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Abstract
Deep learning has drawn extensive attention in machine learning because of its excellent
performance, especially the convolutional neural network (CNN) architecture for image clas-
sification task. Therefore,many variant deepmodels based onCNNhave been proposed in the
past few years. However, the success of these models depends mostly on fine-tuning using
backpropagation, which is a time-consuming process and suffers from troubles including
slow convergence rate, local minima, intensive human intervention,etc. And these models
achieve excellent performance only when their architectures are deeper enough. To over-
come the above problems, we propose a simple, effective and fast deep architecture called
ELMAENet, which uses extreme learning machines auto-encoder (ELM-AE) to get the fil-
ters of convolutional layer. ELMAENet incorporates the power of convolutional layer and
ELM-AE (Kasun et al. in IEEE Intell Syst 28(6):31–34, 2013), which no longer need param-
eter tuning but still has a good performance for image classification. Experiments on several
datasets have shown that the proposed ELMAENet achieves comparable or even better per-
formance than that of the state-of-the-art models.

Keywords Image classification · Deep learning · Convolutional neural network ·
ELMAENet

1 Introduction

With the popularity of deep learning, deep neural networks have been proposed to solve the
image classification. In particular, the convolutional neural network (CNN) is regarded as
beingmost suitable for this problemdue to its impressive performance on image classification.
Then some variant deepmodels based on CNN have been proposed [1–28] to deal with image
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classification. These deep models can always generate better performance than other kind of
methods.

Mostmethods for trainingCNNdependon large amounts of labeled samples for supervised
training. In the supervised training, CNN is trained via back-propagation, which has shown
to perform well on image classification tasks with millions of training images and thousands
of labels. However, one of the bottlenecks faced by deep learning approaches based on CNN
models trained using the back-propagation algorithm is the requirement of large amounts of
labeled training data. As is well known, it is time-consuming and expensive to get the labeled
data. And the model gets larger as the amount of required labeled samples grows quickly.
Compared to supervised learning, the unsupervised learning has shown better performance on
image classification and has recently gained attention as a way of addressing the labeled data-
hungry nature of supervised deep learning approaches. During the unsupervised learning,
useful hidden features can be automatically discovered without relying on labeled samples
and can be used to create representations that facilitate subsequent image classification.
Unsupervised learning can learn consistent patterns from cheap and abundant unlabelled
data. Due to the above advantages, unsupervised learning is considered as the future of
deep learning [29] and recent results also prove that it outperforms supervised learning.
Hence, researchers have tried to study methods to train a CNN using only unlabelled data
[8–13]. But CNN also inherits the disadvantages of BP algorithm, such as local minima,
time consuming etc. Furthermore, CNN needs huge computations and training set to tune
numerous connection weights. Besides, deep CNN based models generally need deeper
architectures to achieve wonderful performance for image classification and have a large
number of parameters to be chosen.

In this paper, we present a new architecture called ELMAENet and an approach for
unsupervised image classification that addresses the above mentioned problems associated
with CNN-based supervised and unsupervised deep learning approaches. The proposed
ELMAENet is inspired by the convolutional neural network PCANet [16], which Chan
proposed in 2014 on par with the state of the art deep models and don’t require the strat-
egy of back-propagation. Based on PCANet framework, SRDANet [17], DLANet [18] and
SPCANet [19] have been proposed. But until now, there is still not a neural network applied
into this baseline. Therefore, we try to introduce a special neural network ELM-AE to the
framework and build the proposed ELMAENet, in which the local features are learned using
the structure of PCANet while ELM-AE is utilized to learn filters got from the vectorized
and mean-removed patches. ELMAENet performs unsupervised learning to get good fea-
tures without fine-tuning by back-propagation and demonstrates better performance than
other methods, which can be seen from the below experiments.

Compared with previous work demonstrating the effective of deep models based on
CNN for image classification, our work ELMAENet distinguishes itself in three ways. First,
ELMAENet doesn’t need to fine tune the network like most of deep models based on CNN.
It is well known that fine tuning a network having millions of parameters trained on a large-
scale data-set through back propagation is time and resource consuming. The use of ELM-AE
in our framework allows eliminating back-propagation while providing good performance
on image classification. On the Norb data-set, our ELMAENet-2 achieved an accuracy of
98.28%, on theMnist data-set it obtained an accuracy of 99.46%, while on the USPS data-set
it provided 99.1%. Second, ELMAENet performs its training in unsupervised learning. The
downside of supervised learning is the need for expensive labels because the model gets
larger with the increase of the amount of the labeled samples. But our ELMAENet doesn’t
require any labeled data as we introduce a novel training procedure. Third, ELMAENet own
the ease use, fast speed and exceptional performance of ELM. The proposed ELMAENet uses
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Fig. 1 The flow diagram of ELMAENet classification system

ELM-AE to get the filters of convolutional layer that makes the training time of ELMAENet
less, which can be seen from the below experiments.

In details, ELMAENet includes three layers in each stage: convolutional filter layer, non-
linear processing layer and feature pooling layer. The detailed training process is as follows.
First, ELM-AE is used to learn filter kernels and then the convolutions are performed between
the original images and the learnt filters. The input of nonlinear processing layer is the output
of all convolutional filter layers. Second, we binarize the above outputs using hashingmethod
and then get the decimal values. Third, we compute the histogram of the decimal values, con-
catenate all the histograms into one vector and then obtain the features of images. At last, we
put these features into a linear SVM for classification. The flow diagram of our classification
system is illustrated in Fig. 1. The proposed model is denoted as ELMAENet-1 if there is one
convolutional layer while it is denoted as ELMAENet-2 if there are two convolutional layers.

The rest of the paper is organized as follows. In Sect. 2, we review some variations of CNN
and the theory of ELM-AE. Then the detailed feature learning algorithm of ELMAENet is
described in Sect. 3. Section 4 shows the experimental results on USPS, Norb and Mnist.
At last we discuss the difference of the proposed model ELMAENet with other models in
Sect. 5.

2 RelatedWork

TheproposedELMAENet utilities convolution layer and pooling layer likeCNNand employs
ELM-AE to learn the filters. Therefore, in the following we describe some variants of CNN
and the theory of ELM-AE.

2.1 SomeVariant of DCNN

Since introduced by LeCun et al. [30], CNNs have demonstrated excellent performance in
image classification. LeCun [31] proposed LeNet-5, which forms the original pattern of
CNNs. However, the research of CNNs was very slow because of a large amount of compu-
tation until Hinton et al. [32] proposed greedy layer-wise unsupervised learning algorithm.
After that, CNNs get extensive attention and obtain great improvement. In 2012, a classical
DCNN called AlexNet was proposed by Krizhevsky et al. [5] and got the best result on
LSVRC-2010 ImageNet, which attracts many researchers to pay more and more attention
on CNNs. Therefore, many powerful variants of CNNs come out such as VGGNet [33],
GoogleNet [34] and ResNet [35].

123



132 P. Chang et al.

Recently supervised learning with CNNs has got more attention in image classification.
Comparatively, unsupervised learning with CNNs has received less attention. In order to fill
the gap between the success ofCNNs for supervised learning andunsupervised learning, some
researchers [10–19] try to study approaches for training a CNN using only unlabeled data.
Dosovitskiy et al. [10] proposed a new training procedure and a discriminative objective for
unsupervised feature learning by training a CNN without class labels, but the best results on
several popular data-sets were got. Radford et al. [11] constructed a class of CNNs called deep
convolutional generative adversarial networks (DCGANs), which had certain architectural
constraints and were strong candidates for unsupervised learning. Doersch et al. [12] trained
a CNN using spatial context as a source of free and plentiful supervisory signal resulting in
state-of-the-art performance among algorithms.Huang et al. [13] learned and predicted visual
attributes directly from data by introducing a simple yet powerful unsupervised approach
and a novel two-stage pipeline made convincing results got, which consisted of unsupervised
discriminative clustering and weakly-supervised hashing. The above unsupervised learning
for CNNs all need back-propagation, which is a time-consuming process and even need
some ad hoc tricks. Hence, Chan et al. [16] proposed a CNN without BP algorithm, adopting
PCA or LCA to learn the filters, and the experimental results showed that two-layer PCANet
is better than the state-of-the-art methods for some image classification. Then variants of
PCANet came out such as SRDANet [17], DLANet [18], SPCANet [19], and our proposed
model ELMAENet is also in this frame.

Besides the above variants of CNNs, some researchers [20–28] attempt to construct deep
models based on ELM in order to improve the learning speed of CNNs. Huang et al. [20]
studied the general architecture of locally connected ELM and proposed local receptive fields
based ELM (ELM-LRF), in which random convolutional nodes and a pooling structure had
been implemented. Bai et al. [27] used ELM-LRF as a framework for object recognition,
which is on par with the best one on ETH-80 and achieves the new records for NORB and
COIL. Huang et al. [26] proposed a method called extreme learning machine with multi-
scale local receptive fields (ELM-MSLRF) to get feature learning and achieved the better
performance on the NORB data-set. CaO et al. [21] put forward a novel hybrid deep learning
model CNN-ELM in which CNN was in charge of feature extraction and ELM performed as
a classifier. McDonnell et al. [28] combined RF-C-ELM with RF-CIW-ELM in a two-layer
ELM to form RF-CIW-C-ELM whose performance is close to state-of-the-art results for
MNIST and NORB. Wang et al. [25] proposed a rapid 3D feature learning method CAE-
ELM combining the advantages of the CNN, auto-encoder and ELM, which performed
better and faster than other methods. Zhu et al. [22] employed ELM-AE as the learning unit
to study local receptive fields to construct H-ELM, which had much faster learning speed
and achieved state-of-the-art performances. Pang et al. [24] combined the power of CNN
and fast training of ELM to construct a rapid learning method, namely, deep convolutional
extreme learning machine (DC-ELM), which achieved better testing accuracy on MNIST
and USPS with significantly shorter training time compared with deep learning methods and
other ELM methods.

2.2 ELM-AE

Guang-Bin Huang with his colleagues introduces ELM and proves the following theory of
the universal approximation capability of ELM in [36].

Theorem 2.1 Let en ≡ f − fn denote the residual error function for the current network fn
with n hidden nodes, where f ∈ L2(X) is the target function. Given any bounded noncon-
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Fig. 2 The structure of ELM-AE

stant piecewise continuous function g : R → R for additive nodes or integrable piecewise
continuous function g : R → R and

∫
R g(x) dx �= 0 for RBF nodes, for any continuous

target function f and any randomly generated function sequence gn, lim
n→∞ ‖ f − fn‖ = 0

holds with probability one if

βn = < en−1, gn >

‖gn‖2

It is because of the above theory that ELMalgorithm can generally be efficiently used in many
applications. Thus, many researchers have payed more attention on ELM because of its fast
learning speed and good generalization capability. Kasun [37] proposed Extreme Learning
Machine Auto-Encoder(ELM-AE). The network structure of ELM-AE is shown in Fig. 2.

Given N samples
{
xi , xi ∈ Rd , i = 1, 2, . . . , N

}
, the number of hidden nodes in ELM-

AE is L and the activation function is
{
G(a, b, x), x ∈ Rd , a ∈ RL , b ∈ RL

}
, where a is is

input weights and b is the biases of hidden nodes. ELM-AE adopts an unsupervised learning
method as follows: input data is used as the output data, random input weights and random
biases of the hidden nodes are chosen to be orthogonal. Features of the input data of ELM-AE
can be represented in three different architectures:

1. compressed architecture: d > L
In this case, ELM-AE represents features from a higher dimensional input data space to

a lower dimensional feature space.
2. sparse architecture: d < L
In this case, ELM-AE represents features from a lower dimensional input data space to a

higher dimensional feature space.
3. equal dimension architecture: d = L
In this case, ELM-AE represents features from an input data space dimension equal to

feature space dimension.
Next we will explain the training methods of ELM-AE in detail.
For compressed ELM-AE architecture, the orthogonal random weights and biases of

hidden nodes project a input data xi to a lower dimension space, as shown by Johnson-
Lindenstrauss Lemma [14] and calculated by the following Equation:

hi = G(axi + b) ∈ �L×1 aT a = I , bT b = I
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For sparse ELM-AE architecture, the orthogonal hidden random parameters are calculated
by the following Equation:

hi = G(axi + b) ∈ �1×L aaT = I , bbT = I

where a = [a1, . . . , aL ]T is the orthogonal random weight and b = [b1, . . . , bL ]T is the
orthogonal random bias between the input nodes and the hidden nodes.

If the number of training samples is less thanL, outputweights ofELM-AEβ are calculated
by the below Equation:

β = H

(
I

C
+ HT H

)−1

XT

If the number of training samples is larger than L, output weights of ELM-AEβ are calculated
by the below Equation:

β =
(
I

C
+ HHT

)−1

HXT

where X = [x1, x2, . . . , xN ] ∈ �d×N , H = (h1, h2, . . . , hN ) ∈ �L×N .

3 Feature Learning of ELMAENet

In this section, we introduce feature learning of a simple, effective and fast deep architecture
ELMAENet. ELMAENet deploys the structure of PCANet to learn the local feature but
explore filters by ELM-AE. In the following, the feature learning of two-stage ELMAENet,
ELMAENet-2, is described in details.

Suppose that we have N input training images {Xi }Ni=1 of size m × n, the patch size is
k1 × k2 for each input image and the number of filters in two stages is L1, L2 respectively.

3.1 The First Convolutional ELM-AE Filter Layer

First, we take image blocks for each image and then each blocks will be vectorized.
Specifically, for i th image we take a k1 × k2 patch around each pixel, collect all patches

of the image and construct data matrix Pi = (pi,1, pi,2, . . . , pi,mn) ∈ �k1k2×mn , where
pi, j is the j th vectorized block in Xi . For normalization, we subtract patch mean from each

patch and obtain the normalized data matrix: Pi = (Pi,1, Pi,2, . . . , Pi,mn), where Pi, j is a
mean-removed patch. By constructing the same matrix for all training images and putting

them together, we get P = [P1, P2, . . . , PN ] ∈ �k1k2×Nmn .
Second, we use ELM-AE to explore filters for all training images.
The number of hidden nodes of ELM-AE is set to be the number of filters L1. The

orthogonal random weights and biases of hidden nodes are calculated by the following
Equation:

hi = g(aPi + b) aT a = I , bT b = I

Output weights of ELM-AE β are calculated by the below Equation:

β =
(
I

C
+ HHT

)−1

HPT ∈ �L1×k1k2
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where H = (h1, h2, . . . , hN ) ∈ �L1×Nmn .
Then we can obtain the transposition of β, which is the weight between the input layers

and the hidden layers. It can be denoted by V 1.
Therefore, theELM-AEfilters can be expressed asW 1

l1
= matk1,k2(v

1
l1
) l1 = 1, 2, . . . , L1

where matk1,k2(v) is a function that maps v ∈ �k1k2 to a matrixW ∈ �k1×k2 and v1l1 denotes

the l1th row of V 1.
At last, we perform the 2D convolution between Xi andW 1

l1
, then get the l1th feature map

of the first stage:

Xl1
i = Xi ∗ W 1

l1 i = 1, 2, . . . , N ; l1 = 1, 2, . . . , L1

3.2 The Second Convolutional ELM-AE Filter Layer

The process of the second convolutional ELM-AE filter layer is the same as the first one.

First, we can collect all the overlapping patches of Xl1
i , subtract patch mean from each

patch and form

Ql1
i =

(
ql1i,1, q

l1
i,2, . . . , q

l1
i,mn

)
∈ �k1k2×mn

where ql1i, j is the j th mean-removed patch in Xl1
i .

Then, all mean-removed patches of Xl1
i are further collected and we define it as follows:

Ql1 =
[
Ql1

1 , Ql1
2 , . . . , Ql1

N

]
∈ �k1k2×Nmn

Then we have the following matrix for all the filters: Q = [Q1, Q2, . . . , QL1 ] ∈
�k1k2×L1Nmn .

Second, we can get the ELM-AE filters of the second stage as follows:

W 2
l2 = matk1,k2

(
v2l2

)
l2 = 1, 2, . . . , L2

where v2l2 denotes the l2th row of V 2, V 2 is the orthogonalization of the output weight that
we obtain from ELM-AE by Q.

At last, we convolves Xl1
i with W 2

l2
and have L2 outputs Ol2

i = Xl1
i ∗ W 2

l2
l2 =

1, 2, . . . , L2.

3.3 The Nonlinear Processing Layer

Ol2
i is the input of the nonlinear processing layer. For each Xl1

i , there are L2 outputs O
l2
i in

the second convolutional layer. We binarize these outputs and get the following results:

G(Xl1
i ∗ W 2

l2) l2 = 1, 2, . . . , L2, where G(x) =
{
1 i f x ≥ 0
0 i f x < 0

We consider the vector of L2 binary bits as a decimal number and convert the L2 outputs in
Ol2
i back into a single integer-valued image:

T l1
i =

L2∑

l2=1

2l2−1G
(
Xl1
i ∗ W 2

l2

)

whose pixel is a decimal number in the range [0, 2L2 − 1].
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Fig. 3 Recognition accuracy of ELMAENet-2 on ORL for varying the patch size

3.4 The Feature Pooling Layer

For each of the L1 images T l1
i , l1 = 1, 2, . . . , L1, we partition it into B blocks (each block

size is h × h) and compute the histogram of the decimal values in each block. Then we
concatenate all the B histograms into one vector and denote it as Bhist(T l1

i ). After this
encoding process, the feature of the input image Xi can be defined as follows:

fi = [Bhist(T 1
i ), Bhist(T 2

i ), . . . , Bhist(T L1
i )]T ∈ �2L2 L1B

Algorithm 1 (Feature learning Algorithm of ELMAENet-2)
Input: The training images: {Xi }Ni=1 of size m × n;

The patch size in two stages: k1 × k2;
The number of filters in two stages: L1, L2

Output: the feature of the input image Xi : fi ;
Step 1: preprocess the image Xi by subtracting patch mean from each patch denoted as Pi
and obtain P .
Step 2: obtain the l1th ELM-AE filter W 1

l1
using ELM-AE for P.

Step 3: get the l1th filter output in the first stage and denote it as Xl1
i .

Step 4: apply Step 1-3 for Xl1
i and obtain the l2th filter output Ol2

i in the second stage.

Step 5: convert the L2 outputs in Ol2
i back into a “image”:

T l1
i =

L2∑

l2=1

2l2−1G(Ol2
i )

Step 6: obtain the feature of the input image Xi using histogram for the L1 images:

fi =
[
Bhist(T 1

i ), Bhist(T 2
i ), . . . , Bhist(T L1

i )
]T ∈ �2L2 L1B
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4 Experiments

In this section, we use the proposed ELMAENet to obtain features of images and then
apply them to linear SVM [38] for image classification. We evaluate the performance of the
proposed ELMAENet on ORL, CMU-PIE, USPS [39], Norb [40] and MNIST [31]. In the
experiments, the patch sizes are set to k1 = k2 = k. All the experiments have been made
in MATLAB R2014a environment running on a PC with 3.6 GHz CPU with Intel(R) Core
(TM)i7-4790 and 16 GB RAM.

4.1 2D Face Recognition on ORL Data Set

TheORLdata set is composed of 400 images of size 112×92. There are 40 persons, 10 images
per each person. The images were taken at different times, lighting and facial expressions.
The faces are in an upright position in frontal view, with a slight left-right rotation. We
down-sample the image to 32 × 32 pixels.

In order to investigate the impact of the patch size, we perform the experiment of
ELMAENet-2 on ORL. Five images per individual are randomly chosen as training set
and the rest forms the testing set. The parameters of ELMAENet-2 are set as follows: the
patch size k = 3, 5, 7, 9, 11, 13 separately, the number of filter kernels L1 = L2 = 8 and
non-overlapping block size is 7 × 7. We average the results over 10 random splits and the
results are shown in Fig. 3. It can be seen that ELMAENet-2 achieves the best result and has
the least standard deviation when the patch size is k = 5.

In the second experiment, we investigate the impact of the number of filter kernels of
one-stage ELMAENet and two-stage ELMAENet. We randomly choose n=5 images per
individual as training set and the rest of the database forms the testing set. We average the
results over 50 random splits. For one-stage ELMAENet, we vary the number of filter kernels
in the first stage L1 from 4 to 14. For two-stage ELMAENet, We set the number of filter
kernels in the second stage L2 = 8 and vary L1 from 4 to 14. The patch size of ELMAENet
is set to k = 7 and the non-overlapping block size is 7×7. The results are shown in Fig. 4 and
one can see that the general trend of the accuracy of one-stage and two-stage ELMAENet
is to increase as L1 rises. What’s more, the average accuracies of two-stage ELMAENet is
obviously much higher and more stable than these of one-stage ELMAENet.

In the following experiment, we examine the impact of the block size on histogram
computation by using ORL database. The patch size is k = 5, the number of filter
kernels L1 = L2 = 8 and non-overlapping block size on histogram computation is
h = 3, 5, 7, 9, 11, 13 seperately. We average the results over 10 random splits and the results
are shown in Fig. 5. We can see that block size h = 5 achieves the best performance.

Finally, we evaluate the performance of ELMAENet-2 on different number of training set.
n(= 2, 3, 4, 5) images per individual are chosen as training set and the rest of the database
as testing set. In order to compare the performance of ELMAENet-2 with other models, we
use the same parameter settings as [41]. All the results are averaged over 50 random splits.
We compare our results with the other state of art methods and are shown in Table 1. From
Table 1, one can see that the proposed ELMAENet achieves the best accuracy.

4.2 2D Face Recognition on CMU-PIE Data Set

For the CMU-PIE dataset, there are 41,368 pieces of pictures, captured under different light-
ing, poses and expressions. The CMU-PIE dataset includes 68 individuals totally and each
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Fig. 4 Recognition accuracy of ELMAENet on ORL for varying number of kernels in the first layer L1
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Fig. 5 Recognition rate of ELMAENet on ORL for different histogram-block size

person has 43 different illumination conditions with 13 different poses. We choose two types
of them to finish our experiment: five near frontal poses and all different illuminations,
including 11,554 images in total. Each individual contains approximately 170 images.

The parameters of ELMAENet-2 are set as follows: the patch size k = 3, the number of
filter kernels L1 = L2 = 8 and non-overlapping block size is 5 × 5. We randomly choose
n(= 5, 10, 20, 30) images per individual as training set and the rest to form the testing set.
For each given n, we average the results over 10 random splits and the results are shown in
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Table 1 Comparison of face recognition rates of various methods on ORL datasets (mean ± std(%))

Method 2 Train 3 Train 4 Train 5 Train

PCA 71.06 ± 3.58 79.32 ± 3.78 83.67 ± 3.02 87.80 ± 3.64

S-LDA [42] 81.71 ± 2.5 88.67 ± 2.46 92.58 ± 1.74 94.98 ± 1.63

SRDA [43] 80.93 ± 3.1 88.61 ± 2.32 92.08 ± 1.94 94.34 ± 1.52

SRC+PCA [44] 78.32 ± 2.45 86.46 ± 2.16 90.84 ± 1.71 93.54 ± 1.64

C-LBP [45] 83.1 ± 2.63 89.21 ± 1.72 94.21 ± 1.63 95.25 ± 1.43

DFD (S = 5) [46] 75.76 ± 2.16 82.57 ± 2.47 88.70 ± 1.82 92.35 ± 1.34

LDANet [15] 83.04 ± 5.2 89.92 ± 5.48 95.21 ± 2.14 97.04 ± 1.87

SRDANet [41] 84.94 ± 2.6 92.47 ± 2.46 96.42 ± 1.47 97.68 ± 1.24

ELMAENet 86.80 ± 2.27 93.6 ± 2 96.42 ± 1.27 97.75 ± 1.09

Table 2 Comparison of face recognition rates of various methods on CMU-PIE datasets (mean ± std(%))

Method 5 Train 10 Train 20 Train 30 Train

PCA 58.04 ± 1.3 74.6 ± 1.21 85.51 ± 0.53 89.35 ± 0.33

S-LDA [42] 74.85 ± 1.1 86.52 ± 0.64 92.6 ± 0.32 94.55 ± 0.34

SRDA [43] 75.56 ± 0.7 87.18 ± 0.73 92.61 ± 0.54 94.34 ± 0.22

SRC+PCA [44] 68.96 ± 0.72 77.24 ± 0.74 85.46 ± 0.71 91.98 ± 0.64

C-LBP [45] 70.79 ± 1.12 86.85 ± 0.34 94.65 ± 0.33 96.98 ± 0.23

LDANet [15] 76.95 ± 4.43 89.39 ± 2.93 96.89 ± 0.74 97.99 ± 0.43

SRDANet [41] 77.99 ± 2.6 91.42 ± 1.03 96.96 ± 0.44 98.29 ± 0.34

ELMAENet 82.70 ± 1.57 93.38 ± 1.27 97.86 ± 0.43 98.84 ± 0.27

Table 3 Performance on USPS (with 7000 training samples)

Methods Training time(s) Training error (%) Testing error (%)
Mean Std Mean Std

ELM-LRF 337.5 1.51 0.0045 3.4 0.0024

DC-ELM 204.6 2.17 0.0034 3.07 0.0028

CNN 2480.3 2.6 0.0023 3.87 0.0021

DBN 2536.6 0.89 0.0057 3.01 0.0038

ELMAENet-2 193.32 0 0 1.04 0.0013

Table 2. It can be seen that ELMAENet achieves the best performance for all test sets. It is
also observed that the standard deviation of ELMAENet is less than the standard deviation
of LDANet and SRDANet.

4.3 Handwritten Recognition on USPS Data Set

The USPS data set consists of 11000 samples of handwriting digits 0-9 with image size of
16 × 16 which is collected from different writers.
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Table 4 Performance on USPS (with 10,000 training samples)

Methods Training time (s) Training error (%) Testing error (%)
Mean Std Mean Std

ELM-LRF 537.5 0.89 0.0036 1.98 0.0016

DC-ELM 320.6 1.21 0.0026 1.56 0.0018

CNN 3490.3 2.5 0.0016 2.86 0.0029

DBN 3526.51 1.12 0.0068 2.4 0.0065

ELMAENet-2 277.43 0 0 0.90 0.0027
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Fig. 6 Error rate of PCANet and ELMAENet on Norb testing set for different numbers of filters in the first
stage
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Fig. 7 Training time of PCANet and ELMAENet on Norb test set for different numbers of filter in the first
stage

We perform the ELMAENet-2 on USPS and the parameter setting is as follows. The patch
size of ELMAENet-2 is k = 3 in two stages, the number of filters is 8 and 8 separately, block
size is 7×7 and the overlapping region between blocks is half of the block size. We compare
ELMAENet-2 with ELM-LRF [27], DC-ELM [24], CNN and DBN. The parameter setting

123



ELMAENet: A Simple, Effective and Fast Deep Architecture for… 141

Fig. 8 The comparison between the original image and the corresponding feature maps

for ELM-LRF, DC-ELM, and CNN is referred to [24]. All the methods are evaluated on 7000
and 10000 training samples separately, which are randomly selected from USPS data set. We
run 30 times of all the methods separately for each case. The results are listed in Tables 3
and 4.

From Tables 3 and 4, it can be seen that ELMAENet-2 achieved the best testing accuracy
on USPS data set under two cases. We can also see that ELMAENet-2 is much faster than
other deep models.

4.4 Object Recognition on NORB Dataset

NORB is often used as a benchmark database by deep learning community, which contains
24,300 stereo images for training and 24,300 stereo images for testing, each belonging to 5

123



142 P. Chang et al.

Table 5 Testing errors of different methods for Norb

Groupings Methods Error in testing (%) Reference

Non-ELM deep models MCRNN-MLA 7.9 [47]

MCSRNN 7.56 [48]

DBN 7.2 [49]

SAE 6.5 [24]

SDAE 5.6 [24]

CNN 6.6 [25]

Tied CNN 3.9 [25]

K-means+soft activation 2.8 [25]

GPU-based CNN 2.53 [50]

fast-learning shallow CNN 2.2 [51]

PCANet-2 2.06 [15]

Past deep models based-ELM ELM-LRF 2.74 [27]

CNN+ELM 10.35 [52]

RF-C-ELM 6.24 [53]

ELM-MSLRF 2.5 [26]

ELM-SSLRF 3.5 [25]

CAE-ELM 5.5 [25]

This paper ELMAENet-2 1.72 This paper

generic categories with many variabilities such as 3D pose and lighting. Each sample has
2 images (left and right sides) with normalized object size and uniform background. We
downsize them to 32 × 32 without any other preprocessing. The filter size of the networks
is k = 3, block size is 7 × 7 and the overlapping region between blocks is half of the block
size without special instructions in the experiments on Norb.

In order to study the effective of ELM-AE and the impact of the number of filters, we
compare the testing error of PCANet and ELMAENet with different numbers of filters in
the first stage. We vary the number of filters L1 in the first stage from 2 to 14 for one-stage
networks. For two-stage networks, we set L2 = 8 and change L1 from 4 to 12. The results
are shown in Fig. 6. One can see that the performance of ELMAENet-1 are almost better than
that of PCANet-1 except L1 = 6, 8 and ELMAENet-2 outperforms PCANet-2 for all the
cases. Besides, we also compare the training time of ELMAENet-1 and PCANet-1 as well as
that of ELMAENet-2 and PCANet-2. From the Fig. 7, we can see that ELMAENet-1 spend
less training time than PCANet-1 for all the cases and the training time of ELMAENet-2 is
less than that of PCANet-2 except L1 = 4.

In the second experiment, we illustrate feature maps to show the ability of extracting
features of ELMAENet-2 using one data sample (airplane, the left image) for shown. From
Fig. 8, we can see that the outlines of these feature maps are similar as they all are generated
from the same input image (an airplane) while each map has its distinct highlighted part, so
that diverse representations of the original image are obtained and good classification result
can be easily achieved.

In the third experiment, we compare our model ELMAENet-2 with the other existing
algorithms. In this experiment, we set L1 = 12, L2 = 8. From Table 5, we can see that our
ELMAENet-2 achieves the best accuracy with a significant gap compared to those results
reported in literature.
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Table 6 Testing errors of different methods for standard Mnist

Methods Error in testing(%) References

ELM-SSLRF 2.41 [26]

ELM-MSLRF 1.43 [26]

CAE-ELM 1.13 [25]

CNN+ELM 0.67 [21]

ML-ELM 0.97 [37]

K-NN-SCM 0.63 [54]

Mathematical Model of CNN (best) 0.6 [55]

Local R2FP(AW)Global+R2FP 0.45 [56]

Deep ConvNet(drop connect) 0.57 [57]

Maxout Networks 0.94 [58]

Deep L2-SVM 0.87 [59]

DELM 0.81 [28]

Deep Fried Convnets 0.71 [60]

RF-C-ELM 0.57 [53]

ResNet 0.63 [61]

VGGNet 0.68 [62]

CapsuleNet 0.43 [63]

DCNNs 0.28 [64]

RandNet-2 0.63 [15]

PCANet-2 [37] 0.66 [15]

LDANet-2 [37] 0.62 [15]

ELMAENet-2 0.54 This paper

4.5 Digit Recognition onMNIST

MNIST is a widely-used benchmark for testing hierarchical representation. We use standard
MNIST: 60000 for training and 10000 for testing. All the images are of size 28 × 28.

In the experiment, the filter size of the networks is k = 5, the number of filters is L1 =
L2 = 8, block size is 7 × 7 and the overlapping region between blocks is half of the block
size. We compare the testing errors of our model ELMAENet-2 with that of other models
reported in literatures and the results are summarized in Table 6. From the above results, it
can be seen that ELMAENet-2 produces better accuracy than some other models. The testing
error of our proposed ELMAENet-2 is only 0.26% more than that of the best DCNNs until
now and is better than that of the recent models, such as ResNet, VGGNet.

5 Conclusion

In this paper, we construct a simple, effective and fast unsupervised convolutional deep
architecture–ELMAENet, whose training doesn’t need back-propagation to learn parameters
of the model and spend less time. And experimental results on USPS, Norb and Mnist show
that ELMAENet is better than or close to the previous state-of-the-art models.

ELMAENet combines the power of CNN and ELM and is similar to PCANet, but it is
different from the past deep architectures [16–20] and [22]. ELMAENet has the same frame-
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work with [16–19], but ELMAENet uses ELM-AE to get the filters of convolutional layer
and gets better performance with less training time. Especially, DLANet in [18] is under the
framework of Locality-constrained Linear Coding-Spatial Pyramid Matching (LLC-SPM)
and need big memory as ELM-LRF in [20] while ELMAENet can be implemented in nor-
mal computer. ELM-LRF studies the local receptive fields from the randomness of hidden
neurons, but ELMAENet uses ELM-AE to learn the filters and gets more efficient image
representation so as to achieve better performance on Norb. ELMAENet doesn’t need any
pre-processing of those patches while these patches in HELM [22] need to be transformed
by the pre-processing LCN and whitening operators.

Our proposed ELMAENet combines the power of convolutional layer and ELM-AE to
construct more efficient image representation. And the training of ELMAENet doesn’t need
fine-tuning by backpropagation,whichmakesELMAENet less time consuming. Experiments
on USPS, Norb and Mnist show that our proposed model ELMAENet achieves comparable
or better performance than that of the previous state-of-the-art models.

Acknowledgements This work is supported by the National Key Research and Development Program of
China (No.2018YFC0809001).
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