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Abstract
Dense trajectory has becomeoneof themost successful hand-crafted features for action recog-
nition. However, most of the existing dense trajectories basedmethods ignore the relationship
between trajectories. In this paper, we propose multiple relative descriptors of trajectories
to model the relative information of pairs of trajectories. Specifically, we present relative
motion descriptors and relative location descriptors, which are utilized to capture the relative
motion information and relative location information respectively. Moreover, we present rel-
ative deep feature descriptors which combine the deep features with hand-crafted features.
By aggregating the above descriptors, we obtain the fixed-length representation regardless
of the various duration of input video. The experimental results on three standard datasets
demonstrate the superiority of our method.

Keywords Action recognition · Dense trajectories · Multiple relative descriptors

1 Introduction

Human action recognition has become a hot topic in computer vision due to its potential
applications in video analysis, virtual reality and video surveillance. Although remarkable
progress has been made, we still face several technical issues. One of the thorniest issues is
that the camera motion can result in relative displacements between human and background,
which is easily misclassified as a part of action.

Before the surge of deep learning, the hand-crafted features are widely used for action
recognition. In recent years, the dense trajectories based methods [1–5] have been domi-
nant among all the hand-crafted features. Improved Dense Trajectories [2], which suppresses
the camera by estimating the camera position and removing the trajectories of background
region, shows its impressive performance in action recognition. However, the key limitation
of this type of algorithm is that the trajectories are often described by classical hand-crafted
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features such as HOG and HOF, which may not be optimized for visual representation and
lack discriminative capacity for action recognition. To solve the problem, many researchers
aggregate the hand-crafted and deep features to obtain a discriminative representation. Wang
et al. [6] incorporated IDT into a deep learning framework by a linear mapping method.
Unfortunately, these methods employ each trajectory separately and ignore the relative infor-
mation between them.

At present, deep learning has made great progress in the field of action recognition.
One of the most representative deep models is two stream networks [7] which contain two
independent parts, namely spatial network as well as temporal network respectively. The
spatial network aims to extract the appearance features from static RGB image, while the
temporal network takes 3D volume of stacking optical flows fields as input to process the
temporal information. Wang et al. [8] proposed to aggregate the deep features over snippets
sparsely sampled from the video. Zhu et al. [9] proposed a key volumemining deep framework
to identify key volumes and conduct classification simultaneously. Varol et al. [10] employed
neural networks with long-term temporal convolutions to learn the video representations.
Diba et al. [11] embedded temporal linear encoding into CNNs as a new layer to capture
the appearance and motion throughout entire videos. However, these CNN based methods
typically take the raw video as input without any processing for camera motion, making the
spatio-temporal dynamic extraction of human action more challenging.

In this paper,we explore the relative information between trajectories and proposemultiple
relative descriptors to acquire robust representation. Specifically, improved dense trajectories
are extracted firstly, and three different types of relative information, i.e. relative motion
information, relative location information, and relative deep information can be obtained
from the pairs of the trajectories. By introducing multiple relative descriptors that share
the merits of both IDT and deep features, our strategies can depict the relative motion of
the background and the foreground. Meanwhile, these relative information helps to capture
and encode the variation of motion, which is suitable for classifying two similar kinds of
action, as shown in Fig. 1. In order to reduce the computational cost, we apply clustering
algorithm to construct a set of trajectory groups, each of which contains several trajectory
pairs corresponding to a specific ‘codeword’. By aggregating these relative descriptors, we
obtain a discriminative representation with fixed length.

The contributions of the paper are as follows:
First, we propose a newmethod to represent the trajectories usingmultiple relative descrip-

tors. These descriptors, which represent the relationship between foreground or background
trajectories, can capture richer information than using each trajectory separately.

Second, our method not only inherits the excellent property of IDT’s robustness to camera
motion, but also integrates the relative information between trajectories into CNN to extract
more discriminative features.

Third, for short videos, although we can only extract a small amount of trajectories, our
method can get more information by considering the relationship between them, namely, the
n trajectory pairs contain C2

n relative relationships.
Finally, for long videos with a large number of trajectories, we adopt clustering algorithm

to map the relative descriptors to the corresponding codewords. As a codeword can represent
a motion area or a part of the background, our method can not only encode the dynamics of
the foreground effectively, but also reduce the computation cost remarkably.

The rest of the paper is organized as follows. We review the related work in Sect. 2.
Section 3 details the multiple relative descriptors of trajectories. Experiment results and
discussions onKTH, JHMDBandHMDB51 are provided in Sect. 4. Finally, Sect. 5 concludes
this paper.
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Fig. 1 The illustration of the merits the proposed method. With the classical method which extract trajectory
from video clips separately, it may obtain the similar feature vector from two distinctive human actions, e.g.,
play volleyball and basketball. By introducing latent relative information between trajectories, our model can
obtain the correct results, as shown in the bottom line

2 RelatedWork

In this section, we review the main research efforts in the area of action recognition. Many
popular approaches mainly involve three stages: feature extraction, video representation and
video classification.

In the feature extraction stage, there are two different types of features, the hand-crafted
features and the deep-learned features respectively, which are shown in Fig. 2.

Early hand-crafted features can be divided into two categories: motion based features and
appearance based features. Motion-based methods treat the action recognition as temporal
classification, which highly rely on human foreground segmentation and body tracking. For
example, Yamato et al. [12] modelled the class-specific HMMs and obtain the grid-based
silhouette features.Appearancebased features explore the spatial discriminative local features
[13–15]. Dollar et al. [13] developed an extension of informative features points based on
space-timewindowed data. Yeffet et al. [14] proposed to fuse the Local Binary Patterns (LBP)
with the spatial invariance, which is based on the patch-matching methods. The mostly used
appearance features are local descriptors based on space-time interest points (STIPs) [15] and
cuboids [16], such as SIFT and SURT and so on. Improved dense trajectories (IDT) [2] with
four descriptors, trajectory shape (TS), histograms of oriented gradients (HOG), histograms
of optical flow (HOF), and the motion boundary histograms (MBH), has achieved state-of-
the-art performance among all the hand-crafted features on standard action datasets.

Due to the great success of convolutional neural network, researchers have focused on
applying deep learning to action recognition. For instance, [17,18] concentrated on learning
local spatio-temporal convolutional filter, while [7,19,20] incorporated optical flow snippets
into the deep learning architecture in order to process temporal information. Karpathy et al.
[17] applied CNN to time domain to fuse the local spatio-temporal information. Simonyan
et al. [7] incorporate the motion information by using two independent convolutional neural
networks for both spatial domain and temporal domain. Feichtenhofer et al. [21] improved
the two-stream convolutional neural network by studying a fusion method which makes the
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Fig. 2 Two types of features used for action recognition, i.e., hand-crafted features and deep learning features

related channels to be connected. Wang et al. [8] proposed to aggregate the information over
snippets sparsely sampled from the video. Zhu et al. [9] proposed a key volume mining
deep framework to identify key volumes and conduct classification simultaneously. Varol et
al. [10] employed neural networks with long-term temporal convolutions to learn the video
representations. Diba et al. [11] embedded temporal linear encoding into ConvNets as a new
layer to capture the appearance and motion throughout entire videos. However, the deep
networks take the raw video as inputs without properly handling the camera motion, which
may bring significant interference to the final classification.

In the stage of video representation, there are three widely used mid-level representa-
tion approaches: bag-of-words (BOW) [22], fisher vector (FV) [23] and vector of locally
aggregated descriptors (VLAD) [24,25]. According to [2], VLAD outperforms BOW and
FV under the same conditions. Generally, VLAD can be viewed as a simplified form of FV
encoding, which is a type of feature representation aggregating the descriptors based on a
locality criterion in the feature space.

In the stage of classification, classifiers such as support vector machine (SVM), Nearest
Neighbor Classifier (NNC) and Random Forest are trained with the obtained representation
and then applied to the test data.

3 Proposed Algorithm

In this section, we will introduce the proposed MRDT method, a trajectory based approach
that models the dynamic information of a video. Figure 3 illustrates the overview of MRDT.
Firstly, we extract improved dense trajectories (IDT) from the video due to their robustness
to camera motion. Then we propose multiple relative descriptors of trajectories to model the
human action in the video via capturing the relative information between pairs of trajectories.
Compared with IDT, MRDT is not only robust to camera motion, but also works well on the
videos with arbitrary length.

We start with a brief introduction to IDT and then detail the multiple relative descriptors
of trajectories which are designed to model the dynamics of the video. These descriptors are
eventually aggregated together and sent to a linear SVM for classification.
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Fig. 3 The overview of proposed MRDT. It includes the following steps: (i) Improved dense trajectories
extraction. (ii) Relative relationship exploration. (iii) Trajectories cluster. (iv) Different relative descriptors
fusion

3.1 Improved Dense Trajectories

As an extension of dense trajectory, IDT [2] can effectively suppress camera motion without
losing the motion information of foreground. The first step for IDT extraction is to densely
sample a set of points in 8 spatial scales with a grid step size of 5 pixels from video frames.
The tracking of the sampled point can be defined as follow:

P(xt+1, yt+1) = P(xt , yt ) + M ∗ φ|(x,y) (1)

where P(xt , yt ) is the tracked point of trajectory at t th frame, ∗ is the convolutional operation,
φ is dense optical flow field of the t th frame, and M is the median filter kernel, and (x, y)
denotes the round position of (x, y). The length of trajectory is set to 15 frames to avoid
the drifting problem. Furthermore, the static trajectories as well as those with suddenly large
displacements are removed.

Homography matrix is adopted in IDT to characterize the motion of two consecutive
frames. First, SURF [26] features as well as motion vectors extracted from optical flow are
used to generate sufficient candidate matches of two adjacent frames. Then the Homography
matrix is estimated by RANSAC [27] algorithm. Using the estimated homography matrix to
recalculate the optical flow,warped flow can be obtained, which can suppress various camera
motion e.g. pan, tilt and zoom [2]. The effects of IDT are shown in Fig. 4. We can learn that
IDT can remove the background trajectories caused by the camera motion, and preserve the
foreground trajectories that contain more discriminative information.

Different from the original IDT, we only use two descriptors (e.g., HOG and MBH [28])
of the trajectories to capture the appearance and motion information.

In summary, for a given video V , it can be represented as:

T (V ) = {T1, T2, . . . , Tk} (2)

Tk = {(xk1 , xk1 ), (xk2 , xk2 ), . . . , (xkL , xkL)} (3)

where K is the number of video trajectories, and Tk is the kth trajectory. (xkl , xkl ) denotes the
position of the lth point in trajectory Tk , while L is the length of trajectory (L = 15). The
design of multiple relative descriptors for the extracted trajectories will be introduced in the
following parts.

3.2 Relative Relationship of Trajectories

Most trajectories based methods merely design descriptors for each trajectory separately,
which ignore the significance of the relationships between them.However, these relationships
with a lot of useful information can be used to build a more powerful representation. Based
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Fig. 4 Left: RGB sequence from the raw video; middle: Dense Trajectories that contain the camera motion;
right: Improved Dense Trajectories (IDT) that suppress the camera motion. The red dots are dense trajectory
positions and green lines are the trajectories. (Color figure online)

Fig. 5 A proposed method to quantify the vectors which are used to represent the relative relationship of
trajectories. a denotes the input video. The relative motion/location of two trajectories in b is mapped to a
8-bins relative feature by quantizing the local descriptors of the two trajectories in c

on above considerations, we explore the relative relationships between trajectories to obtain
discriminative representations. Specifically, three relative descriptors, i.e. relative motion
descriptors, relative location descriptors and relative deep features descriptors, are proposed
to model the dynamics of the video.

Relative Motion Descriptors We propose relative motion descriptors to characterize the rel-
ative motion information between a pair of trajectories. Since each trajectory contains L
points, we define the motion information of a trajectory as follows:

MTk = Pk
L (xkL , ykL) − Pk

1 (xk1 , y
k
1 ) (4)

where MTk represents the motion of the trajectory, Pk
l is the lth points of the kth trajectory.

Then the relative motion between a pair of trajectories can be represented as:

ΔMi, j = MTi − MTj (5)

By quantifying relative motion information, we obtain the relative motion descriptors. As
shown in Fig. 5, the angle plane of ΔMi, j will be divided into N bins from 45◦ to 360◦, each
of them corresponds to an angle interval of 360◦/N . Therefore, the relative motion ΔMi, j is
quantized into an N -dimensional vector RMDi, j , which takes the advantage of the motion
orientation and magnitude.

Relative Location Descriptors The position of a trajectory is quite crucial, which is closely
related to the region where the human action may occur. The position of a trajectory can be
denoted as (6):
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Table 1 The architecture of
VGG16

Layer Size Stride Channel Map size ratio

conv1_1 3 × 3 64 1 1

conv1_2 3 × 3 64 1 1

pool1 2 × 2 64 2 1/2

conv2_1 3 × 3 128 1 1/2

conv2_2 3 × 3 128 1 1/2

pool2 2 × 2 128 2 1/4

conv3_1 3 × 3 256 1 1/4

conv3_2 3 × 3 256 1 1/4

conv3_3 3 × 3 256 1 1/4

pool3 2 × 2 256 2 1/8

conv4_1 3 × 3 512 1 1/8

conv4_2 3 × 3 512 1 1/8

conv4_3 3 × 3 512 1 1/8

pool4 2 × 2 512 2 1/16

conv5_1 3 × 3 512 1 1/16

conv5_2 3 × 3 512 1 1/16

conv5_3 3 × 3 512 1 1/16

pool5 2 × 2 512 2 1/32

fc6 – 4096 – –

fc7 – 4096 – –

fc5 – 101 – –

˜Pi =
(

Δx1 + Δx2 + · · · + ΔxL
L

,
Δy1 + Δy2 + · · · + ΔyL

L

)

(6)

where (Δxi ,Δyi )(i = 1, . . . , L) denotes the position of the i th points of the trajectory, and
˜Pi is the mean position of all points. Similar to the extraction of relative motion descriptors,
the relative location between two trajectories is calculated as follows:

ΔPi, j = ˜Pi − ˜Pj (7)

Then, the ΔPi, j is quantized into a N -dimensional vector RLDi, j , which incorporates
the relative location of two trajectories. If the direction of relative location ΔPi, j is assigned
to one of N bins, the corresponding value in the vector will set to one while others are zero.

Relative Deep Feature Descriptors Deep ConvNets have proven their superiority in many
areas, such as face recogniton and object detection. In our work, we choose 16-layer VGG16
[29] as the backbone of two stream networks to extract the deep features of the trajectories.
As a deep ConvNet with 13 convolutional layers and 3 fully connected layers, VGG16 has
higher precision and better generalization capacity. The architecture of VGG16 is shown in
Table 1.

Two stream networks consist of two independent networks, the spatial network and the
temporal network respectively. The spatial network aims to capture the appearance informa-
tion of the video, with the RGB frame (224 × 224 × 3) as input. The temporal network is
applied to model the dynamic information, and its input is the stacking optical flows fields
(224 × 224 × 2K , K is the number of stacks). Notably, the parameters of two networks are
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not shared. Once the training of two stream networks is completed, we treat them as generic
feature extractors to obtain the feature maps from the last convolutional layer. The detail of
both the implementation and the training will be introduced in Sect. 4. Therefore, for a video
V, we can extract two types of feature maps:

CS(V ) = {Cs
1,C

s
2, . . . ,C

s
I } (8)

CS(T ) = {Ct
1,C

t
2, . . . ,C

t
I } (9)

where Cs
i ,C

t
i ∈ R

Hi×Wi× D×Chi is the i th feature maps of the spatial and temporal network
respectively, and Hi ,Wi , D,Chi denote the height, width, video duration and the number of
channels respectively.

The feature map normalization is then applied to reduce the influence of illumination.
Given a feature map C ∈ R

H×W× D×Ch , the value of C can be normalized as:

CNorm = C

max(V j
ST )

(10)

where max(V j
ST ) is the maximum value in the spatio-temporal domain of the feature map in

j th channel. This operation ensures that the value of the points in the same position ranges
in the same scale through all channels.

To obtain the deep features of a trajectory, the points of improved dense trajectories
are mapped into these normalized feature maps. In order to boost the performance, we
construct the multi-scale deep feature of the trajectories. Specifically, we extract the multi-
scale pyramids of video frames and optical flow fields, and feed these pyramids into two
stream networks to obtain multi-scale convolutional feature maps. Given the feature maps
CS and CT from spatial network and temporal network respectively, the deep feature of a
trajectory can be defined as follows:

TdS(Tk) =
M

∑

s=1

L
∑

l=1

Cσs
S ((rm × σs × xkl ), (rm × σs × ykl ))

TdT (Tk) =
M

∑

s=1

L
∑

l=1

Cσs
T ((rm × σs × xkl ), (rm × σs × ykl ))

(11)

where (xkl , ykl ) is the position of the lth point in trajectory Tk , and rm is the map size ratio
with respect to input size. () is the rounding operation. M is the total number of the scale,
and σs denotes the sth scale of the feature maps. From formula (11) we can obtain TdS(Tk)
and TdT (Tk), which are the deep features of Tk from spatial network and temporal network

respectively. In practice,we use 4 scaleswithσs = √
2
s−4

,where s ranges from1 to 4. Finally,
we define the relative deep feature descriptor between a pair of trajectories as follows:

RDFDm
i, j = Tdm(Ti ) + Tdm(Tj )(m = S, T ) (12)

Fusion of Multiple Relative Descriptors We aggregate three types of relative descriptors
between a pair of trajectories into a fixed-dimension representation as follows:

f (Ti , Tj ) = [RMDi, j , RLDi, j ] × ∥

∥ΔMi, j
∥

∥ × ∥

∥ΔPi, j
∥

∥ × ∣

∣RDFDi, j
∣

∣ (13)

where ΔMi, j , ΔPi, j are the magnitude of relative motion and relative location respectively.
As the number of trajectories varies in different videos, we need the fixed-length repre-

sentation regardless of the duration of the video. Inspired by the bag-of-features [30], we
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Fig. 6 The process of clustering trajectories through k-means and mapping them to corresponding codewords

introduce k-means [31] to cluster the trajectory descriptors to obtain a codebook with W
codewords, in which all the trajectories are mapped to their corresponding codewords. In our
work, we only use HOG and MBH for trajectories in clustering. The procedure of clustering
is shown in Fig. 6. Given a pair of trajectories (Ti , Tj ), we can obtain the corresponding
codeword pair (Ci ,C j ). Then we define representation F to be the summation of the multi-
ple relative descriptor vectors f (Ti , Tj ), which denotes the relative relationship of codeword
pairs, shown as follow:

F(Ci ,C j ) =
∑

(Ti ,Tj )→(Ci ,C j )

f (Ti , Tj ) (14)

Therefore, we reduce the computational cost by clustering a large number of trajectories
into a small quantity of codeword pairs, as described in formula (14). Since W codewords
are generated by k-means, the final representation between all codewords can be expressed
with matrix M :

M =

⎡

⎢

⎢

⎢

⎣

0, F1,2, . . . , F1,W
F2,1, 0, . . . , F2,W

...
. . .

...

FW ,1, FW ,2, . . . , 0

⎤

⎥

⎥

⎥

⎦

(15)

where M is an antisymmetric matrix. In our work, only the upper triangle of the matrix is
utilized to represent the video. Thus, the final representation of MRDT is a W×(W−1)

2 × N -
dimensional vector.

4 Experiments

In this section, we first make a brief introduction of the datasets and the experimental pro-
tocols, and then discuss the performance of the proposed method as well as its comparisons
with other state-of-the-art methods.

4.1 Experimental Settings

Datasets To test the effectiveness of MRDT, we conducted experiments on three standard
datasets: JHMDB [32], KTH [33] and HMDB51 [34]. As shown in Fig. 7, KTH dataset
contains six types of actions: handclapping, boxing, walking, jogging, running and hand
waving. The dataset has a total of 599 videos, and all videos for each class are grouped into
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Fig. 7 Example frames of a few action classes in HMDB51 (first row), JHMDB (left side of second row), and
KTH (right side of second row) datasets

25 subjects. As in Baccouche et al. [35], we randomly selected 16 subjects for training and
the remaining 9 subjects for testing.

JHMDB contains 21 types of actions, such as golf, jump and pick, etc. This dataset has
a total of 928 videos. Figure 7 shows a few frames from several categories in the JHMDB
dataset. We follow [33] and divide the dataset into three train/test splits for evaluation. The
final performance is reported by the average across three splits.

HMDB51 contains 51 kinds of actions, with a total of 6766 videos and at least 100 video
clips in each category. Moreover, most of the videos in this dataset involve a mass of camera
motion, e.g. pan and zoom,whichmakes the action recognitionmore challenging. The dataset
provides three train/test splits. In each split, 70 clips are used for training and 30 clips for
testing.

Implementation details We use the video extension version [8] of the Caffe toolbox [36] to
implement the proposed MRDT.

TV-L1 [37] is applied to compute optical flow, then we discretize the values of optical
flow fields into integers and set their range as 0–255 just like images. VGG16, pre-trained
on ImageNet, is used as backbone of two stream networks to acquire the deep features of
the trajectories. UCF101 [38], one of the biggest action datasets containing 13,320 videos,
is selected to train two stream networks. We use stochastic gradient descent solver with
cross-entropy loss to optimize the networks, whose batch size is 128 and weight decay is
0.00001. For spatial network, we first resize the frame to make the smaller side as 256, and
then randomly crop a 224× 224 region from the frame. It then undergoes random horizontal
flipping. The dropout ratios are set to 0.8 for all fully-connected layers. For the temporal
network, the input is the volume of stacking optical flows fields (224 × 224 × 20), and the
dropout ratios for fully connected layers are set to 0.9. The initial learning rate for both
networks is 0.001 and decreases by a factor of 10 after 30K iterations. All the videos in
UCF101 are used to train our deep models.
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Table 2 Evaluation of parameter
Nbins on JHMDB dataset

Nbins 4 8

split1 (%) 51.33 55.49

split2 (%) 51.65 58.00

split3 (%) 50.92 53.86

Average(%) 51.33 55.78

After the training on UCF101 is completed, we fine-tune the deep models on KTH,
JHMDB and HMBD51. In this procedure, we only update the parameters of three fully
connected layers and those of the last convolutional layer to avoid severe overfitting. The
training settings are the same as those of UCF101. Then we remove the three fully connected
layers of the trained networks and only use the feature maps from the last convolutional layer
to build our MRDT. In order to deal with multi-class classification problem, we apply linear
support vector machine (SVM) with the LIBSVM toolbox and set the parameter C as 100.

All the experiments are conducted on Tianhe-2A, one of the fastest supercomputers in
the world. Tianhe-2A possesses 16,000 computational nodes, each with 24 CPU cores and
128GB RAM. We use four nodes to train the ConvNets, two nodes for optical flow compu-
tation and two nodes for the IDT extraction as well as MRDT implementation.

4.2 Quantitative Evaluation Results of MRDT

In this section, we conduct several experiments to support our claim that the proposedMRDT
can capture more discriminative information by modelling the relationship between trajecto-
ries. Firstly, we test the effects of different parameters Nbins and NCenter on recognition
performance, which denote the number of quantization bins of the proposed relative descrip-
tors and the number of codewords for k-means respectively. Secondly, we evaluateMRDT on
KTH, JHMDB andHMDB51 to validate the effectiveness of introducing relative information
between trajectories. Then, we analyze the runtime of our method on HMDB51 and test its
performance across datasets from JHMDB to HMDB51. Finally, we compare our approach
with state-of-the-art methods on three standard datasets.

Selection of parameter Nbins and NCenter In order to acquire proper parameters Nbins and
NCenter , we explore the performance of the different parameter settings on JHMDB.

Table 2 shows the experimental results of different Nbins with a fixed number of code-
words at 100. With 8 bins, Relative motion descriptor and relative location descriptor
(RM+RL) achieves the accuracy of 55.78%, 4.45% higher than that of RM+RL with only
4 bins. Since more bins will increase the dimension of the descriptor, we set Nbins to 8 as
default, in order to balance the accuracy and the computational efficiency.

Then we fix Nbins at 8 and change NCenter . As shown in Table 3, setting NCenter
at 200 in the stage of clustering achieves the best performance. We finally set NCenter to
200 as default. The experimental results indicate that the reasonable choice of Nbins and
NCenter can yield better performance with less computation cost.

Evaluation of MRDT on JHMDB, HMDB51 and KTHWe carry out ablation studies to eval-
uate the performance of MRDT on JHMDB, HMDB51 and KTH, in order to verify the
effectiveness of introducing relative information between trajectories. The baseline is the
trajectories without any kinds of relative descriptors. Then RM+RL, i.e. combining relative
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Table 3 Evaluation of parameter
NCenter on JHMDB dataset

NCenter 100 200 300

split1 (%) 55.49 59.63 57.30

split2 (%) 58.00 60.49 58.94

split3 (%) 53.86 59.60 57.91

Average(%) 55.78 59.90 58.05

Table 4 The performance of
MRDT on JHMDB, HMDB51
and KTH datasets

Datasets Baseline (%) RM+RL (%) MRDT (%)

JHMDB 49.72 59.90 61.73

HMDB51 44.35 53.23 56.13

KTH 80.25 92.67 95.27

Table 5 The performance of
MRDT with different scale
RDFD

Scale 1 2 3 4

JHMDB (%) 61.73 62.21 63.68 65.13

HMDB51 (%) 56.13 57.17 58.23 59.87

KTH (%) 95.27 95.72 96.57 97.77

motion descriptor and relative location descriptor, is evaluated. Finally, we test the perfor-
mance of MRDT that consists of all relative descriptors.

As shown in Table 4, both RM+RL and MRDT can achieve better performance than
baseline on three datasets, which demonstrates that the proposed MRDT can capture more
discriminative information. Moreover, we analyze the results to illustrate the superiority of
our model. First, RM+RL outperforms the baseline, suggesting that the relative relationships
between trajectories are critical to boost the performance. Second,MRDThas higher accuracy
than RM+RL, indicating that relative deep features are complementary to other two relative
hand-crafted features.

We further report the performance ofMRDTwithmulti-scale relative deep feature descrip-
tor (RDFD) in Table 5. With the help of multi-scale RDFD, MRDT can obtain more deep
features to model the relationship between trajectories, thus achieving higher accuracy. It is
worth noting that multi-scale RDFD means higher computational costs, which can signifi-
cantly reduce the real-time performance of our model.

The runtime analysis We list the average inference runtime of our method on each video
in Table 6. The experiments are conducted on HMDB51. Firstly, the optical flow fields are
calculated from the video, as they are indispensable for both improved dense trajectories
and two stream networks. Then we extract the improved dense trajectories and obtain the
deep features using two stream networks. Afterwards, we model the relationship between
trajectories via multiple relative descriptors. Finally, a linear SVM is used for classification.

As shown in Table 6, optical flow extraction is time-consuming because of the dense
calculation between each two consecutive frames. As we extract the deep feature of each
frame and each stacking optical flow field, the process of CNN feature extraction takes about
3.86 seconds per video. The FPS of IDT is 12.53, which is almost twice that of optical
flow extraction. It’s worth pointing out that MRDT works very fast, whose FPS is 57.14. In
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Table 6 The runtime on HMDB51

Step Optical flow IDT CNN MRDT SVM Total

Runtime 14.02 s 7.46 s 3.86 s 1.64 s 0.41 s 27.39 s

FPS 6.67 12.53 24.19 57.14 227.33 3.41

Table 7 The performance of
MRDT across datasets (trained
on JHMDB, tested on HMDB51)

Dataset Accuracy (%)

JHMDB 65.13

HMDB51 59.04

HMDB51a 59.87

adenotes the results without cross-dataset testing

general, our method lacks real-time capability with only 3.41 FPS, due to the fact that both
IDT and optical flow extraction are time-consuming.

The performance across datasets For further evaluation, we test the robustness of MRDT
across two datasets that contain complex camera motion. Specifically, we train our model
on JHMDB and then test it on HMDB51, as the categories in JHMDB are the same as part
of those in HMDB51. All the videos in JHMDB are used for training to avoid overfitting.
The training settings are the same as Sect. 4.1. After training, we test our model only on test
splits of HMDB51, and list the results in Table 7. Notably, only the accuracy of the shared
categories in these two datasets are reported.

As shown in Table 7, the performance drops by 6.09% when we transfer MRDT directly
from JHMDB to HMDB51, mainly due to the fact that the number of videos for testing in
HMDB51 is more greater than that of videos in JHMDB. But it can be seen clearly that the
accuracy across datasets is very closed to the original result that we post in Table 5, which
demonstrates that the performance of MRDT does not depend on specific dataset and the
robustness of MRDT to camera motion is excellent.

Comparison to state-of-the-art methodsThe comparisons of theMRDTwith other algorithms
on KTH, JHMDB and HMDB51 are listed in Tables 8, 9 and 10 respectively.

As shown inTable 8,MRDToutperforms the previousmethods onKTH.TheLSTMmodel
with HOF and HOG3D achieve 90.7% and 89.93%, respectively. The accuracy of 3DCNN
model is 91.04%; when combined with the LSTM, the accuracy increases to 94.39%.MRDT
outperforms 3DCNN+LSTM by 3.3%.

We also compareMRDTwith existing methods on JHMDB dataset. From Table 9, we can
learn that our method outperforms both IDT [2] and deep learning approaches. Gkioxari et al.
[39] incorporated pose estimation into their deep model with an accuracy of 62.50%. Cheron
et al. [40] not only fine-tuned their model on JHMDB, but also used a detection framework
for action modelling. With the deep models that are only treated as generic feature extractors
on JHMDB, MRDT achieves higher accuracy than those of CNN based methods.

Finally, we make comparisons between MRDT and other algorithms on HMDB51. Wang
et al. [2] utilized four different descriptors (e.g., TS,HOG,HOFandMBH) for the trajectories,
whilewe onlyHOF andMBH for clustering. Simonyan et al. [7] propose an end-to-endmodel
and fine-tune their networks on HMDB51. Although their deep models are also pre-trained
on UCF101, MRDT still outperforms [7].
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Table 8 Comparisons on KTH
dataset

Method Accuracy (%)

Rodriguez et al. [41] 81.50

Jhuang et al. [42] 91.70

LSTM + HOF [43] 90.70

LSTM + HOG3D [44] 89.93

1-order dRNN+HOG3D [44] 93.28

2-order dRNN+HOG3D [44] 93.96

3DCNN [35] 91.04

3DCNN+LSTM [35] 94.39

Ours 97.77

Table 9 Comparisons on
JHMDB dataset

Method Accuracy (%)

Wang et al. [1] 56.60

Simonyan et al. [7] 56.50

Gkioxari et al. [39] 62.50

Cheron et al. [40] 61.10

Ours 65.13

Table 10 Comparisons on
HMDB51 dataset

Method Accuracy (%)

Wang et al. [2] 55.9

Simonyan et al. [7] 58.50

Wang et al. [29] 55.1

Tran et al. [18] 51.9

Ours 59.87

The comparisons on three datasets demonstrate the superiority of MRDT, which indicates
that introducing the relative information between trajectories, along with combining the deep
features with these information, can significantly boost the performance.

5 Conclusion

This paper proposesmultiple relative descriptors of trajectories for action recognition. Unlike
the traditional trajectories based approaches which describe each trajectory separately, our
method considers the relative information between trajectories. Specifically, relative motion
descriptors and relative location descriptors are utilized to capture the relative motion infor-
mation and relative location information respectively. Moreover, we use VGG16 to obtain
the relative deep features of the trajectories, which shares the advantages of deep features
with hand-crafted features. Experiments results on standard datasets demonstrate the effec-
tiveness of our MRDT. The only drawback is that our method is not so efficient due to the
poor real-time performance of optical flow calculation and IDT extraction. In the future, we
will focus on fast and robust representations that can be applied in real time.
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