V0 = span{αi |Swαi = 0, αi ∈ R
n, i = 1, 2, . . . , n − r}, where n is the

dimensionality of samples, Sw is the within-class scatter matrix of the samples, and r is the
rank of Sw , Sb denote the between-class scatter matrix of the samples. For each ã ∈ v0 which
satisfies ãT Sba �= 0, it will maximize the function F(a) = aT Sba/(aT Swa + aT Sba).

Proof (i) Since both Sb and Sw are real symmetric, aT Sba ≥ 0 and aT Swa ≥ 0, for all
a ∈ R

n , it follows that

0 ≤ aT Sba ≤ aT Sba + aT Swa ⇒ 0 ≤ F(a) = aT Sba

aT Swa + aT Sba
≤ 1 (28)

It is obvious that F(a) = 1 if and only if aT Sba �= 0 and aT Swa = 0.
(ii) For each â ∈ V0, ã can be represented as a linear combination of the set {αi }, i.e.,
ã = ∑n−r

i=1 biαi , where bi is the projection coefficient of ã with respect to αi . Therefore, we
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Fig. 5 Influence of the number of training samples per class on the PCA, KPCA,MMP, NWFE, RFCF,MFCF,
FSDA and GmFSDA for the IPS dataset. a AA, b AV, c OA, d kappa coefficient

have Swã = Sw

∑n−r
i=1 biαi = ∑n−r

i=1 bi Swαi = 0 ⇒ ãT Swã = 0. We can conclude that for
each ã ∈ V0 which satisfies ãT Sbã �= 0, the function F(a) will be maximized in terms of (i)
and (ii).

An arbitrary vector ã ∈ V0 that maximizes F(a) is not necessarily the optimal discrim-
inant vector when the small sample size problem occurs. The main reason is that ãT Sbã
is not guaranteed to reach the maximal value. Theorem 2 will show that the within-class
scatter matrix of all the transformed samples in V0 is a complete zero matrix. Instead, the
discriminant vector set can be derived directly from the between-class scatter matrix. 	

Theorem 2 Let QQT be a transformation which transforms the samples in V (original
feature space) into a subspace V0, where Q = [α1, . . . , αn−r ] ∈ R

n×(n−r) and each αi

satisfies Swαi = 0, for i = 1, . . . , n−r , where the subspace V0 is spanned by the orthonormal
set of αi ’s. If all the samples are transformed into the subspace V0 through QQT , then the
within-class scatter matrix S̃w of the transformed samples in V0 is a complete zero matrix.

Proof Suppose xkm is the feature vector extracted from the m-th sample of the k-th class, and
that the database comprised c classes, where each class contains nt samples. Let ykm denote the
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Fig. 6 Influence of the number of training samples per class on the PCA, KPCA,MMP, NWFE, RFCF,MFCF,
FSDA and GmFSDA for the Pavia University dataset. a AA, b AV, c OA, d kappa coefficient

transformed feature vector of xkm through the transformation QQT . That is, ykm = QQT xkm ,

ȳk = QQT x̄k and ȳ = QQT x̄ ,where x̄ k = 1
nt

∑nt
j=1 x

k
m and x̄ = 1

c×nt

∑c
k=1

∑nt
j=1 x

k
m . Thus,

S̃w =
c∑

k=1

nt∑

j=1

(
ykm − ȳk

) (
ykm − ȳk

)T

=
c∑

k=1

nt∑

j=1

(
QQT xkm − QQT x̄k

) (
QQT xkm − QQT x̄k

)T

= QQT
c∑

k=1

nt∑

j=1

(
xkm − x̄ k

) (
xkm − x̄ k

)
QQT

= QQT SwQQT = 0(sinceSwQ = 0) (29)

From the above two theorems, we know that maximizing the between-class scatter in V0 is
equal to maximizing the total scatter in V0. Therefore, in order to extract more than r features,
we use the Eq. (25) for hyperspectral image.
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Fig. 7 Influence of the number of training samples per class on the PCA, KPCA,MMP, NWFE, RFCF,MFCF,
FSDA and GmFSDA for the KSC dataset. a AA, b AV, c OA, d kappa coefficient

As mentioned above, the proposed GmFSDA feature extraction method not only can
reveal intrinsic geometry structure of the hyperspectral image, but also it can learn nonlinear
correlation features with well discriminating power by MLC. 	


3 Experiments and Analysis

In this experiments, the performances of all tested methods were quantitatively compared
using the average classification accuracy (AA), average classification validity (AV), overall
accuracy (OA) and kappa coefficient. The classification process was carried out using MAT-
LAB 7.11 version on a computer equipped with an Intel Core i7 processor at 3.40-GHz. In
order to evaluate the capability of the GmFSDA feature extraction in classification of hyper-
spectral image data, the proposedGmFSDA feature extractionmethod together with common
feature extraction methods such as PCA, KPCA, MMP, NWFE, RFCF, MFCF and FSDA
were tested on two hyperspectral datasets. The AA, AV, OA, and Kappa criteria [2,3,35] were

123



A Novel Geometric Mean Feature Space Discriminant Analysis… 533

(a) PCA

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(b) KPCA

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(c) MMP

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(d) NWFE

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(e) RFCF

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(f) MFCF

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(g) FSDA

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(h) GmFSDA

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(i) Ground truth map (GTM)

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Fig. 8 Class maps obtained byMLC, 19 training samples and 8 extracted features for IPS dataset. a PCA class
map, b KPCA class map, c MMP class map, d NWFE class map, e RFCF class map, f MFCF class map, g
FSDA class map, h GmFSDA class map, i ground truth class map

used in this comparison, and these are defined as follows:

AA = 1

C

C∑

c=1

ACC(c) (30)

Where ACC(c) = nc/Nc denotes classification accuracy for each subject class, nc denotes
the number of pixels of class c correctly classified and Nc denotes the number of test pixels
in that class.

AV = 1

C

C∑

c=1

V AL(c) (31)

Where V AL(c) = nc/mc denotes classification validity for each subject class, mc denotes
the number of all the pixels labeled as class c in output class map.

OA = n

N
(32)

The measure is similar to AA, expect that classes are not considered subject but as a whole.
n denotes the number of all the pixels correctly classified and N denotes the number of all
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Fig. 9 Class maps obtained byMLC, 19 training samples and 5 extracted features for Pavia University dataset.
a PCA class map, b KPCA class map, c MMP class map, d NWFE class map, e RFCF class map, f MFCF
class map, g FSDA class map, h GmFSDA class map, i ground truth class map
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Fig. 10 Class maps obtained by MLC, 19 training samples and 7 extracted features for KSC dataset. a PCA
class map, b KPCA class map, cMMP class map, d NWFE class map, e RFCF class map, fMFCF class map,
g FSDA class map, h GmFSDA class map, i ground truth class map

pixels in the test set.

Kappa = OA − Pe
1 − Pe

(33)

Where Pe = (
∑C

c=1 mc · Nc)/N 2.
In our experiments, the product’s accuracy (PA) and the user’s accuracy (UA) are also used

to evaluate the performance of the above mentioned eight methods in addition to AA, AV,
OA, and kappa coefficient. The PA and UA are defined as Eqs. (34) and (35), respectively:

PAi = xi,i
x+i

(34)

UAi = xi,i
xi+

(35)

where xi,i is the value on the major diagonal of the i-th row in the confusion matrix, xi+ is
the total number of the i-th row, and x+i is the total number of the i-th column. The PA and
UA are the average results of PAi and UAi (i = 1, 2, . . . , c) and are defined as Eqs. (36) and
(37), respectively.
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Table 8 The AA, AV, OA and kappa statistic, and standard deviation of accuracy measures, and the number
of feature corresponding to the best result for each method with IPS datasetn, 19 training samples and MLC

Methods AA (std) # AV (std) # OA (std) # Kappa (std) #

PCA 68.2382 ± 1.1812 6 56.0409 ± 1.2497 8 56.2675 ± 2.0817 6 50.2710 ± 2.2480 6

KPCA 65.3626 ± 2.2538 10 56.8014 ± 2.7258 10 54.3258 ± 2.0091 10 48.1818 ± 2.0465 10

MMP 63.2736 ± 2.6279 6 53.4819 ± 2.4375 11 51.3947 ± 1.9891 8 44.7651 ± 2.1572 8

NWFE 59.9026 ± 3.9166 7 52.8222 ± 1.5037 12 50.8919 ± 1.9936 5 43.9978 ± 1.8740 5

RFCF 66.0930 ± 3.0307 9 53.3203 ± 2.7678 9 54.3901 ± 2.0469 9 48.3474 ± 2.2592 9

MFCF 73.6930 ± 1.2594 7 60.5006 ± 2.2567 10 60.3258 ± 2.0543 7 54.9269 ± 2.2621 7

FSDA 68.8992 ± 1.4278 6 56.3515 ± 1.7770 6 56.3922 ± 1.7436 6 50.3963 ± 1.9660 6

GmFSDA 71.7358 ± 1.7474 8 61.0145 ± 2.6996 9 61.2609 ± 3.0879 8 55.8064 ± 3.3379 8

Table 9 The AA, AV, OA and kappa statistic, and standard deviation of accuracy measures, and the number
of feature corresponding to the best result for each method with Pavia University dataset, 19 training samples
and MLC

Methods AA (std) # AV (std) # OA (std) # Kappa (std) #

PCA 69.6811 ± 1.7187 8 66.1885 ± 3.0652 11 65.8246 ± 4.6731 11 57.0023 ± 4.9869 11

KPCA 69.6053 ± 1.2558 9 65.2174 ± 1.5747 12 66.1094 ± 2.6022 9 57.0868 ± 2.7379 9

MMP 70.2710 ± 2.9336 9 67.2703 ± 2.3047 10 68.4913 ± 4.4261 10 60.0634 ± 4.8494 10

NWFE 68.9454 ± 1.5332 7 64.6024 ± 2.0973 10 62.2756 ± 2.8930 8 53.0646 ± 2.8456 8

RFCF 66.4014 ± 1.7329 6 61.3675 ± 2.4682 6 64.5470 ± 3.8054 6 54.8388 ± 3.9860 6

MFCF 71.6272 ± 1.6648 7 67.1766 ± 2.5207 7 66.6984 ± 3.8655 7 58.2162 ± 3.9257 7

FSDA 69.9977 ± 1.4827 7 65.0567 ± 1.9851 10 64.4254 ± 2.9795 4 55.0154 ± 2.9876 4

GmFSDA 72.3211 ± 1.2953 5 67.3188 ± 2.2130 6 66.9032 ± 2.8414 5 58.2957 ± 2.7849 5

Table 10 The AA, AV, OA and kappa statistic, and standard deviation of accuracy measures, and the number
of feature corresponding to the best result for each method with KSC dataset, 19 training samples and MLC

Methods AA (std) # AV (std) # OA (std) # Kappa (std) #

PCA 77.9155 ± 1.2557 6 75.0478 ± 1.1952 6 80.9327 ± 1.1187 6 77.9155 ± 1.2557 6

KPCA 73.7732 ± 1.6517 10 73.4248 ± 1.5222 12 77.3288 ± 1.4679 10 73.7732 ± 1.6517 10

MMP 77.4447 ± 2.2146 10 77.5321 ± 1.0263 10 80.5177 ± 1.9714 10 77.4447 ± 2.2146 10

NWFE 78.2570 ± 2.8395 6 76.8010 ± 1.6949 9 81.2188 ± 2.5175 6 78.2570 ± 2.8395 6

RFCF 76.3562 ± 1.3986 8 75.1518 ± 1.3918 8 79.5770 ± 1.2559 8 76.3562 ± 1.3986 8

MFCF 75.8815 ± 1.4570 6 75.0780 ± 1.4301 10 79.1539 ± 1.3185 6 75.8815 ± 1.4570 6

FSDA 78.2674 ± 1.4869 6 76.0480 ± 1.3754 8 81.2490 ± 1.3273 6 78.2674 ± 1.4869 6

GmFSDA 79.2568 ± 2.9542 7 77.9291 ± 1.5900 7 82.0931 ± 2.6149 7 79.2568 ± 2.9542 7

PA = 1

c

c∑

i=1

PAi (36)
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UA = 1

c

c∑

i=1

UAi (37)

where c is the number of class in dataset.

3.1 Hyperspectral Data Description

We use three popular datasets for doing our experiments: Indian Pines Site (IPS), Pavia
University and KSC. The well-known Indian Pines Site (IPS) dataset was obtained by the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor over the Indian Pines Site
(IPS) in northwestern Indiana in 1992 [40,41]. The hyperspectral image contains 220 spectral
reflectance bands and the size is 145×145 pixels. The spatial resolution is 20m. The ground
truth available is designated into 16 classes (see Table 1) and is not all mutually exclusive.
20 spectral bands were removed because of the noise and water absorption phenomena and
N = 200 bands were left. The three-channel false-color composition and the reference
land-cover of the AVIRIS data of IPS are shown in Fig. 1.

The Pavia University dataset was gathered by the Reflective Optics System Imaging Spec-
trometer (ROSIS) sensor over the engineering school at university of Pavia. It is 610 × 340
pixels, and the spatial resolution is 1.3m per pixel. 12 spectral bands were removed due to
the noise, and the remaining 103 spectral bands were processed. 9 classes of interest are con-
sidered (see Table 2): tree, asphalt, bitumen, gravel, metal sheets, shadows, bricks, meadows,
and soil. The three bands synthetic false color image and the reference land-cover image are
shown in Fig. 1.

The third dataset has been acquired over the Kennedy Space Center (KSC) Florida, in
March, 1996 by AVIRIS sensor [41]. AVIRIS acquires data in 224 bands of 10nm width
with center wavelengths from 400–2500nm. The KSC data acquired from an altitude of
approximately 20km, have a spatial resolution of 18m. After removing water absorption and
low SNR bands, N = 176 bands were used for the analysis. The image size is 614 × 512
pixels, and contains 13 different classes of land-cover (see Table 3). The three-channel false-
color composition and the reference land-cover of the KSC data are also shown in Fig. 1.

3.2 Experiments and Results

In this subsection, the extracted features of PCA, KPCA, MMP, NWFE, RFCF, MFCF and
proposedGmFSDAmethods have been fed into anmaximum likelihood classifier (MLC) and
then the classification results have been compared for IPS, Pavia University and KSC three
hyperspectral images data. Moreover, there are many parameters of all the above mentioned
feature extraction methods needed to be manually set (see Table 4). In Table 4, the G denotes
Gaussian kernel, p denotes regularization parameter, D denotes the number of features for
all feature extraction methods and D = 2, 3, . . . , 14. In RFCF feature extraction method, the
parameter L is changed in the range of 0 to D−1, andM is selected regarding to the constraint:
M + L + 1 = D. Of course, we have know that there are many uncertain factors for RFCF
method [35]. The best classification results can be obtained with L = 0, 1, D − 2, D − 1 in
terms of the research results of [2,3].

In our experiments, the parameter L = 1 has been used to extract feature forRFCFmethod.
The training samples are selected randomly from entire scene and the remaining samples
are used as testing samples. In order to demonstrate the capability of all above mentioned
methods, the 19 samples each class is used for training theMLC.Because of random selection
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of training samples, we do each experiment 10 times and the average results are reported. In
the experiment, the number of features is set from 2–14 in all methods and each time. The
classification accuracy measures for IPS, Pavia University and KSC datasets corresponding
to each approach versus the number of features are shown in Figs. 2, 3 and 4, respectively.

In the three experiments, we evaluate the performance of proposed GmFSDA in com-
parison with PCA, KPCA, MMP, NWFE, RFCF, MFCF and FSDA in small sample size
situation for IPS, Pavia University and KSC datasets. We obtain the average classification
accuracy (AA), average classification validity (AV), overall accuracy (OA) and kappa coeffi-
cient versus the number of extracted features using 16 training samples (see Figs. 2, 3, 4). The
MLC is used for classification of reduced data. From Figs. 2, 3 and 4, we can obtain the fact
that the superiority of the proposed GmFSDA feature extraction method in comparison with
the competing algorithms is apparent. The four measures index, such as AA, AV, OA, and
kappa coefficient have been dramatically improved by GmFSDA feature extraction method
in comparison to other methods.

As shown in Fig. 2, with the increase of the number of features, the AA, OA and kappa
coefficient are increased dramatically and then dropped slowly. We also noticed that the
robustness of the proposed GmFSDA method is better than MFCF method, especially when
the number of extracted feature is 13. In terms of the research results of Ref. [35] and Fig. 2,
for IPS dataset, the similarity of spectral response curves is quite remarkable for most of its
classes. Hence, the most feature extraction techniques cannot discriminate its classes very
well and the classification results are not much satisfactory. The AA of MFCF is higher than
our proposed GmFSDA method.

From Figs. 3 and 4, we can observe that the proposed GmFSDA method can reach the
highest accuracy in AA, AV, OA and kappa coefficient, especially the MFCF method cannot
obtain the best results in KSC dataset. Of course, for Pavia University dataset, the fluctuation
of these four indicators i.e., AA, AV, OA, and kappa coefficient is larger than other two
datasets. However, for KSC dataset, the similarity of spectral response curves is not quite
remarkable for most of its different classes. Hence, most feature extraction techniques can
discriminate its classes satisfactorily. Of course, in the three datasets, the proposed GmFSDA
feature extraction method outperforms the other methods.

In addition, the proposed GmFSDA feature extraction method outperforms the PCA,
KPCA, MMP, NWFE, RFCF, MFCF and FSDA with small sample size in PA and UA. The
accuracy results for 19 training samples cases are shown in Tables 5, 6 and 7.

In order to further evaluate the performance of our proposed GmFSDA method, the AA,
AV,OA and kappa coefficient with different numbers of training samples are shown in Figs. 5,
6 and 7 for IPS, Pavia University and KSC datasets, respectively. Figures 5, 6 and 7 illustrate
the classification accuracy and kappa coefficient of each method with different number of
training samples. It can be observed that the performances of all the compared methods will
improve as the number of training samples increases. Furthermore, the proposed GmFSDA
method consistently presents excellent performances with different numbers of training and
test samples in addition to the IPS dataset. As shown in Fig. 5, it can be observed that the
classification accuracy of MFCF is higher than our proposed GmFSDA method in terms of
AA, AV, OA and kappa coefficient. The main reason is that for IPS dataset, the similarity
of spectral response curves by using MFCF can reveal the class discriminant. However, this
robustness is poor with different numbers of extracted features in terms of Fig. 2.

Figures 8, 9 and 10 show the classification maps obtained by PCA, KPCA, MMP, NWFE,
RFCFFSDAandproposedGmFSDAmethodswithMLCand8, 5 and 7 extracted features and
19 training samples for IPS, Pavia University and KSC datasets, respectively. From the visual
point of view, the capability of GmFSDA feature extraction method is also demonstrated in
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terms of Figs. 8, 9 and 10. Hence, the results of GmFSDA feature extraction algorithm are
better than its nearest competitors, such as FSDA, MFCF and RFCF.

The number of features can be determined in terms of the best overall accuracy of each
method (see Tables 8, 9, 10). In order to further evaluate the performance of our proposed
GmFSDA method, the averages and standard deviations of accuracy measures are shown
in Tables 8, 9 and 10 for IPS, Pavia University and KSC datasets, respectively. The std
denotes the standard deviation of accuracy measures, and # denotes the number of feature
corresponding to the best result of each method.

From Tables8, 9 and 10, the average accuracy of proposed GmFSDA method is higher
than that of the other seven methods. However, its standard deviation is bigger than FSDA
feature extraction method for the IPS and KSC different training sets in terms of Tables8 and
10. Actually, in GmFSDA method, we transform the feature space two times. At first, the
original feature space is transformed to a new feature space by using a primary projection
and the features have more discrimination in the new space. Then, the second feature space
can be obtained by using a secondary projection in the first obtained feature space, and
the capability of class discrimination can be improved. The main difference of GmFSDA
with other methods is in the primary projection. The primary projection can improve the
performance of classification significantly when the number of available training samples is
limited. On the whole, the proposed GmFSDA method has better robustness, and GmFSDA
not only can reveal intrinsic geometry structure of the hyperspectral image, but also it can
learn nonlinear correlation features with well discriminating power by MLC.

4 Conclusion

In this paper, an efficient GmFSDA supervised feature extraction method is proposed for
hyperspectral image classification. The proposedmethodmainly consider the geometry struc-
ture and outlier data value of hyperspectral images pixels. Inspired by the research result of
M. Imani and H. Ghassemian, the average feature space discriminant analysis (FSDA) can
extract an efficient features for hyperspectral image. Hence, we use a more efficient geo-
metric mean instead of average vales for hyperspectral image data feature extraction. The
proposed method need to transform the original data to a new space. So, GmFSDA uses
two projection matrices for feature extraction. The primary projection matrix is used to
maximize the geometric between-spectral scatter. The secondary projection matrix which is
applied to the feature space obtained in the first step, maximizes the separability between
classes. The performance of GmFSDA is compared to other popular and state-of-the-art
supervised/unsupervised feature extraction methods with IPS, Pavia University and KSC
datasets. The GmFSDA can capture the intrinsic geometrical nature of hyperspectral images
pixels. The experimental results show that the proposedmethod can achieve feature extraction
and obtain better classification accuracy than the other seven methods.
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