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Abstract
Least squares twin support vector machine (LSTSVM) is a new machine learning method, 
as opposed to solving two quadratic programming problems in twin support vector 
machine (TWSVM), which generates two nonparallel hyperplanes by solving a pair of lin-
ear system of equations. However, LSTSVM obtains the resultant classifier by giving same 
importance to all training samples which may be important for classification performance. 
In this paper, by considering the fuzzy membership value for each sample, we propose 
an entropy-based fuzzy least squares twin support vector machine where fuzzy member-
ship values are assigned based on the entropy values of all training samples. The proposed 
method not only retains the superior characteristics of LSTSVM which is simple and fast 
algorithm, but also implements the structural risk minimization principle to overcome the 
possible over- fitting problem. Experiments are performed on several synthetic as well as 
benchmark datasets and the experimental results illustrate the effectiveness of our method.
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1 Introduction

Support vector machine (SVM) [1] is one of the most popular machine learning approach, 
which has already been successfully applied to a variety of real-world problems such as face rec-
ognition [2], bioinformatics [3], text categorization [4], intrusion detection [5] and various other 
classification problems [6, 7]. However, the training cost of SVM is very high, i.e. O(m3) , where 
m is the number of training samples. Researchers have made many improvements on the basis 
of SVM, such as Fung and Mangasrian [8] proposed proximal support vector machine (PSVM) 
for binary classification. Recently, following PSVM, Mangasrian and Wild [9] proposed multi-
surface proximal SVM via generalized eigenvalues (GEPSVM) for binary classification, which 
aims at seeking two nonparallel proximal hyperplanes such that each hyperplane is closer to one 
of two classes and as far as possible from the other. Inspired by GEPSVM, Jayadeva et al. [10] 
proposed another nonparallel hyperplane classifier for pattern classification, called twin sup-
port vector machine (TWSVM). The main idea of TWSVM is to solve two smaller quadratic 
programming problems (QPPs) rather than a single large QPP which makes training speed of 
TWSVM four times faster than SVM. From then on, TWSVM has been widely investigated 
[11–16]. Some improvements have been made to TWSVM by researchers to obtain higher clas-
sification accuracy with lower computational time, such as Least squares twin support vector 
machine (LSTSVM) [11], Twin bounded support vector machine (TBSVM) [12], Twin para-
metric-margin support vector machine (TPMSVM) [13], Robust twin support vector machine 
(RTSVM) [14], Nonparallel support vector machines (NPSVM) [15] and Angle-based twin 
support vector machine (ATSVM) [16], and so on [17–20].

It should be noted, in practical problems, some data are often polluted by noise or in low 
quality. The patterns, even belong to the same class, should play different roles in the model 
training. Since SVM treats all samples with the same importance, it ignores the differences 
between the positive and negative classes, which results in the learned decision surface 
biasing toward the majority class. To address this problem, based on fuzzy membership 
values, Lin et al. [21] propose the Fuzzy SVM (FSVM) such that different input samples 
have different contributions to the learning of decision surface. However, it assigns smaller 
fuzzy memberships to support vectors which might decrease the effects of support vectors 
on the construction of decision surface. In order to overcome this problem in FSVM, a new 
efficient approach fuzzy SVM for non-equilibrium data is proposed to reduce the misclas-
sification accuracy of minority class in FSVM [22]. Adopting fuzzy membership, various 
Fuzzy SVMs are presented such as Bilateral-weighted FSVM (B-FSVM) [23], NFSVM 
[24], WCS-FSVM [25], FTSVM [26] and NFTSVM [27]. Moreover, the fuzzy set and 
fuzzy system theory is also widely used in various control problems [28–30].

Recently, Fan et  al. [31] proposed an entropy-based fuzzy support vector machine 
(EFSVM) for class imbalance problem in which fuzzy membership is computed based on 
the class certainty of samples. Motivated by EFSVM, Gupta et al. [32] proposed a fuzzy 
twin support vector machine based on information entropy which is termed as EFTWSVM-
CIL. Therefore, the choice of fuzzy membership is very important for classification prob-
lems. Each sample is given a fuzzy membership which indicates the importance of the 
corresponding sample toward one class and this change can make some contribution to the 
final decision surface. Based on the above discussion and inspired by EFTWSVM-CIL and 
LSTSVM, in this paper, we propose a new approach termed as entropy-based fuzzy least 
squares twin support vector machine (EFLSTSVM). The contributions of the proposed 
EFLSTSVM can be highlighted as follows. First, entropy-based fuzzy membership is given 
to evaluate the class certainty of training samples. Similar to EFSVM and EFTWSVM-
CIL, our EFLSTSVM adopts the entropy to evaluate the class certainty of each sample and 
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then determines the corresponding fuzzy membership based on the class certainty. Thus, it 
can pay more attention to the samples with higher class certainty to result in more robust 
decision surface, which enhances the classification accuracy and generalization ability. 
Second, we modify the QPP-based formulation of EFTWSVM-CIL in least squares sense 
which leads to solving the optimization problem with equality constraints. Different from 
EFTWSVM-CIL, our EFLSTSVM solves a pair of linear system of equations as opposed to 
solving two QPPs in EFTWSVM-CIL, which leads to simple algorithm and less computa-
tional time. Third, a regularization term in the objective function is introduced. Therefore, 
our EFLSTSVM implements the structural risk minimization principle instead of the empir-
ical risk minimization principle, which can overcome the possible over-fitting problems in 
LSTSVM. And last but not least, the experimental results on several synthetic datasets and 
benchmark datasets show the effectiveness of our proposed EFLSTSVM.

The rest of this paper is organized as follows. In Sect. 2, we give a brief review of LST-
SVM and FTSVM. Section 3 proposes the details of linear EFLSTSVM and its nonlinear 
version. Experimental results on both synthetic and real-world datasets to investigate the 
effectiveness of our method are described in Sect. 4. Finally, Sect. 5 gives the conclusion.

2  Brief Review of LSTSVM and FTSVM

In this section, we briefly explain the basics of LSTSVM and FTSVM. Let us consider 
a binary classification problem in the n-dimensional real space Rn and a set of training 
data samples is represented by T = {(x1, y1), (x2, y2),… , (xm, ym)} , where xi ∈ Rn and 
yi ∈ {−1, 1}, i = 1, 2,… ,m . We organize the m1 samples of positive class by a m1 × n 
matrix A ∈ Rm1×n and m2 samples of negative class by a m2 × n matrix B ∈ Rm2×n.

2.1  Least Squares Twin Support Vector Machine (LSTSVM)

Different from least squares support vector machine (LSSVM) [33], least squares twin sup-
port vector machine (LSTSVM) [11] aims to find a pair of nonparallel hyperplanes

such that each hyperplane is close to the training samples of one class and as far as possible 
from the samples of the other class. Then, the primal optimization problem of linear LST-
SVM can be expressed as

where c1 and c2 are positive penalty parameters, �1 and �2 are slack variables, e1 and e2 are 
vectors with each element of the value of 1.

By substituting the equality constraint into the objective function, we obtain the uncon-
strained optimization problem as follows.

(1)wT
1
x + b1 = 0 and wT

2
x + b2 = 0

(2)
min

w1,b1,�2

1

2
||Aw1 + e1b1||22 +

c1

2
�T
2
�2

s.t. − (Bw1 + e2b1) + �2 = e2

(3)
min

w2,b2,�1

1

2
||Bw2 + e2b2||22 +

c2

2
�T
1
�1

s.t. (Aw2 + e1b2) + �1=e1
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Let E = [A e1],F= [B e2] , form (4) and (5), we can get

The solutions to the optimization problems (2) and (3) can be found directly by solving 
systems of linear Eqs. (4) and (5), more details can be seen in [11]. Once w1, b1 and w2, b2 
are obtained from (6) and (7), the nonparallel hyperplanes (1) are known. A new data point 
x ∈ Rn is then assigned to positive class W1 or negative class W2 by

where | ⋅ | is the absolute value.

2.2  Fuzzy Twin Support Vector Machine (FTSVM)

Different from TWSVM [10], in the case of linear FTSVM [26], a weighting parameter 
is used to construct the classifier based on fuzzy membership values. The formulation of 
linear FTSVM can be written as

where c1 and c2 are positive penalty parameters, �1 and �2 are slack variables, e1 and e2 are 
vectors with each element of the value of 1, s1 and s2 represent fuzzy membership of each 
type of sample points.

By introducing the method of Lagrangian multipliers, the corresponding Wolfe dual of 
QPPs (9) and (10) can be represented as

(4)[A e1]
T [A e1][w

T
1
b1]

T + c1[B e2]
T [B e2][w

T
1
b1]

T + c1[B e2]
Te2 = 0

(5)[B e2]
T [B e2][w

T
2
b2]

T + c2[A e1]
T [A e1][w

T
2
b2]

T − c2[A e1]
Te1 = 0

(6)[wT
1
b1]

T= −

(
FTF +

1

c1
ETE

)−1

FTe2

(7)[wT
2
b2]

T=

(
ETE +

1

c2
FTF

)−1

ETe1

(8)x ∈ Wk, k = argmin
k=1,2

{|wT
1
x + b1|, |wT

2
x + b2|}

(9)
min

w1,b1,�2

1

2
||Aw1 + e1b1||22 + c1s

T
2
�2

s.t. − (Bw1 + e2b1) + �2 ≥ e2, �2 ≥ 0

(10)
min

w2,b2,�1

1

2
||Bw2 + e2b2||22 + c2s

T
1
�1

s.t. (Aw2 + e1b2) + �1 ≥ e1, �1 ≥ 0

(11)
max
�

eT
2
� −

1

2
�TG(HTH)−1GT�

s.t. 0 ≤ � ≤ c1s2
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where G = [B e2], H = [A e1] and � ∈ Rm2 , � ∈ Rm1 are Lagrangian multipliers.
The nonparallel hyperplanes (1) can be obtained from the solutions � and � of (11) and 

(12) by

Once w1, b1 and w2, b2 are obtained from (13) and (14), the two nonparallel hyperplanes 
(1) are known. A new data point x ∈ Rn is then assigned to positive class W1 or negative 
class W2 by

where | ⋅ | is the absolute value. More details about FTSVM can be seen in [26].

3  Entropy‑Based Fuzzy Least Squares Twin Support Vector Machine

As the evaluation of fuzzy membership is the key issue of FSVM, in this section, we intro-
duce the entropy-based fuzzy membership at first. Then, by adopting the entropy-based 
fuzzy membership, the entropy-based fuzzy least squares twin support vector machine 
(EFLSTSVM) for binary classification is presented.

3.1  Entropy‑Based Fuzzy Membership

In information theory, entropy is measure of the information carried by a sample [34]. Thus, 
entropy characterizes the certainty about the source of information, that is, the smaller 
entropy indicates the information is more certain. By adopting entropy, we can evaluate the 
class certainty of training samples and assign the fuzzy membership of the training samples 
based on their class certainty. Specifically, the sample with higher class certainty will be 
assigned to larger fuzzy memberships to enhance their contribution to the decision surface, 
and vice versa. Supposing the probabilities of the training samples xi belonging to the posi-
tive and negative class are p+i and p−i , respectively. The entropy of xi is defined as

where ln represents the natural logarithm operator. The key point of calculating Hi by (16) 
is to evaluate the probability of each sample belong to positive and negative class. We cal-
culate the K nearest neighbours of sample xi and assign the values to p+i and p−i based on 
count of total positive and negative class neighbours, i.e.

(12)
max
�

eT
1
� −

1

2
�TH(GTG)−1HT�

s.t. 0 ≤ � ≤ c2s1

(13)[wT
1
b1]

T= − (HTH)−1GT�

(14)[wT
2
b2]

T= (GTG)−1HT�

(15)x ∈ Wk, k = argmin
k=1,2

{|wT
1
x + b1|, |wT

2
x + b2|}

(16)Hi = −p+i ⋅ ln(p+i) − p−i ⋅ ln(p−i)

(17)p+i =
num+i

k
, p−i =

num−i

k



46 S. Chen et al.

1 3

where num+i and num−i represent the number of positive and negative samples in the 
selected K nearest neighbours, and num+i+num−i = k.

By adopting the above entropy evaluation, the entropy of the positive samples are 
H+ = {H+1,H+2,… ,H+m1

} . Then, data points of positive class are divided into N+ subsets 
based on increasing order of entropy and the fuzzy memberships of positive samples in each 
subset are calculated as

where FM+j is the fuzzy membership for positive samples distributed in jth subset with 
fuzzy membership parameter � ∈ (0,

1

N+−1
] which controls the scale of the fuzzy values of 

positive samples. Then, the fuzzy membership of positive samples are defined as

Similarly, the entropy of the negative samples are H− = {H−1,H−2,… ,H−m2
} . Then, data 

points of negative class are divided into N− subsets based on increasing order of entropy and 
the fuzzy memberships of negative samples in each subset are calculated as

where FM−j is the fuzzy membership for negative samples distributed in jth subset with 
fuzzy membership parameter � ∈ (0,

1

N−−1
] which controls the scale of the fuzzy values of 

negative samples. Then, the fuzzy membership of negative samples are defined as

3.2  Linear EFLSTSVM

For binary classification problem, inspired by LSTSVM [11] and FTSVM [26], the proposed 
EFLSTSVM seeks a pair of nonparallel hyperplanes and modifies the primal problems of 
FTSVM by replacing the inequality constrains with equality constraints and using the square 
of 2-norm slack variables. Different from LSTSVM, the structural risk is minimized by add-
ing a regularization term in our EFLSTSVM. Thus, the primal problems of EFLSTSVM are 
expressed as follows.

where ci (i = 1, 2, 3, 4) are positive penalty parameters, S+ = diag(s+1, s+2,… , s+m1
) and 

S− = diag(s−1, s−2,… , s−m2
) are the entropy-based fuzzy membership of positive class and 

negative class, �1 and �2 are slack variables, e1 and e2 are the vectors of ones with appropri-
ate dimensions.

Consider the primal problem (22), by substituting the equality constraint into the objective 
function, we obtain the unconstrained problem. Therefore, we obtain

(18)FM+j = 1.0 − � × (j − 1), j = 1, 2,… ,N+

(19)s+i = 1 − � × (j − 1), if xi ∈ jth subset (i = 1, 2,… ,m1)

(20)FM−j = 1.0 − � × (j − 1), j = 1, 2,… ,N−

(21)s−i = 1 − � × (j − 1), if xi ∈ jth subset (i = 1, 2,… ,m2)

(22)
min
w1,b1

c2

2
(w2

1
+ b2

1
) +

1

2
(Aw1 + e1b1)

T (Aw1 + e1b1) +
c1

2
�T
2
S−�2

s.t. − (Bw1 + e2b1) = e2 − �2

(23)
min
w2,b2

c4

2
(w2

2
+ b2

2
) +

1

2
(Bw2 + e2b2)

T (Bw2 + e2b2) +
c3

2
�T
1
S+�1

s.t. Aw2 + e1b2 = e1 − �1
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By taking partial derivative of (24) with respect to w1 and b1 , we get

Then, combing (25) and (26) and solving for w1 and b1 , it is easy to lead to a system of lin-
ear equations which is expressed as follows.

where I1 is an identity matrix.
Let H = [A e1] ∈ Rm1×(n+1),G = [B e2] ∈ Rm2×(n+1) , by simplifying (27), we can get

where I+ is an identity matrix and u+ = [w1;b1] ∈ Rn+1.
Thus, form (28), we can get

Consider the primal problem (23), and substitute the equality constrains into the objective 
function. Thus, we can obtain

By taking partial derivative of (30) with respect to w2 and b2 , we obtain

Then, combing (31) and (32) and solving for w2 and b2 , it is easy to lead to a system of lin-
ear equations which is expressed as follows.

where I2 is an identity matrix.

(24)

L(w1, b1) =
c2

2
(w2

1
+ b2

1
) +

1

2
(Aw1 + e1b1)

T (Aw1 + e1b1)

+
c1

2
(e2 + Bw1 + e2b1)

TS−(e2 + Bw1 + e2b1)

(25)
�L

�w1

= c2w1 + AT (Aw1 + e1b1) + c1B
TS−(e2 + Bw1 + e2b1) = 0

(26)
�L

�b1
= c2b1 + eT

1
(Aw1 + e1b1) + c1e

T
2
S−(e2 + Bw1 + e2b1) = 0

(27)
(
c2I1 + ATA + c1B

TS−B ATe1 + c1B
TS−e2

eT
1
A + c1e

T
2
S−B c2 + eT

1
e1 + c1e

T
2
S−e2

)(
w1

b1

)
=

(
− c1B

TS−e2
− c1e

T
2
S−e2

)

(28)(c2I+ + HTH + c1G
TS−G)u+ = −c1G

TS−e2

(29)u+ = −c1(c2I+ + HTH + c1G
TS−G)

−1GTS−e2

(30)
L(w2, b2) =

c4

2
(w2

2
+ b2

2
) +

1

2
(Bw2 + e2b2)

T (Bw2 + e2b2)

+
c3

2
(e1 − Aw2 − e1b2)

TS+(e1 − Aw2 − e1b2)

(31)
�L

�w2

= c4w2 + BT (Bw2 + e2b2) − c3A
TS+(e1 − Aw2 − e1b2) = 0

(32)
�L

�b2
= c4b2 + eT

2
(Bw2 + e2b2) − c3e

T
1
S+(e1 − Aw2 − e1b2) = 0

(33)
(
c4I2 + BTB + c3A

TS+A BTe2 + c3A
TS+e1

eT
2
B + c3e

T
1
S+A c4 + eT

2
e2 + c3e

T
1
S+e1

)(
w2

b2

)
=

(
c3A

TS+e1
c3e

T
1
S+e1

)
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Similarly, by simplifying (33), we can obtain

where I− is an identity matrix and u− = [w2; b2] ∈ Rn+1.
Thus, form (34), we can get

The solutions to the pair of QPPs (22) and (23) can be found directly by solving two sys-
tems of linear Eqs. (28) and (34), which involves two matrix inverses of size (n + 1) × (n + 1) . 
When n is much smaller than the number samples of positive class and negative class, the 
training speed of linear EFLSTSVM is extremely fast. Once w1, b1 and w2, b2 are obtained 
from (29) and (35), the two nonparallel hyperplanes (1) are known. A new data point x ∈ Rn is 
then assigned to positive class W1 or negative class W2 by

where | ⋅ | is the absolute value.
In summary, the steps for constructing linear EFLSTSVM classifier are shown in 

Algorithm 1.

3.3  Nonlinear EFLSTSVM

For nonlinear case, firstly, we define C = [A;B] and choose an appropriate kernel function K . 
Following the same idea, linear EFLSTSVM classifier can be extended to nonlinear version 
by considering the following kernel-generated surfaces

(34)(c4I− + GTG + c3H
TS+H)u− = c3H

TS+e1

(35)u− = c3(c4I− + GTG + c3H
TS+H)−1HTS+e1

(36)x ∈ Wk, k = argmin
k=1,2

{|wT
1
x + b1|, |wT

2
x + b2|}

(37)K(xT ,CT )w1 + b1 = 0 and K(xT ,CT )w2 + b2 = 0
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The primal problems of the nonlinear EFLSTSVM are expressed as follows.

Similar to linear case, by substituting the constraints into objective function, then we 
can obtain the solutions to the problems (38) and (39) as follows.

Let KerH = [K(A,CT ) e1] ∈ Rm1×(m+1),KerG = [K(B,CT ) e2]
m2×(m+1) , similar to linear 

case, the solutions of QPPs (40) and (41) can be obtained as follows.

where v+ = [w1;b1] ∈ Rm+1 , v− = [w2;b2] ∈ Rm+1.
By simplifying the expression (42) and (43), we obtain

In summary, the solutions to the pair of QPPs (38) and (39) can be found directly by 
solving two systems of linear Eqs. (42) and (43). Once w1, b1 and w2, b2 are obtained from 
(44) and (45), the two nonparallel hyperplanes (37) are known. A new data point x ∈ Rn is 
then assigned to positive class W1 or negative class W2 by

where | ⋅ | is the absolute value.
Similar to linear EFLSTSVM, steps for constructing the nonlinear EFLSTSVM classi-

fier are given in Algorithm 2 as follows.

(38)
min
w1,b1

c2

2
(w2

1
+ b2

1
) +

1

2
(K(A,CT )w1 + e1b1)

T (K(A,CT )w1 + e1b1) +
c1

2
�T
2
S−�2

s.t. − (K(B,CT )w1 + e2b1) = e2 − �2

(39)
min
w2,b2

c4

2
(w2

2
+ b2

2
) +

1

2
(K(B,CT )w2 + e2b2)

T (K(B,CT )w2 + e2b2) +
c3

2
�T
1
S+�1

s.t. K(A,CT )w2 + e1b2 = e1 − �1

(40)
min
w1,b1

c2

2
(w2

1
+ b2

1
) +

1

2
(K(A,CT )w1 + e1b1)

T (K(A,CT )w1 + e1b1)

+
c1

2
(e2 + K(B,CT )w1 + e2b1)

TS−(e2 + K(B,CT )w1 + e2b1)

(41)
min
w2,b2

c4

2
(w2

2
+ b2

2
) +

1

2
(K(B,CT )w2 + e2b2)

T (K(B,CT )w2 + e2b2)

+
c3

2
(e1 − K(A,CT )w2 − e1b2)

TS+(e1 − K(A,CT )w2 − e1b2)

(42)(c2I+ + KerHT
⋅ KerH + c1KerG

T
⋅ S− ⋅ KerG) ⋅ v+ = −c1KerG

T
⋅ S− ⋅ e2

(43)(c4I− + KerGT
⋅ KerG + c3KerH

T
⋅ S+ ⋅ KerH) ⋅ v− = c3KerH

T
⋅ S+ ⋅ e1

(44)v+ = −c1(c2I+ + KerHT
⋅ KerH + c1KerG

T
⋅ S− ⋅ KerG)−1 ⋅ KerGT

⋅ S− ⋅ e2

(45)v− = c3(c4I− + KerGT
⋅ KerG + c3KerH

T
⋅ S+ ⋅ KerH)−1 ⋅ KerHT

⋅ S+ ⋅ e1

(46)x ∈ Wk, k = argmin
k=1,2

{|K(x,CT )w1 + b1|, |K(x,CT )w2 + b2|}
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4  Experimental Results and Discussions

In order to validate the performance of the proposed EFLSTSVM, we investigate its classifi-
cation accuracy and computational efficiency on several synthetic datasets, UCI benchmark 
datasets, NDC datasets and image recognition datasets, respectively. In our experiments, 
we focus on the comparison between our proposed EFLSTSVM and five state-of-the-art 
classifiers, including TWSVM [10], LSTSVM [11], FTSVM [26], EFSVM [31] and EFT-
WSVM-CIL [32]. And the classification accuracy of each method is evaluated by standard 
5-fold cross-validation methodology. All methods are implemented in MATLAB R2018a 
on a personal computer (PC) with an Intel (R) Core (TM) i7-7700CPU (3.60 GHz × 8) and 
32 GB random-access memory (RAM). The QPPs in TWSVM, FTSVM and EFTWSVM-
CIL are solved by SOR algorithm, which is also used to solve QPPs in literatures [12, 18]. 
And the systems of linear equations in LSTSVM and our EFLSTSVM are solved by ‘\’. In 
addition, the grid search method is used to find the optimal parameters in all methods. Spe-
cifically, the penalty parameters ci and kernel wide parameter � of Gaussian kernel func-
tion K(x, y) = e

−
‖x−y‖2

2�2  in all methods are selected form the set {2i|i = −8,−7,… , 7, 8} . The 
neighborhood size k in our EFLSTSVM, EFSVM and EFTWSVM-CIL are chosen from 
the set {1, 3, 5,… , 17, 19} . The number of the separated subsets N+ and N− are set to 10 
and the fuzzy membership parameter � is set to 0.05.
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4.1  Synthetic Datasets

In this subsection, two artificial datasets, including Two-moons manifold dataset [35, 36] 
and Ripley’s synthetic datasets [37] have been used to illustrate that the proposed EFLST-
SVM can deal with linearly inseparable problems. In experiments, Two-moons-1 mani-
fold dataset contains 100 samples (50 positive samples and 50 negative samples) and Two-
moons-2 manifold dataset contains 200 samples (100 positive samples and 100 negative 
samples). Figure 1 shows two kinds of Two-moons datasets with different complexity.

For Two-moons manifold datasets, we investigate the performance of nonlinear 
TWSVM, LSTSVM, EFSVM, FTSVM, EFTWSVM- CIL and our EFLSTSVM with 
Gaussian kernel function. We randomly select 40% for training sets and 60% for testing 
sets, each experiment repeat 10 times and the average results are listed in Table 1. For Rip-
ley’s synthetic dataset, which contains 250 training points and 1000 test points, we inves-
tigate the classification performance of nonlinear TWSVM, LSTSVM, EFSVM, FTSVM, 
EFTWSVM-CIL and our proposed EFLSTSVM with Gaussian kernel function. The test 
accuracy is listed in Table 2. From Tables 1 and 2, we can observe that our EFLSTSVM 
obtains the best performance on Two-moons and Ripley datasets. Moreover, the hyper-
planes of TWSVM, LSTSVM, EFSVM, FTSVM, EFTWSVM-CIL and our EFLSTSVM 
on Ripley’s dataset are shown in Fig. 2.

-4 -3 -2 -1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-4 -3 -2 -1 0 1 2 3 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) Two-moons-1 dataset             (b) Two-moons-2 dataset

Fig. 1  Two kinds of Two-moons datasets with different complexity

Table 1  Classification accuracy on Two-moons datasets

Dataset TWSVM LSTSVM EFSVM FTSVM EFTWSVM-CIL EFLSTSVM
Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std Acc ± Std

Two-moons-1 93.83 ± 2.94 94.00 ± 2.11 93.67 ± 1.53 92.17 ± 2.16 93.50 ± 2.54 94.17 ± 2.39
Two-moons-2 99.42 ± 0.40 99.17 ± 0.96 99.75 ± 0.40 99.68 ± 0.32 99.83 ± 0.35 99.92 ± 0.26

Table 2  Classification accuracy on Ripley’s datasets

Dataset TWSVM LSTSVM EFSVM FTSVM EFTWSVM-CIL EFLSTSVM
Acc Acc Acc Acc Acc Acc

Ripley 88.80 88.40 88.00 87.60 89.20 89.40
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(a) TWSVM (b) LSTSVM

(c) EFSVM (d) FTSVM

(e) EFTWSVM-CIL (f) EFLSTSVM

Fig. 2  Classification hyperplanes of nonlinear methods on Ripley’s datasets. a TWSVM, b LSTSVM, c 
EFSVM, d FTSVM, e EFTWSVM-CIL and f EFLSTSVM
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4.2  UCI Datasets

To further compare EFLSTSVM with TWSVM, LSTSVM, EFSVM, FTSVM and EFT-
WSVM-CIL, we choose 11 datasets from UCI machine learning repository [38]. Specifi-
cally, they are Australian, Bupa-Liver, House-Votes, Heart-c, Heart-Statlog, Ionosphere, 
Musk, PimaIndian, Sonar, Spect and Wpbc, respectively. Experimental results of their 
linear and nonlinear versions are given in Tables 3 and 4. The best accuracy is shown in 
boldface and the shortest time is shown by underline for each dataset. In Table 3, we can 
find that the accuracy of our proposed linear EFLSTSVM is better than that of TWSVM, 
LSTSVM, EFSVM, FTSVM and EFTWSVM-CIL on most of the datasets. For example, 
for the Spect dataset, the accuracy of our linear EFLSTSVM is 83.89%, while TWSVM is 
81.24%, LSTSVM is 80.89%, EFSVM is 83.15%, FTSVM is 81.67% and EFTWSVM-CIL 
is 81.68%, respectively.

Furthermore, Table  4 shows the experimental results for the nonlinear TWSVM, LST-
SVM, EFSVM, FTSVM, EFTWSVM-CIL and our proposed EFLSTSVM on the above 11 
UCI datasets. The results in Table 4 are similar to those in Table 3, and it also confirms the 
observation above. Especially for Ionosphere dataset, our nonlinear EFLSTSVM obtains the 
classification accuracy 96.58%, which is 2.26% higher than TWSVM, 2.28% higher than 
LSTSVM, 0.85% higher than EFSVM and 1.98% higher than FTSVM and EFTWSCM-CIL, 

Table 3  Test results of linear TWSVM, LSTSVM, EFSVM, FTSVM, EFTWSVM-CIL and EFLSTSVM

Datasets TWSVM LSTSVM EFSVM FTSVM EFTWSVM-
CIL

EFLSTSVM

Acc + Std (%)
Time (s)

Acc + Std (%)
Time (s)

Acc + Std (%)
Time (s)

Acc + Std (%)
Time (s)

Acc + Std 
(%)
Time (s)

Acc + Std (%)
Time (s)

Australian
690*14

87.54 ± 2.87
0.0155

86.96 ± 4.21
0.0005

86.52 ± 3.64
0.0328

87.83 ± 2.53
0.0137

87.68 ± 1.98
0.0153

87.59 ± 4.92
0.0011

Bupa-Liver
345*6

71.01 ± 6.56
0.0042

70.43 ± 4.55
0.0003

69.28 ± 4.49
0.0080

71.29 ± 5.08
0.0044

73.33 ± 5.48
0.0037

72.51 ± 5.24
0.0008

House-Votes
435*16

96.09 ± 1.31
0.0074

95.86 ± 2.97
0.0004

95.40 ± 2.70
0.0121

96.32 ± 1.49
0.0078

96.78 ± 0.51
0.0071

96.32 ± 1.36
0.0007

Heart-c
303*13

85.81 ± 2.48
0.0043

85.15 ± 3.30
0.0004

84.18 ± 2.33
0.0065

82.89 ± 3.25
0.0038

85.80 ± 3.83
0.0039

86.13 ± 1.55
0.0007

Heart-Statlog
270*13

85.56 ± 3.04
0.0039

85.19 ± 6.80
0.0004

85.56 ± 4.01
0.0057

85.60 ± 2.75
0.0038

85.93 ± 2.81
0.0037

86.30 ± 2.81
0.0005

Ionosphere
351*34

93.74 ± 5.09
0.0048

94.02 ± 3.94
0.0005

89.18 ± 2.16
0.0104

94.02 ± 3.69
0.0049

94.87 ± 2.97
0.0046

94.01 ± 3.11
0.0011

Musk
476*166

84.66 ± 4.76
0.0099

82.14 ± 3.87
0.0014

84.98 ± 4.49
0.0169

84.26 ± 4.16
0.0107

85.08 ± 1.76
0.0096

85.91 ± 4.01
0.0024

PimaIndian
768*8

77.86 ± 2.92
0.0164

77.74 ± 3.01
0.0005

77.21 ± 3.13
0.0345

78.13 ± 3.19
0.0187

78.52 ± 1.54
0.0198

78.13 ± 3.08
0.0011

Sonar
208*60

78.85 ± 1.93
0.0034

79.37 ± 4.84
0.0005

81.74 ± 4.45
0.0047

80.75 ± 4.85
0.0034

81.27 ± 4.19
0.0031

82.29 ± 3.87
0.0007

Spect
267*44

81.24 ± 4.73
0.0050

80.89 ± 5.76
0.0005

83.15 ± 4.35
0.0059

81.67 ± 4.15
0.0051

81.68 ± 4.86
0.0046

83.89 ± 3.42
0.0006

Wpbc
198*34

83.36 ± 4.48
0.0033

83.32 ± 4.83
0.0004

82.37 ± 4.12
0.0052

83.83 ± 3.16
0.0093

84.20 ± 4.61
0.0034

84.35 ± 4.66
0.0005

Average 84.16 ± 3.65 83.73 ± 4.38 83.60 ± 3.62 84.24 ± 3.48 85.01 ± 3.14 85.22 ± 3.46
Average rank 4.2273 4.9545 4.7727 3.3182 1.9091 1.8182
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respectively. In addition, from Tables 3 and 4, we can find that our proposed EFLSTSVM 
is not the fastest method. Although it is a bit slower than LSTSVM in most case, it is faster 
than the other four methods on all chosen datasets. The main reason might be that TWSVM, 
EFSVM, FTSVM and EFTWSVM-CIL are required to solve QPPs, while LSTSVM and our 
proposed EFLSTSVM are only required to solve systems of linear equations. Figure 3 shows 
the training times of nonlinear methods on selected UCI datasets.

In addition, Friedman test [39] is conducted to give a statistic comparison on the effective-
ness with the compared algorithms. For this test, the average ranks of the compared algo-
rithms on the used datasets are listed in the last row of Tables 3 and 4. In the experiments, we 
consider k (= 6) number of compared algorithms and n (= 11) number of datasets. Let rj

i
 be the 

rank of the jth algorithms on the ith datasets. The average rank of the jth algorithms is calcu-
lated as Rj =

1

n

∑n

i=1
r
j

i
 . We assume all the methods are equivalent under null hypothesis, and 

the Friedman statistic

(47)�2
F
=

12n

k(k+1)

[
∑

j

R2
j
−

k(k + 1)2

4

]

Table 4  Test results of nonlinear TWSVM, LSTSVM, EFSVM, FTSVM, EFTWSVM-CIL and EFLST-
SVM

Datasets TWSVM LSTSVM EFSVM FTSVM EFTWSVM-
CIL

EFLSTSVM

Acc + Std (%)
Time (s)

Acc + Std (%)
Time (s)

Acc + Std (%)
Time (s)

Acc + Std (%)
Time (s)

Acc + Std 
(%)
Time (s)

Acc + Std (%)
Time (s)

Australian
690*14

87.83 ± 1.57
0.0279

87.54 ± 3.38
0.0128

87.10 ± 1.80
0.0971

87.39 ± 3.46
0.0294

87.68 ± 1.98
0.0291

87.97 ± 0.97
0.0152

Bupa-Liver
345*6

75.07 ± 4.39
0.0081

75.94 ± 4.29
0.0033

73.91 ± 4.39
0.0209

74.78 ± 3.92
0.0097

74.49 ± 4.18
0.0083

75.65 ± 4.27
0.0033

House-Votes
435*16

96.32 ± 2.21
0.0129

96.55 ± 2.11
0.0049

95.86 ± 3.11
0.0312

96.32 ± 2.74
0.0130

96.09 ± 1.92
0.0129

96.55 ± 1.41
0.0059

Heart-c
303*13

85.14 ± 3.52
0.0071

84.50 ± 3.12
0.0026

84.84 ± 4.64
0.0157

83.83 ± 2.17
0.0080

86.13 ± 1.57
0.0068

85.82 ± 3.39
0.0029

Heart-Statlog
270*13

85.56 ± 3.46
0.0063

85.19 ± 3.70
0.0021

85.19 ± 4.54
0.0131

85.86 ± 2.81
0.0060

86.30 ± 2.81
0.0058

85.93 ± 2.11
0.0023

Ionosphere
351*34

94.32 ± 3.32
0.0091

94.30 ± 2.03
0.0037

95.73 ± 2.26
0.0209

94.60 ± 3.67
0.0121

94.60 ± 3.51
0.0086

96.58 ± 1.62
0.0046

Musk
476*166

95.79 ± 2.11
0.0153

94.96 ± 2.40
0.0076

94.54 ± 0.88
0.0767

96.43 ± 1.89
0.0163

95.58 ± 2.41
0.0157

96.63 ± 2.02
0.0087

PimaIndian
768*8

78.52 ± 4.27
0.0356

78.30 ± 3.17
0.0166

77.74 ± 4.42
0.0919

78.13 ± 0.54
0.0402

78.64 ± 2.64
0.0384

79.16 ± 1.83
0.0232

Sonar
208*60

88.95 ± 2.68
0.0046

91.39 ± 3.69
0.0018

90.88 ± 2.57
0.0116

89.94 ± 4.52
0.0047

91.86 ± 3.58
0.0041

91.81 ± 4.74
0.0017

Spect
267*44

82.42 ± 4.15
0.0072

83.89 ± 4.54
0.0022

82.78 ± 5.42
0.0061

83.15 ± 3.49
0.0077

83.52 ± 4.22
0.0074

84.65 ± 0.74
0.0026

Wpbc
198*34

83.86 ± 6.18
0.0045

83.36 ± 5.56
0.0015

82.83 ± 3.23
0.0043

83.33 ± 5.18
0.0047

84.36 ± 3.74
0.0042

84.88 ± 4.02
0.0015

Average 86.71 ± 3.44 86.90 ± 3.45 86.49 ± 3.39 86.71 ± 3.13 87.20 ± 2.96 87.78 ± 2.47
Average rank 3.7727 3.8182 4.9545 4.2727 2.6818 1.4091
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is distributed according to �2
F
 with (k − 1) degrees of freedom, when n and k are reasonable 

large.
Moreover, Iman and Davenport [40] showed that Friedman’s �2

F
 presents a pessimistic 

behavior, and they derived a better statistic

which is distributed according to the F-distribution with (k − 1) and (k − 1)(n − 1) degrees 
of freedom.

For linear case, in Table 3, it is noticed that our proposed EFLSTSVM ranks the first with 
an average score of 1.8182. To validate that the measured average ranks are significantly dif-
ferent from the mean rank by the null hypothesis, according to (47) and (48), we obtain

Specifically, for 6 algorithms and 11 datasets, FF is distributed according to the F 
distribution with (6 − 1)=5 and (6 − 1) × (11 − 1)=50 degrees of freedom. We can find 
that the critical value of F(5, 50) is 2.400 for the level of significant �=0.05 and it is less 
than the value of FF , which indicates the null hypothesis is rejected. Thus, the compared 
algorithms are significantly different on the adopted datasets.

For nonlinear case, in Table 4, it is noticed that EFLSTSVM ranks the first with an 
average score of 1.4091. According to (47) and (48), we obtain

(48)FF =
(n − 1)�2

F

n(k − 1) − �2
F

�2
F
=

12 × 11

6 × 7

[
(4.22732 + 4.95452 + 4.77272 + 3.31822 + 1.90912 + 1.81822) −

6 × 72

4

]
= 30.3498

FF =
10 × 30.3498

11 × 5 − 30.3498
=12.3122

�2
F
=

12 × 11

6 × 7

[
(3.77272 + 3.81822 + 4.95452 + 4.27272 + 2.68182 + 1.40912) −

6 × 72

4

]
= 22.9195

FF =
10 × 22.9195

11 × 5 − 22.9195
= 7.1444

Fig. 3  Training times of nonlinear methods on selected UCI datasets
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Similar to linear case, for 6 algorithms and 11 datasets, the critical value of F(5, 50) 
is 2.400 for the level of significant �=0.05 and it is also less than the value of FF . 
Therefore, the null hypothesis is rejected and the compared algorithms are significantly 
different.

On the other hand, in order to compare the performance of different nonpar-
allel hyperplanes support vector machines, i.e. TWSVM, LSTSVM, FTSVM, 
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Fig. 4  Two-dimensional projection for test points from Australian dataset. a TWSVM, b LSTSVM, c 
FTSVM, d EFTWSVM-CIL and e Our proposed EFLSTSVM
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EFTWSVM- CIL and our proposed EFLSTSVM, we give the two-dimensional scatter 
plots [14, 18] of part test points for above classifiers. Here, Australian UCI data set is 
selected for a practical example and the corresponding scatter plots are shown in Fig. 4 
for Australian data set with about 20% of data points, where the coordinates (d+

i
, d−

i
) are 

the respective distances of a test point xi to the two hyperplanes. Specifically, in Fig. 4, 
the figures (a–e) are the results obtained by TWSVM, LSTSVM, FTSVM, EFTWSVM-
CIL and our proposed EFLSTSVM, respectively. From Fig. 4, it can be seen that most 
test samples are clustered around the corresponding hyperplanes for all methods. And it 
is clearly noticeable that our proposed EFLSTSVM obtains better clustered points and 
separated classes than other methods.

4.3  Image Recognition

In this subsection, we apply our method to image recognition. Three well-known and pub-
licly available databases corresponding to typical image classifications, i.e., handwritten 
digits (USPS), objects (COIL-20) and recognition of faces (AR) are used to evaluate our 
proposed EFLSLSVM with TWSVM, LSTSVM, EFSVM, FTSVM and EFTWSVM-CIL.

Fig. 5  An illustration of 10 subjects in the USPS database

Fig. 6  An illustration of 20 subjects in the COIL-20 database
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The USPS database [41] consists of gray-scale handwritten digit images from 0 to 9, 
as shown in Fig. 5. Each digit contains 1100 images, and the size of each image is 16 × 16 
pixels with 256 gray levels. Here we select five pairwise digits of varying difficulty for odd 
versus even digit classification.

COIL-20 [42] is a database of gray scale images of 20 objects, which are illustrated 
in Fig. 6. The objects were placed on a motorized turntable against a black background. 
Images of the objects were taken at pose intervals 5°, which corresponds to 72 images per 
object. In our experiments, we have resized each of the original 1440 images into 32 × 32 
pixels.

The AR database [43] contains 100 subjects and each subject has 26 face images taken 
in two sessions. For each session, there are 13 face images. Here 14 unoccluded images 
from the two sessions of each person are chosen for experiments, which are shown in 
Fig. 7. In our experiments, the 1400 images are all cropped into the same size of 40 × 30 
pixels.

For these datasets, we randomly partition the images of each project into two parts with 
same sizes such that one part is selected for training and the remaining part is used for 
testing. This process is repeated ten times. We only consider the Gaussian kernel for these 
methods and Table 5 lists the experimental results of these methods in USPS, COIL-20 

Fig. 7  An illustration of 14 images of one person from the AR database

Table 5  The classification performance comparison on the USPS, COIL-20 and AR datasets

Datasets TWSVM LSTSVM EFSVM FTSVM EFTWSVM-
CIL

EFLSTSVM

Acc + Std Acc + Std Acc + Std Acc + Std Acc + Std Acc + Std

USPS 1 versus 7 99.79 ± 0.12 99.83 ± 0.12 99.85 ± 0.09 99.87 ± 0.08 99.82 ± 0.13 99.90 ± 0.07
USPS 2 versus 3 98.43 ± 0.19 98.35 ± 0.50 99.18 ± 0.23 99.19 ± 0.21 99.15 ± 0.19 99.33 ± 0.17
USPS 2 versus 7 99.68 ± 0.12 99.54 ± 0.20 99.62 ± 0.17 99.63 ± 0.14 99.59 ± 0.18 99.71 ± 0.11
USPS 3 versus 8 98.49 ± 0.40 98.47 ± 0.39 98.90 ± 0.32 99.01 ± 0.30 98.99 ± 0.34 99.04 ± 0.37
USPS 4 versus 7 99.79 ± 0.14 99.75 ± 0.15 99.81 ± 0.12 99.82 ± 0.11 99.81 ± 0.12 99.85 ± 0.07
COIL-20 99.35 ± 0.35 98.19 ± 1.06 99.58 ± 0.44 99.59 ± 0.28 99.71 ± 0.28 99.61 ± 0.52
AR 96.84 ± 0.93 95.93 ± 0.87 98.29 ± 0.53 98.33 ± 0.37 98.93 ± 0.49 98.36 ± 0.77
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and AR datasets. It can be seen that the proposed EFLSTSVM obtains the best classifica-
tion performance than the other five methods on USPS datasets. Although our proposed 
EFLSTSVM obtains lower classification accuracies than EFTWSVM-CIL on COIL-20 and 
AR datasets, it also obtains higher accuracies than the other four methods.

4.4  NDC Datasets

In this subsection, we conduct some experiments on large scale classification datasets. So, 
the David Musicants NDC Data Generator [44] is used to evaluate the computation time 
for all methods with respect to number of data points. Table 6 lists a description of NDC 
datasets, each dataset is divided into a training set and testing set.

For the experiments on NDC datasets, we fixed parameters of all methods to be the 
same (i.e. ci= 1,� = 1,k = 9 ). The training accuracy, testing accuracy and training time of 
linear and nonlinear classifiers are reported in Tables 7 and 8, respectively. In particular, 
Table 7 shows the comparison results for linear TWSVM, LSTSVM, EFSVM, FTSVM, 
EFTWSVM-CIL and our proposed EFLSTSVM on NDC datasets. In Table 7, we can see 
that our EFLSTSVM obtains the comparable accuracies and performs faster than other 

Table 6  The characteristics of 
benchmark datasets

Datasets Training data Testing data Features

NDC-500 500 50 32
NDC-1000 1000 100 32
NDC-2000 2000 200 32
NDC-3000 3000 300 32
NDC-5000 5000 500 32
NDC-8000 8000 800 32
NDC-10000 10,000 1000 32

Table 7  Comparison on NDC datasets for linear classifiers

Datasets TWSVM LSTSVM EFSVM FTSVM EFTWSVM-
CIL

EFLSTSVM

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

NDC-500 96.00/88.00
0.0229

95.40/88.00
0.0012

94.60/82.00
0.0841

95.40/84.00
0.0274

95.80/88.00
0.0366

95.80/90.00
0.0016

NDC-1000 95.30/92.00
0.0519

94.90/93.00
0.0016

94.90/94.00
0.1545

95.40/94.00
0.0895

95.30/92.00
0.0568

94.90/94.00
0.0028

NDC-2000 94.90/95.00
0.2345

94.85/95.50
0.0018

94.85/94.50
0.7506

95.00/95.50
0.3872

94.85/95.00
0.3206

95.00/96.00
0.0035

NDC-3000 95.17/94.33
0.7046

94.70/94.00
0.0030

94.77/94.67
1.9055

94.87/95.00
0.7688

95.17/94.67
0.7209

95.50/94.33
0.0059

NDC-5000 94.74/94.40
2.7820

94.78/94.20
0.0090

94.58/94.00
8.0141

94.74/94.40
2.9094

94.74/94.40
2.8640

94.90/94.40
0.0141

NDC-8000 94.94/92.37
9.3884

94.67/91.87
0.0135

94.91/92.00
32.1632

94.86/91.87
10.0274

94.95/92.37
9.5797

94.91/92.00
0.0454

NDC-10000 95.22/94.40
17.5482

95.01/94.60
0.0347

95.12/94.80
64.2797

95.26/94.30
17.2046

95.22/94.40
18.6533

95.22/94.40
0.0702
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methods on most datasets. In addition, for nonlinear case, Table  8 shows the compari-
son results of all methods conducted on NDC datasets with Gaussian kernel. The results 
on these datasets also illustrate that LSTSVM and our EFLSTSVM are much faster than 
TWSVM, EFSVM, FTSVM and EFTWSVM-CIL. The reason might be that LSTSVM and 
our proposed EFLSTSVM are only solving systems of linear equations rather than quad-
ratic programming in other methods.

For linear case, taking NDC-10000 dataset for example, the training time of TWSVM is 
17.5482 s, EFSVM is 64.2797 s and FTSVM is 17.2046 s, EFTWSVM-CIL is 18.6533 s, 
while LSTSVM is 0.0347 s and our EFLSTSVM is 0.0702 s, respectively. Moreover, for 
nonlinear case, the training times of all methods on three large scale NDC datasets, e.g. 
NDC-5000, NDC-8000 and NDC-10000, are shown in Fig. 8. Thus, the results of Tables 7, 
8 and Fig. 8 can indicate the efficiency of our proposed EFLSTSVM when dealing with 
large scale problems.

Table 8  Comparison on NDC datasets for nonlinear classifiers

Datasets TWSVM LSTSVM EFSVM FTSVM EFTWSVM-
CIL

EFLSTSVM

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

Train/test (%)
Time (s)

NDC-500 100/98.00
0.0314

99.00/98.00
0.0241

98.00/98.00
0.1326

99.00/98.00
0.0370

100/98.00
0.0328

100/98.00
0.0218

NDC-1000 100/99.00
0.1375

100/99.00
0.1168

99.10/98.00
0.7052

99.00/98.00
0.1411

100/99.00
0.1406

100/99.00
0.1061

NDC-2000 100/100
0.7116

99.10/99.50
0.6102

99.05/99.50
2.1702

99.50/98.00
1.5637

100/99.00
0.8274

100/99.50
0.6699

NDC-3000 100/100
1.8373

99.50/98.00
1.4127

99.50/98.00
5.0040

100/99.00
3.1360

99.00/98.00
2.1400

99.50/99.00
1.4233

NDC-5000 100/100
7.1206

100/99.60
4.6743

99.68/99.20
16.2511

100/99.60
12.3371

100/99.20
7.7756

100/99.60
5.1280

NDC-8000 100/100
23.6220

99.80/98.50
15.8974

99.70/99.25
62.7824

99.50/99.00
37.1907

99.50/99.25
29.4945

100/99.80
16.2110

NDC-10000 100/100
49.8520

100/99.90
33.5872

99.70/99.80
114.4295

100/99.80
84.2280

100/99.90
60.6392

100/99.90
35.5281

Fig. 8  Training times of all non-
linear classifiers on three large 
scale NDC datasets
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4.5  Further Discussion

In the proposed EFLSTSVM, there are so many parameters, i.e. the number of nearest 
neighbor k, the positive penalty parameters c1, c2, c3, c4 and the kernel wide parameter � 
for nonlinear case. However, these parameters significantly impact the classification perfor-
mance of the proposed EFLSTSVM. In order to investigate the influence of these parameters 
to EFLSTSVM, we select 5 datasets from Table 4 and discuss their effects to the classifica-
tion performance to EFLSTSVM. For simplicity, we choose the penalty parameters c1 = c3 
and c2 = c4 . In addition, we should be declared that when discussing on k, other parameters 
are set to the best parameters which are selected by fivefold cross-validation. Take Sonar 
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Fig. 9  Accuracy of EFLSTSVM with respect to k on the selected datasets
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dataset for example, the best parameters of Sonar are k = 13, c1=c3= 1, c2=c4= 2−6 and 
� = 1 . Specifically, when discussing on k, k is selected from the set of {1, 3,… , 17, 19} and 
the other parameters are set to c1=c3= 1,c2=c4= 2−6, � = 1 , respectively. When discussing 
on � , � is selected from the set of {2−8, 2−7,… , 27, 28} and the other parameters are set to 
c1=c3= 1,c2=c4= 2−6, k = 13 . When discussing on ci , the parameter k is set to 13 , � is set 
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to 1 and c1 = c3,c2 = c4 are selected from the set of {2−8, 2−7,… , 27, 28} . At last, classifica-
tion accuracies of the proposed EFLSTSVM with respect to k, � and ci on adopted datasets 
are shown in Figs. 9, 10 and 11, respectively.

Further, according to (44) and (45), it can be noted that the solutions of nonlinear 
EFLSTSVM require calculating the matrix inversion of size (m + 1) × (m + 1) twice. 
Therefore, the computational complexity of the matrix inversion will be high when m 
is large enough. However, using Sherman–Morrison–Woodbury (SMW) formula [45], 
the solution of (42) and (43) can be solved using for inverses of smaller dimension than 
(m + 1) × (m + 1) . Thus, the expression (44) and (45) can be rewritten as follows.

where Ī+ ∈ Rm1×m1 , Ī− ∈ Rm2×m2 are identity matrices.
After using SMW formula, according to (49), (50), (51) and (52), the solutions of 

(42) and (43) require inversion of matrix of size m1 × m1 and m2 × m2 twice. Thus, when 
m is more than m1 and m2 , we can utilize SMW formula to reduce computational com-
plexity in our experiment.

5  Conclusions

In this paper, an entropy-based fuzzy least squares twin support vector machine 
(EFLSTSVM) is proposed by adopting the entropy to evaluate the class certainty of 
each sample and calculating the corresponding fuzzy membership based on the class 
certainty. This method pays more attention to the samples with higher class certainty to 
result in more robust decision surface, which enhances the classification accuracy and 
generalization ability. Experimental results obtained on synthetic and real-world data-
sets illustrate the effectiveness of our proposed EFLSTSVM. It should be pointed out 
that there are many parameters in our EFLSTSVM, so the parameter selection is a prac-
tical problem. Therefore, in the future work, we will propose some technique to select 
the optimal parameters and further improve the performance of the proposed EFLST-
SVM. In addition, the extension of EFLSTSVM to multi-class classification [46, 47], 

(49)
v+ = −c1

(
Y − Y ⋅ KerHT

⋅ (Ī+ + KerH ⋅ Y ⋅ KerHT )−1 ⋅ KerH ⋅ Y
)
⋅ KerGT

⋅ S− ⋅ e2

(50)v− = c3
(
Z − Z ⋅ KerGT

⋅ (Ī− + KerG ⋅ Z ⋅ KerGT )−1 ⋅ KerG ⋅ Z
)
⋅ KerHT

⋅ S+ ⋅ e1

(51)
Y = (c2I+ + c1KerH

T
⋅ S− ⋅ KerG)−1

=
1

c2

(
I+ − KerGT

⋅ S− ⋅ (
c2

c1
Ī− + KerG ⋅ KerGT

⋅ S−)
−1

⋅ KerG

)

(52)
Z = (c4I− + c3KerH

T
⋅ S+ ⋅ KerH)−1

=
1

c4

(
I− − KerHT

⋅ S+ ⋅ (
c4

c3
Ī+ + KerH ⋅ KerHT

⋅ S+)
−1

⋅ KerH

)
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multi-view classification [48, 49], semi-supervised classification [50, 51] and expand its 
practical application areas are also interesting.
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