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Abstract
A fundamental research topic in domain adaptation is how best to evaluate the distribu-
tion discrepancy across domains. The maximum mean discrepancy (MMD) is one of the
most commonly used statistical distances in this field. However, information about distri-
butions could be lost when adopting non-characteristic kernels by MMD. To address this
issue, we devise a new distribution metric named maximum mean and covariance discrep-
ancy (MMCD) by combining MMD and the proposed maximum covariance discrepancy
(MCD). MCD probes the second-order statistics in reproducing kernel Hilbert space, which
equips MMCD to capture more information compared to MMD alone. To verify the efficacy
of MMCD, an unsupervised learning model based on MMCD abbreviated as McDA was
proposed and efficiently optimized to resolve the domain adaptation problem. Experiments
on image classification conducted on two benchmark datasets show that McDA outperforms
other representative domain adaptation methods, which implies the effectiveness of MMCD
in domain adaptation.

Keywords Domain adaptation · Image classification · Dimensionality reduction · Transfer
learning

1 Introduction

In standard machine learning, both training and test data are assumed to be drawn from
the same distribution. However, this assumption turns out unrealistic for lots of real-world

B Xiang Zhang
zhangxiang08@nudt.edu.cn

Long Lan
long.lan@nudt.edu.cn

Zhigang Luo
zgluo@nudt.edu.cn

1 Science and Technology on Parallel and Distributed Laboratory, National University of Defense
Technology, Changsha 410073, China

2 State Key Laboratory of High Performance Computing, National University of Defense
Technology, Changsha 410073, China

3 College of Computer, National University of Defense Technology, Changsha 410073, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-019-10090-0&domain=pdf
http://orcid.org/0000-0002-5201-3802


348 W. Zhang et al.

problems, which could cause performance degradation for testing. For example, in visual
recognition task, test images may differ from training ones due to changes in backgrounds,
sensors, viewpoints, etc. To address this issue, domain adaptation has been proposed in quest
of adapting the models built in one domain (source domain) to serve another different but
related domain (target domain), in such a way that the learned models perform well in the
target domain.

In DA problems, the dataset from the source domain and the dataset from the target
domain usually follow different distributions. To narrow the difference, the first thing is to
appropriately evaluate the distribution discrepancy across domains for most DA models.
Many candidate statistical distances, such as the Kullback–Leibler divergence [5], the Breg-
man divergence [33], the Wasserstein distance [32] and the maximum mean discrepancy
(MMD) [11], can be used to achieve this purpose. MMD is one of the most widely used
distances and it is designed to evaluate the distance between the kernel mean embedding of
distributions in a reproducing kernelHilbert space (RKHS).MMDpossesses a decent theoret-
ical property, i.e., characteristic kernels establishMMD asmetrics on the space of probability
distributions [9,11,34]. Due to its non-parametric form and its theoretical properties, MMD
has attracted widespread attention from the DA community.

Muchprogress has beenmade in an effort to exploreMMDand thereby obtain transferrable
knowledge from the source domain. Theoretically, the characteristic kernel is the natural
choice forMMD. However, in specific applications, non-characteristic counterparts might be
more appropriate than characteristic ones [3]. SeveralMMD-basedDAmethods employ non-
characteristic kernels (such as the linear kernel [16,20,25] and the polynomial kernel [1,2])
or the non-kernel linear transformation [14–16,20,37] to cope with domain shift. Despite the
state-of-the-art performance achieved by the non-characteristic kernel based methods, in this
paper we point out that there is still much room to improve these current methods. To be
specific, with a deep insight into the recent MMD methods, we can come to the conclusion
that the non-characteristic kernel based MMD could lose some statistical information that is
important for DA.

To capturemore information about distributions, this paper designs a newdistributionmet-
ric termed themaximummean and covariance discrepancy (MMCD). This metric is designed
to address both the first- and second-order statistical information in the RKHS. Specifically,
MMCD is comprised of MMD and our proposed maximum covariance discrepancy (MCD).
MCD evaluates the Hilbert–Schmidt norm of the difference between covariance operators
such that it addresses the second-order statistics in the RKHS. Since MMCD unites MCD
and MMD, MMCD is able to simultaneously consider the first- and second-order statistics
in the RKHS. Thus, when the non-characteristic kernel is used, MMCD has the ability to
capture more information about distributions than MMD does. This point will be analyzed
in Sects. 3.2 and 3.3.

To verify the efficacy of MMCD, we propose an unsupervised DAmethod that is based on
MMCD (McDA) in the joint distribution adaptation (JDA) paradigm [20]. JDA has been cho-
sen because it jointly adapts both the marginal and conditional distributions across domains.
It is not easy to optimize McDA due to its non-convex term. To address this issue, we
approximate the non-convex term with its convex upper bound, thereby yielding a closed-
form solution to each sub-problem. Experiments in cross-domain image classification on
two datasets (PIE and Office-Caltech) show the effectiveness of McDA in the JDA paradigm
when compared with the baseline methods, which implies the efficacy of MMCD.

The rest of this paper is organized as follows. Section 2 reviews the relatedworks. Section 3
introduces the proposed maximum mean and covariance discrepancy. Section 4 details the
MMCDbased unsupervised DAmodelMcDA, alongwith an optimization algorithm to solve
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it. In Sect. 5, we report the performance ofMcDA on two benchmark datasets. Finally, Sect. 6
concludes the paper.

2 RelatedWork

Domain adaptation (DA) has been widely studied in extensive literatures [26,27]. DA can be
categorized into two groups supervised DA and unsupervised DA according to whether or
not the data in the target domain is labeled [4,6,25,38,40]. In this paper, we focus on the unsu-
pervised setting. To tackle the unsupervised DA problem, many methods has been proposed
including sample reweighting [17], projection learning [25] and subspace alignment [8,36].
Among them, a popular way is to learn the domain-invariant representation which minimize
the distribution discrepancy across domains. Notably, two methods of measuring the distri-
bution discrepancy have been widely adopted in DA models: maximum mean discrepancy
(MMD) metric [11] and the explicit order-wise distance between distributions.

As a representativemetric used tomeasure distribution discrepancy,MMDhas beenwidely
used in DA methods. For instance, Pan et al. [25] developed transfer component analysis
(TCA) to learn invariant features across domains in the reproducing kernel Hilbert space
(RKHS). To investigate the benefits of conditional distributions, Long et al. [20] constructed
a joint distribution adaptation (JDA) paradigm which adopted MMD in order to jointly
evaluate the marginal and conditional distribution differences across domains. JDA yielded
the state-of-the-art classification performance. Recently, Hsieh et al. [15] generalized JDA in
order to tackle heterogeneous DA problems. Later, the closest common space learning [16]
was proposed to deal with imbalanced cross-domain data problem in the frame of JDA.
With advances in deep learning, MMD-based deep models have also made great success
in adaptation performance across domains. Long et al. [19] proposed a deep adaptation
network architecture, in which a multiple-kernel MMD was utilized in order to match cross-
domain distributions of multiple task-specific CNN layers, so as to boost the transferability
of deep features. Recently, Long et al. [21] have proposed a new DA method to be used in
deep networks, i.e., residual transfer networks, which was able to jointly learn both adaptive
classifiers and transferable features. To be different, Our MMCD explores both the first- and
second-order statistics in the RKHS.

In addition to MMD-based models, recent work has explicitly matched the order-wise
statistics of cross-domain distributions, thereby taking the statistics of distributions into
account. For example, Sun et al. [35] proposed an efficient unsupervised DA method, which
they designated as correlation alignment, to align the covariance matrix of the source and
target distributions. Jiang et al. [18] proposed to use the second moment matching so as to
learn the domain-invariant feature. Zong et al. [41] took a different approach which explores
both the least-square regression and mean–covariance feature matching in order to enhance
the performance of cross-corpus speech emotion recognition. Zellinger et al. [39] took a
step forward to explore higher order moment which learns domain-invariant representations
by means of explicitly order-wise moment matching. Different from the above mentioned
methods which all study in the original feature space, our MMCD, however, explores the
higher order statistics in the RKHS by using the kernel trick.

It is noted that MMCD is related to the work of [22] which embeds distributions in a finite
dimensional feature space, and matches the mean and covariance feature statistics in order
to train generative adversarial networks. The proposed MMCD differs from this approach in
two ways. Firstly, MMCD function set is from the RKHS which is infinitely dimensional in
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the setting of PSD kernels. In comparison, the function set used by [22] is parameterized by
a finite-dimensional CNN. Secondly, MCD can be represented as the Hilbert–Schmidt norm.
By contrast, the covariancematching in [22] is related to the nuclear norm. Besides, we notice
that the empirical estimator of squared MCD has similar form to that from [28,29]. However,
they are different in three aspects. Firstly, MCD is defined in the frame of integral probability
metrics [24] and can be regarded as the second-order generation ofMMD, while [28] uses the
empirical estimator of squared MCD directly. Secondly, MCD serves as distribution metric,
while [28] uses covariance operators as image representation. Thirdly, this paper unites both
MMD and MCD as MMCD to measure the distribution discrepancy.

3 MaximumMean and Covariance Discrepancy

This section will introduce the maximum covariance discrepancy (MCD) and its joint variant
the maximum mean and covariance discrepancy (MMCD). In addition, several theoretical
analyses will be provided. At first, we introduce the notations that are used throughout this
section.

LetH be a reproducing kernel Hilbert space (RKHS) over X with associated kernel k (·, ·),
whose canonical feature map is φ (x) = k (x, ·) for x ∈ X . Let x and y be random variables
defined on X , we assume x ∼ p and y ∼ q , where x ∼ p indicates x follows distribution
p. The notation Ex∼p denotes the expectation with respect to p, and we abbreviate Ex∼p

and Ex∼q to Ex and Ey respectively when there is no ambiguity. Following [12], when
given f , g ∈ H, the tensor product operator f ⊗ g:H → H is defined as ( f ⊗ g) h =
f 〈g, h〉H for all h ∈ H , where ⊗ denotes the tensor product. Based on the tensor product
operator andprobability distributions, the centered covariance operatorC :H → H associated
with the distribution p has the definition C [p] = Ex∼p [φ (x) ⊗ φ (x)] − Ex∼p [φ (x)] ⊗
Ex∼p [φ (x)]. At last, we make two assumptions in our paper. First, we assume the kernel
k (·, ·) to be bounded,whichmakes the covariance operator bounded and themean embedding
of distributions inH exists [11]. Second, we assumeH to be separable such that the basis of
H is finite or countably infinite.

3.1 Definition

With the assumptions and notations above, we define the MCD in Definition 1.

Definition 1 The maximum covariance discrepancy (MCD) is defined as

MCD [p, q,H] = sup
‖a‖≤1

∑

i, j∈I
ai j

(
cov

[
ei (x) , e j (x)

] − cov
[
ei (y) , e j (y)

])
, (1)

where {ei |i ∈ I } is an orthogonal basis ofH, ‖a‖ = (
∑

i, j∈I a2i j )1/2, and the notation cov has
the following formula: cov

[
ei (x) , e j (x)

] = Ex
[
ei (x) e j (x)

] − Ex [ei (x)] Ex
[
e j (x)

]
.

Next, we show that the (1) can be associated with the Hilbert–Schmidt norm with the
following lemma:

Lemma 1

MCD [p, q,H] = ‖C [p] − C [q]‖HS, (2)

where ‖‖HS denotes the Hilbert–Schmidt norm of the vectors in HS (H), which is the Hilbert
space of Hilbert–Schmidt operators mapping from H to H.

123



MaximumMean and Covariance Discrepancy for Unsupervised… 351

Proof By using the reproducing property of the kernel k, we have
∑

i, j∈I
ai j

(
Ex

[
ei (x) e j (x)

] − Ex [ei (x)] Ex
[
e j (x)

])

=
〈∑

i, j∈I ai j ei ⊗ e j ,C [p]
〉

HS
. (3)

Similarly, we also have
∑

i, j∈I
ai j

(
Ey

[
ei (y) e j (y)

] − Ey [ei (y)] Ey
[
e j (y)

])

=
〈∑

i, j∈I ai j ei ⊗ e j ,C [q]
〉

HS
. (4)

In terms of (3) and (4), we have

MCD [p, q,H] = sup
‖a‖≤1

〈∑
i, j∈I ai j ei ⊗ e j ,C [p] − C [q]

〉

HS

= sup
h∈H⊗H, ‖h‖H⊗H≤1

〈
h∗,C [p] − C [q]

〉
HS

= sup
h∈H⊗H, ‖h∗‖HS≤1

〈
h∗,C [p] − C [q]

〉
HS

= ‖C [p] − C [q]‖HS, (5)

where h∗ denotes the tensor product operator of h which belongs to the tensor product space
H ⊗ H. Since {ei |i ∈ I } is the orthogonal basis of H,

{
ei ⊗ e j |i, j ∈ I

}
consists of the

orthogonal basis ofH⊗H. Thus, the second equality holds. The third equality follows from
the following fact:

∥∥h∗∥∥2
HS =

〈∑
i, j∈I ai j ei ⊗ e j ,

∑
i, j∈I ai j ei ⊗ e j

〉

HS

=
∑

i, j∈I
ai j

∑

m,n∈I
amn

〈
ei ⊗ e j , em ⊗ en

〉
HS

=
∑

i, j∈I
ai j

∑

m,n∈I
amn〈ei , em〉H

〈
e j , en

〉
H

=
∑

i, j∈I
a2i j

= ‖h‖2H⊗H . (6)

��
To compute it, we expressMCD as the expansion formula with respect to kernel functions,

using the following lemma:

Lemma 2 The squaredMCD terms of kernel functions is

MCD2 [p, q,H] = Ex,x ′
[
k2

(
x, x ′)] − 2Ex

[
E2
x ′

[
k

(
x, x ′)]]

+ E2
x,x ′

[
k

(
x, x ′)] − 2Ex,y

[
k2 (x, y)

] + 2Ex

[
E2
y [k (x, y)]

]

+ 2Ey
[
E2
x [k (x, y)]

] − 2E2
x,y [k (x, y)] + Ey,y′

[
k2

(
y, y′)]

− 2Ey

[
E2
y′

[
k

(
y, y′)]] + E2

y,y′
[
k

(
y, y′)] , (7)
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where x ′ and y′ are independent copy of x and y, with the same distribution, respectively.

Given the limited observations X = {x1, . . . , xn} and Y = {y1, . . . , ym} sampled from p
and q , and based on Lemma 2 and statistical theory, an empirical estimator of squared MCD
can be given by

̂MCD
2
[X , Y ,H] = 1

n2
tr (KXX LnKXX Ln)

− 2

nm
tr

(
KXY LmK

T
XY Ln

)
+ 1

m2 tr (KYY LmKYY Lm) , (8)

where (KXX )i j = k(xi , x j ), (KXY )i j = k(xi , y j ), (KYY )i j = k(yi , y j ), and Ln = In −
1
n 1

T
n 1n wherein In is the identity matrix of size n, and 1n is the vector of ones with length n.

This can be notated as, Lm = Im − 1
m 1

T
m1m . To be concise, we can rewrite (8) as the elegant

formula

̂MCD
2
[X , Y ,H] = tr (K ZK Z) , (9)

where

K =
[
KXX KXY

KY X KYY

]
, (10)

and

Zi j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
n − 1

n2
, i = j, xi ∈ X

− 1
n2

, i �= j, xi ∈ X , x j ∈ X
1
m2 − 1

m , i = j, xi ∈ Y
1
m2 , i �= j, xi ∈ Y , x j ∈ Y

0, otherwise.

(11)

Moreover, we can also yield another equivalent representation of (8), as follows:
∥∥∥∥
1

n
φ (X) Lnφ(X)T − 1

m
φ (Y ) Lmφ(Y )T

∥∥∥∥
2

HS
, (12)

where k (x, y) = φ(x)Tφ (y), wherein φ (X) = [φ (x1) , . . . , φ (xn)] and φ (Y ) =
[φ (y1) , . . . , φ (ym)]. This form will be utilized in the later section.

Now,we uniteMMDandMCD into a jointmetric, namelymaximummean and covariance
discrepancy (MMCD) in order to capturemore statistical information from data distributions.

Definition 2 The maximum mean and covariance discrepancy (MMCD) is defined as

MMCD [p, q,H] = (‖μ [p] − μ [q]‖2H + β ‖C [p] − C [q]‖2HS
)1/2

, (13)

where μ [p] = Ex [φ (x)] and β is a non-negative parameter.

According to this definition, MMCD can be proven as a distribution metric when the
associate kernel of H is characteristic. This property can be established by Theorem 1.

Theorem 1 Let the associated kernel of H be characteristic. Then MMCD [p, q,H] = 0
if and only if p = q. Moreover, MMCD [p, q,H] is a metric on the space of probability
distribution.
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Proof According to [7], a metric d should satisfy four properties: non-negativity, d(p, q) =
0 ⇔ p = q , symmetry and triangle inequality. Apparently, MMCD is non-negative due
to the non-negativity of the norm. For the necessity and sufficiency of the second prop-
erty, first, under the condition p = q , MMCD [p, q,H] = 0; conversely, p = q can be
deduced according to the definition of characteristic kernel [9] and MMD [p, q,H] = 0.
As a side assertion, it is easy to verify that MMCD [p, q,H] = MMCD [q, p,H] which
demonstrates the symmetric property of MMCD. The only property left to prove is the tri-
angle inequality. First, we need to prove that the MCD meets this property. Let di j (x, y) =
cov[ei (x) , e j (x)] − cov[ei (y) , e j (y)], and then we have

MCD [p, r ,H] + MCD [r , q,H]

= sup
‖a‖≤1

⎛

⎝
∑

i, j∈I
ai jdi j (x, z)

⎞

⎠ + sup
‖a‖≤1

⎛

⎝
∑

i, j∈I
ai jdi j (z, y)

⎞

⎠

≥ sup
‖a‖≤1

⎛

⎝
∑

i, j∈I
ai jdi j (x, z) +

∑

i, j∈I
ai jdi j (z, y)

⎞

⎠

= sup
‖a‖≤1

⎛

⎝
∑

i, j∈I
ai jdi j (x, y)

⎞

⎠

= MCD [p, q,H] , (14)

where z ∼ r . Next, we prove the triangle inequality holds for the MMCD. To simplify
the notation, let M [p, q] = MMD[p, q,H], C [p, q] = MCD [p, q,H] and MC [p, q] =
MMCD [p, q,H], and then we have

MC2 [p, q] = M2 [p, q] + βC2 [p, q]

≤ (M[p, r ] + M[r , q])2 + β(C [p, r ] + C [r , q])2

= M2 [p, r ] + βC2 [p, r ] + M2 [r , q] + βC2 [r , q]

+ 2
(
M[p, r ]M [r , q] + √

βC [p, r ]
√

βC [r , q]
)

≤ M2 [p, r ] + βC2 [p, r ] + M2 [r , q] + βC2 [r , q]

+ 2
(
M2 [p, r ] + βC [p, r ]

)1/2(
M2 [r , q] + βC [r , q]

)1/2

= (MC [p, r ] + MC[r , q])2, (15)

where the first inequality holds because both MMD and MCD meet the triangle inequality,
and the second inequality holds from the Cauchy–Schwarz inequality. Taking the square
root of both sides, there holds MMCD [p, q] ≤ MMCD [p, r ] + MMCD [r , q]. Obviously,
MMCD meets the metric definition, and is, therefore, a metric. ��

In fact, while Theorem 1 relies on the condition that the kernel is characteristic, even if
the condition does not hold, MMCD is still a pseudo-metric. According to (9) and [11], the
empirical estimator of the squared MMCD can be given by

̂MMCD
2
[p, q,H] = tr (KM) + βtr (K ZK Z) , (16)
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and

̂MMCD
2
[p, q,H] =

∥∥∥∥
1

n
φ (X) 1n − 1

m
φ (Y ) 1m

∥∥∥∥
2

H

+β

∥∥∥∥
1

n
φ (X) Hnφ(X)T − 1

m
φ (Y ) Hmφ(Y )T

∥∥∥∥
2

HS
, (17)

where

Mi j =

⎧
⎪⎨

⎪⎩

1
n2

, xi , x j ∈ X
1
m2 , xi , x j ∈ Y

− 1
nm , otherwise.

(18)

3.2 Explicit Representation of MMCD

As stated above, we have defined MMCD as the (pseudo-) metric of distributions. However,
it is not easy to understand what specific information about the distribution is captured
by MMCD. Towards this goal, we deduce the explicit representation of MMCD with the
polynomial kernel and the linear kernel to illustrate the mechanism of MMCD.

We first introduce the explicit representation of MMCD associated with the polynomial
kernel with a specific degree d , i.e., k (x, y) = (xT y + c)d . According to the explicit feature
map of the polynomial kernel [23,31], MMCD can be explicitly written as

MMCD2 [p, q] = ∥∥E
[
Wp

] − E
[
Wq

]∥∥2
2

+β

∥∥∥E
[
WpW

T
p

]
− E

[
Wp

]
E

[
Wp

]T −
(
E

[
WqW

T
q

]
− E

[
Wq

]
E

[
Wq

]T )∥∥∥
2

F
, (19)

where

Wp =
[√

cd−1C1
dvec(⊗1x)

T
, . . . ,

√
cd−iCi

dvec(⊗i x)
T
, . . . ,

√
c0Cd

d vec(⊗d x)
T
]T

, (20)

and Ci
d denotes the binomial coefficient, vec() converts the matrix into a column vector, and

⊗i x denotes the i th order tensor product of x , wherein x ∼ p.
By setting d = 1, (19) becomes

MMCD2 [p, q] = ‖E [x] − E [y]‖22
+β

∥∥∥E
[
xxT

]
− E [x] E[x]T −

(
E

[
yyT

]
− E [y] E[y]T

)∥∥∥
2

F
,

(21)

where x ∼ p and y ∼ q . Given limited X and Y sampled from p and q , respectively, there
is

̂MMCD
2
[p, q] = ∥∥μp − μq

∥∥2
2 + β

∥∥Σp − Σq
∥∥2
F , (22)

where μp = 1
n X1n and Σp = 1

n XHnXT are mean vector and covariance matrix of X ,
respectively. Specially, when c = 0, the polynomial kernel becomes the linear kernel
k (x, y) = xT y. Accordingly, (21) is exactly the explicit representation of MMCD with
the linear kernel, and (22) is still the corresponding empirical estimator. As a result, both
(21) and (22) show that MMD and MCD of MMCDmeasures the difference between means
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Fig. 1 Two toy examples for comparison of MMD, MCD and MMCD on the synthetic data. a Blue and red
points are sampled from two Gaussian distributions whose both the mean and covariance are different, and
the linear kernel is used, b blue points are sampled from a complicated distribution with the zero mean (0, 0),
while red points are sampled from a Gaussian distribution with the mean (0, 1). The polynomial kernel with
degree two is used therein. (Color figure online)

and covariances of distributions, respectively, when the polynomial kernel with degree d = 1
or the linear kernel is adopted.

Moreover, by setting d = 2, there is

Wp =
[√

2cvec
(
xxT

)T
, xT

]T

. (23)

Combination of (19) with (23) shows that the MMD term ofMMCDmeasures the difference
between both the first and second raw moments of two distributions, whereas the MCD
term measures the difference between covariances of up to the second raw moment of two
distributions. An analogy for setting d > 2 means that the MCD term can capture higher
order statistical information. From the statistical perspective, more insights intoMCD remain
to be further investigated in the future work.

3.3 Toy Examples

To clarify the efficacy of MMCD, which fuses both first- and second-order statistics in the
RKHS, we illustrate two toy examples in Fig. 1a, b. We synthesize two groups of data points
which follow different distributions in the two-dimensional space. Then, we fix one group
of data points (in blue) and adjust the points from the other group (in red) by minimizing the
values of MMD,MCD andMMCD via the gradient descent algorithm. Two types of kernels,
that is, the linear kernel (Fig. 1a) and the polynomial kernel with d = 2 and c = 1 (Fig. 1b),
are adopted. For concise, the details of computing their gradients are left in “Appendix A”.

From Fig. 1a, through the distribution matching of MMD, the means of the red and blue
points are almost identical, but the corresponding spread of these data points has different
shapes. That is, MMD cannot match the covariances of two distributions. But, for MCD, the
result is reversed, namely, the covariances of two groups of data points appear to be similar,
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but the corresponding means of these data points keep invariant as before and still differ from
each other. Notably, after MMCD performs the distribution matching over two groups of data
points, the distribution regions of both the red and blue points overlap highly. This is because
MMCD simultaneously takes bothmean and covariance differences into consideration, while
either MMD or MCD could singly consider one aspect where the linear kernel is used.

Figure 1b displays, for the complicated distribution, the distribution matching results of
MMD, MCD and MMCD, when the polynomial kernel with degree two is equipped. In this
case, MMD induces different spread shapes, which corresponds to the high-order statistics.
Meanwhile, it can be verified that themeanof the red data points is above that of the blue points
which is zero. Thus, bothMMDandMCDfail tomake twodistributionsmatched in this exam-
ple. By using MMCD, the red and blue points become highly overlapped. This implies the
efficacyofMMCDwhich explores bothfirst- and second-order statistics in theRKHS, as com-
pared toMMDandMCD.Hence, in contrastwithMMDandMCD,MMCDhas the promising
potential of matching data distributions across domains for domain adaptation. More empir-
ical analyses about the efficacy of MMCD in domain adaptation are shown in experiments.

4 Domain Adaptation Via MMCD

In this section, we apply theMMCD to unsupervised domain adaptation problem to verify the
efficacy of MMCD. Unsupervised domain adaptation is still very challenging, as there is no
supervised knowledge of target domains. Recently, joint distribution adaptation (JDA) [20]
has been proven a promising domain adaptation method which matches both marginal and
conditional distributions. JDA adopts MMD as the distance measurement of distributions;
however, in the case of non-characteristic kernels, MMD based JDA loses the high-order
statistical information. As mentioned in the previous section, MMCD has a better chance to
capture more information about distributions than MMD. We thus substitute our MMCD for
MMD in the frame of JDA to produce a new unsupervised domain adaptation method called
McDA. In the subsection, we first introduce the problem formulation and notation, and then
propose the McDA.

4.1 Problem Formulation and Notations

Given the dataset Ds = {
x1, . . . , xns

}
in the source domain with labels y1, . . . , yns and the

unlabeled dataset Dt = {
xns+1, . . . , xns+nt

}
in the target domain under the assumption that

both the marginal and conditional probability distributions in two domains are different, i.e.,
Ps (xs) �= Pt (xt ) and Ps (ys |xs) �= Pt (yt |xt ). We will adapt both marginal and conditional
distributions in order to train a robust classifier on target dataset by leveraging the labeled
source dataset.

For clarity, we now summarize several commonly used notations. The source and target
data are denoted as Xs = [

x1, . . . , xns
]
and Xt = [

xns+1, . . . , xns+nt

]
, respectively, and, for

brevity, X = [Xs, Xt ]. The centeralized matrix Ln is defined as Ln = In − 1
n 1

T
n 1n , where

In is the identity matrix of size n, and 1n is the vector of ones with length n.
Since our model McDA is based on the JDA paradigm, it is necessary to review it before

our text. JDA is to adapt both marginal and conditional distributions across domains by
minimizing the following objective:

min
φ

‖E [φ (xs)] − E [φ (xt )]‖2 + ‖E [ys |φ (xs)] − E [ys |φ (xs)]‖2. (24)
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According to [20], φ can serve as a linear transformation, or a non-linear feature map
associated with the kernel. The property of MMD still is an open problem when substituting
its feature map for linear transformation. Then we roughly regard the terms of (24) as the
estimation of the generalized MMD whose feature map can be replaced with any arbitrary
maps. Thus, following [20], we obtain two variants of our McDA according to the used
feature maps: the linear transformation and the kernel feature map.

4.2 McDA

For the first variant of McDA, we adopt the linear transformation denoted by a matrix A ∈
Rm×k to MMCD. According to (17), the distance between marginal distributions across
domains can be converted into

∥∥∥∥
1

ns
AT Xs1ns − 1

nt
AT Xt1nt

∥∥∥∥
2

2
+ β

∥∥∥∥
1

ns
AT Xs Lns X

T
s A − 1

nt
AT Xt Lnt X

T
t A

∥∥∥∥
2

F

= tr
(
AT XM0X

T A
)

+ β

∥∥∥AT X Z0X
T A

∥∥∥
2

F
, (25)

where M0 is defined as:

(M0)i j =

⎧
⎪⎪⎨

⎪⎪⎩

1
n2s

, xi , x j ∈ Ds

1
n2t

, xi , x j ∈ Dt

− 1
nsnt

, otherwise,

(26)

and Z0, termed as the MCD matrix, is defined as:

(Z0)i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ns

− 1
n2s

, i = j, xi ∈ Ds

− 1
n2s

, i �= j, xi ∈ Ds, x j ∈ Ds

1
n2t

− 1
nt

, i = j, xi ∈ Dt

1
n2t

, i �= j, xi ∈ Dt , x j ∈ Dt

0, otherwise.

(27)

Similarly, the discrepancy between conditional distributions across transformed domains
can be cast as:

tr
(
AT XMcX

T A
)

+ β

∥∥∥AT X ZcX
T A

∥∥∥
2

F
, (28)

where c ∈ {1, . . . ,C}, and Mc is

(Mc)i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
n2s,c

, xi ∈ Ds,c, x j ∈ Ds,c

1
n2t,c

, xi ∈ Dt,c, x j ∈ Dt,c

− 1
ns,cnt,c

,

{
xi ∈ Ds,c, x j ∈ Dt,c

x j ∈ Ds,c, xi ∈ Dt,c

0, otherwise,

(29)

wherein Ds,c
(
Dt,c

) = {xi |xi ∈ Ds (Dt ) , yi = c} and ns,c
(
nt,c

) = ∣∣Ds,c
(
Dt,c

)∣∣, while Zc

is defined as
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(Zc)i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ns,c

− 1
n2s,c

, i = j, xi ∈ Ds,c

− 1
n2s,c

, i �= j, xi ∈ Ds,c, x j ∈ Ds,c

1
n2t,c

− 1
nt,c

, i = j, xi ∈ Dt,c

1
n2t,c

, i �= j, xi ∈ Dt,c, x j ∈ Dt,c

0, otherwise.

(30)

By combining (25) and (28) and denoting H = Lns+nt , we can obtain the overall objective
function as follows:

min
AT XHXT A=I

C∑

c=0

tr
(
AT XMcX

T A
)

+ β

C∑

c=0

∥∥∥AT X ZcX
T A

∥∥∥
2

F
+ λ ‖A‖2F , (31)

where I is the identity matrix of size k, a constraint is imposed to avoid yielding a trivial
solution and the parameter λ remains (31) as a well-defined optimization problem.

For the second variant of McDA, we, however, adopt the kernel feature map ϕ: x → ϕ (x)
to MMCD. Let the kernel matrix K = ϕ(X)Tϕ(X). The MMCD-based distance of both
marginal and conditional cross-domain distributions is defined as:

C∑

c=0

tr (KMc) + β

C∑

c=0

tr (K ZcK Zc). (32)

Following [25], we employ the empirical kernel mapping K = (KK−1/2)(K−1/2K )

and further introduce the low dimensional transformation in order to obtain K̃ =
(KK−1/2 Ã)( ÃT K−1/2K ) = K AAT K , where A = K−1/2 Ã. Thus, substituting K̃ into
(32) leads to the following minimization problem

min
AT K HKT A=I

C∑

c=0

tr
(
AT KMcK

T A
)

+ β

C∑

c=0

∥∥∥AT K ZcK
T A

∥∥∥
2

F
+ λ ‖A‖2F . (33)

4.3 Optimization Algorithm

Both (31) and (33) possess similar optimization problems; hence, only the optimization
algorithm for (31) is provided here. Obviously, (31) is non-convex with the variable A and
hard to optimize, as it contains a non-convex fourth-order term which is the second term
of (31). In [20,25], the optimization problem have the closed-form solution by solving a
generalized eigen-decomposition problem. To preserve this property, we can approximate
the fourth-order term in (31) with its convex upper bound by using the following theorem:

Theorem 2 The following inequality holds

C∑

c=0

∥∥∥AT X ZcX
T A

∥∥∥
2

F
≤ σk

C∑

c=0

∥∥∥AT X ZcX
T
∥∥∥
2

F
, (34)

where k is the reduced dimensionality and σ =
∥∥∥(XHXT )

−1/2
∥∥∥
2
.
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Proof

C∑

c=0

∥∥∥AT X ZcX
T A

∥∥∥
2

F
=

C∑

c=0

∥∥∥∥A
T X ZcX

T
(
XHXT

)−1/2(
XHXT

)1/2
A

∥∥∥∥
2

F

≤
C∑

c=0

∥∥∥∥A
T X ZcX

T
(
XHXT

)−1/2
∥∥∥∥
2

F

∥∥∥∥
(
XHXT

)1/2
A

∥∥∥∥
2

F

= k
C∑

c=0

∥∥∥∥A
T X ZcX

T
(
XHXT

)−1/2
∥∥∥∥
2

F

≤ k
C∑

c=0

∥∥∥AT X ZcX
T
∥∥∥
2

F

∥∥∥∥
(
XHXT

)−1/2
∥∥∥∥
2

F

= kσ
C∑

c=0

∥∥∥AT X ZcX
T
∥∥∥
2

F
. (35)

The first equation holds because XHXT is semi-definite positive, while the second and
forth inequalities follow the Cauchy–Schwarz inequality. In terms of the constraint of (31),
k = Tr

(
AT XHXT A

) = Tr (Ik). ��

According to Theorem 2, we absorb the constant of (34) in order to obtain the convex
objective of (31), as follows:

min
AT XHXT A=I

C∑

c=0

tr
(
AT XMcX

T A
)

+ β

C∑

c=0

∥∥∥AT X ZcX
T
∥∥∥
2

F
+ λ ‖A‖2F . (36)

Then, we derive the Lagrange function of (36), as follows:

tr

(
AT

(
X

C∑

c=0

McX
T + β

C∑

c=0

X ZcX
T X ZcX

T + λI

)
A

)

+ tr((I − AT XHXT A)Φ), (37)

where the diagonal matrix Φ denotes the Lagrange multipliers. By setting the derivative
of (37) over A to zero, we can obtain the following generalized eigenvalue decomposition
problem:

(
X

C∑

c=0

McX
T + β

C∑

c=0

X ZcX
T X ZcX

T + λI

)
A = XHXTΦ. (38)

Following the JDA paradigm [20], we learn the transformation matrix via (38) and can
then project all the samples to a low-dimensional subspace. Based on the labeled source data,
we can train a specific classifier to assign pseudo-labels to the samples of the target domain,
and then repeat the procedure above until convergence. The overall procedure of McDA is
summarized in Algorithm 1.

123



360 W. Zhang et al.

Algorithm 1:McDA
Input: X , ys , k, λ, β, and N
Output: A
Construct M0 by (26) and Z0 by (27), set Mc = 0 and Zc = 0 for c = 1, ...,C ;
for i = 1 : N do

Solve (38) and select the k smallest eigenvectors to construct A;
Update pseudo-target labels using trained classifier;
Construct Mc and Zc by (29) and (30) respectively for c = 1, ...,C .

end

5 Experiments

This section is to verify the effectiveness of McDA by comparing its classification per-
formance against the baseline methods on two benchmark datasets including PIE and
Office-Caltech.

5.1 Datasets

The PIE dataset contains face images of size 32x32 from 68 individuals with different poses,
illuminations and expressions. Following [20], We evaluate our method using five subsets
from the PIE face dataset. Each subset corresponds to a different pose, e.g. P1 (left), P2
(upward), P3 (downward), P4 (frontal) and P5 (right). We then construct 20 cross-domain
datasets via a pairwise combination of subsets, i.e., P1→P2, P1→P3, . . ., P5→P4. Since
the source and target face images from each cross-domain dataset have different poses, they
will follow different distributions.

Office-Caltech is a widely used dataset for domain adaptation which contains four
domains: A (Amazon), W (Webcam), D (DSLR) and C (Caltech-256) [13,30]. The SURF
feature is extracted for each image before being converted into histograms over an 800-bin
codebook clustered by k-means on the Amazon database. We construct 12 cross-domain
datasets by pairwise combination of the four domains, i.e., C → A, C → W, . . ., D → W.
Several sample images from PIE and Office-Caltech datasets are illustrated in Fig. 2.

5.2 Cross-Domain Image Classification

We compare McDA with five typical and related baseline methods including nearest neigh-
bor classifier (NN), principal component analysis (PCA), correlation alignment (CA) [35],
transfer component analysis (TCA) [25], geodesic flow kernel (GFK) [10], and joint domain
adaptation (JDA) [20]. As suggested by [10,20], NN serves as the base classifier for both
McDA and compared methods.

We follow the evaluation protocol of [20] for both benchmark datasets. In order to give a
fair comparison, we also give the candidate ranges for the parameters used in the compared
methods. Both TCA and JDA have a regularization parameter, and its candidate values are
as follows: {0.001, 0.01, 0.1, 1, 10, 100}. For McDA, it is rather expensive to search all
the possible parameter combinations for the best average accuracy. Since McDA shares the
reduced dimensionality k and the regularization parameter λ with JDA, we directly set λ in
McDA to the specific value at which JDA achieves its best accuracy and then search the other
parameter β from {0.001, 0.01, 0.1, 1, 10, 100} at each k. We further empirically set the
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Amazon Webcam DSLR Caltech-256

P1 P2 P3 P4 P5

(a)

(b)

Fig. 2 Sample images from a PIE and b Office-Caltech datasets
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Fig. 3 Average accuracy versus reduced dimensionalities on a PIE and b Office-Caltech datasets

number of iterations N in McDA to 10 to guarantee convergence. For the compared subspace
learning methods, the subspace dimensionality ranges from {10, 20, . . ., 200}. For TCA,
JDA and McDA, we apply the linear transformation for the PIE dataset and the linear kernel
for the Office-Caltech dataset as suggested by [20]. We adopt the broadly used classification
accuracy on target dataset as the evaluation metric.

Figure 3 shows the compared classification accuracy versus different subspace dimension-
alities. For two benchmark datasets, McDA is superior to all the compared methods in all
dimensionalities in terms of average accuracy. The average accuracy is defined as the mean
of classification accuracy over different cross-domain datasets.

Table 1 illustrates the accuracy of facial image classification on 20 cross-domain datasets
of the PIE dataset. The results of the experiment show that our method outperforms the
baseline methods in quantity. Importantly, McDA exceeds the average accuracy of JDA by
9.7%. Table 2 reports object recognition accuracy when the Office-Caltech dataset is used.
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Table 1 Accuracy (%) on the PIE
dataset

Dataset NN PCA TCA GFK CA JDA McDA

P1→P2 26.09 25.91 42.91 39.47 48.99 76.12 87.17

P1→P3 26.59 26.10 42.59 47.86 51.65 71.94 83.88

P1→P4 30.67 30.64 60.71 63.35 69.18 91.14 95.55

P1→P5 16.67 16.73 30.09 37.50 41.48 50.86 77.57

P2→P1 24.49 24.79 42.29 42.77 44.27 75.48 85.41

P2→P3 46.63 46.38 51.90 56.56 58.15 80.64 86.83

P2→P4 54.07 54.28 64.61 66.75 72.63 81.59 91.53

P2→P5 26.53 26.23 34.07 40.69 40.56 63.36 81.50

P3→P1 21.37 21.46 35.05 42.83 47.30 75.33 88.12

P3→P2 41.01 41.07 47.45 56.05 54.02 79.01 87.97

P3→P4 46.53 46.47 56.23 66.39 74.26 85.46 87.74

P3→P5 26.23 26.16 33.33 47.12 50.92 66.30 74.57

P4→P1 32.95 32.71 56.45 65.22 72.09 91.99 95.50

P4→P2 62.68 62.74 68.45 75.63 78.76 90.91 93.31

P4→P3 73.22 72.86 76.90 80.09 86.52 90.07 90.75

P4→P5 37.19 37.13 41.73 53.86 63.24 73.22 84.01

P5→P1 18.49 18.70 26.95 31.60 39.86 59.30 76.71

P5→P2 24.19 24.19 31.74 35.67 42.48 70.96 83.18

P5→P3 28.31 28.43 31.25 42.77 52.39 73.90 82.48

P5→P4 31.24 31.15 34.27 47.67 56.83 75.94 83.87

Average 34.76 34.71 45.45 51.99 57.28 76.18 85.88

The best value of each row is highlighted in bold

Table 2 Accuracy (%) on the Office-Caltech dataset

Dataset NN PCA TCA GFK CA JDA McDA

C→A 23.70 41.34 43.42 41.02 43.22 44.15 43.53

C→W 25.76 35.25 38.98 40.68 39.32 38.98 44.41

C→D 25.48 43.95 45.86 41.40 40.13 44.59 50.96

A→C 26.00 39.54 39.09 40.25 35.26 41.50 41.05

A→W 29.83 34.24 42.03 40.00 37.63 42.37 44.41

A→D 25.48 35.67 36.31 36.31 37.58 45.22 42.68

W→C 19.86 29.83 33.04 30.72 30.28 35.26 35.26

W→A 22.96 27.56 31.11 31.84 30.69 30.17 37.37

W→D 59.24 93.63 90.45 87.90 85.99 89.81 89.17

D→C 26.27 31.17 33.04 30.10 30.90 30.63 34.82

D→A 28.50 32.36 34.45 32.05 33.40 33.72 36.64

D→W 63.39 84.41 89.15 84.41 85.42 89.49 89.83

Average 31.37 44.08 46.41 44.72 44.15 47.16 49.18

The best value of each row is highlighted in bold
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McDA also outweighs the baseline methods in most situations and its average accuracy
is higher than those of the compared baseline methods. Based on the analysis above, the
prominent performance of McDA implies the efficacy of the proposed MMCD.

5.3 Sensitivity Analysis

5.3.1 Kernel Choice

It is an open problem to choose suitable kernels for kernel-based learning methods. To
investigate the effect of the kernels on the performance of McDA, we run McDA and the
baseline JDA on two datasets by comparing various kernel and non-kernel based cases. For
the kernel based cases, the linear kernel, the polynomial kernel of degree two (xT y + 1)2, the
Gaussian kernel exp(−‖x − y‖22 /2σ 2), and the exponential kernel exp(−‖x − y‖2 /σ) are
used. For the non-kernel case, the linear transformation in the original space is performed. For
both Gaussian and exponential kernels, σ is set to the median of pairwise distances between
all the samples. For the PIE dataset, it is hard to perform the eigenvalue decomposition
over the large kernel matrix for the sake of large sample sizes. A compromise solution is to
construct a small dataset termed PIE-sub, which is a subset of the PIE dataset by randomly
selecting 10 images from each class. As a result, each domain of PIE-sub consists of 680
images from 68 classes.

Table 3 shows that McDA consistently outperforms the baseline method JDA in all the
cases. This implies that the MCD regularization term in McDA is beneficial for capturing
more distribution information so as to promote the performance of domain adaptation in a
variety of kernels. It is worth mentioning that in non-kernel condition the performance of
McDA is also enhanced due to the presence of the MCD term.

5.3.2 Parameter Selection

OurMcDAhas two regularization parameters:λwhich is to avoid the optimization problem to
be ill-defined, and β which is to balance the importance of theMCD term. In order to analyze
the effect of parameters on the performance, we vary λ and β from the range {10−3, 10−2.5,
…, 102} and runMcDAonPIE andOffice-Caltech datasets. The reduced dimensionality is set
to the optimal value according to Fig. 3, i.e., k = 90 for PIE and k = 20 for Office-Caltech.
Figure 4a shows that small values of λ and relatively big values of β for the PIE dataset
help achieve high accuracy. This could result from both significant mean and covariance
differences between source and target data distributions. It can be seen from Fig. 4b that the

Table 3 Average accuracy (%) versus different kernels on PIE-sub and Office-Caltech datasets

Linear Polynomial Gaussian Exponential Non-kernel Average

PIE-sub

JDA 65.59 62.95 44.56 34.63 68.96 55.34

McDA 78.08 77.20 67.74 55.66 78.40 71.42

Off.-Cal.

JDA 47.16 46.15 45.45 44.23 46.96 45.99

McDA 49.18 47.03 47.31 45.73 47.17 47.28

The better value in each comparison group is highlighted in bold
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(a) (b)

Fig. 4 Average accuracy of McDA versus different parameter values on a PIE and b Office-Caltech datasets

performance of McDA is relatively stable to the change of the values of λ and β in the area of
λ ≥ β on the Office-Caltech dataset. Hence, λ ∈ [0.001, 1] and β ∈ [0.01, 10] are suggested
for accomplishing enhanced performance.

6 Conclusion

This paper proposes a new distribution metric namely maximum mean and covariance dis-
crepancy (MMCD) which unites MMDwith the proposed maximum covariance discrepancy
(MCD). MMCD is able to capture more information about distributions compared to MMD.
Based on MMCD, we developed a new domain adaptation method in the joint distribution
adaptation paradigm. Experiments conducted on two benchmark datasets verify the effec-
tiveness of our method, which implies the efficacy of MMCD. In the future, we plan to apply
the MMCD to other domain adaptation methods and test them on various applications.

Acknowledgements This work was supported by the National Natural Science Foundation of China
(61806213, 61702134, U1435222).

Appendix A: Gradient Computation

According to (16), when the polynomial kernel of degree d is adopted, the gradient of the
empirical estimator of squared MMDwith respect to the data matrix A = [X , Y ] is given by

∂ ̂MMD
2

∂A
= 2d A(M ◦ Kd−1), (39)

where (Kd−1)i j = (
AT
i A j + c

)d−1
and ◦ denotes the element-wise product. Likewise, there

holds

∂ ̂MCD
2

∂A
= 4d A(ZKd Z ◦ Kd−1), (40)
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and

∂ ̂MMCD
2

∂A
= ∂ ̂MMD

2

∂A
+ β

∂ ̂MCD
2

∂A
. (41)

The gradients of MMD, MCD and MMCD with the linear kernel can be obtained by
setting d = 1 and c = 0 in (39)–(41), respectively.
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