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Abstract
This paper investigates the problem of robust exponential stabilization of uncertain discrete-
time stochastic neural networks with time-varying delay based on output feedback control.
By choosing an augmented Lyapunov–Krasovskii functional, we established the sufficient
conditions of the delay-dependent asymptotical stabilization in the mean square for a class of
discrete-time stochastic neural networks with time-varying delay. Furthermore, we obtain the
criteria of robust global exponential stabilization in the mean square for uncertain discrete-
time stochastic neural networkswith time-varying delay. Finally, we give numerical examples
to illustrate the effectiveness of the proposed results.

Keywords Discrete-time stochastic neural networks · Exponentially stabization · Output
feedback control · Lyapunov–Krasovskii functional · Time-varying delay

1 Introduction

Over the past decades, neural networks have attracted considerable attention owing to their
wide applications in various fields such as signal and image processing, pattern recogni-
tion, associative memory, parallel computing and so on [1–6]. Dynamical behaviors such as
stability, instability, periodic oscillatory and chaos of the neural networks are known to be
crucial in applications. Stability of neural networks is a prerequisite for many engineering
problems, it received much research attention in recent years and many elegant results have
been reported, for details see [5, 7, 8]. On the other hand, the stabilization of neural networks
has been attracting considerable attention and several feedback stabilizing control methods
have been proposed, for details see [9–11].

The time delays are commonly encountered in various engineering systems such as chemi-
cal processes, hydraulic and rollingmill systems, etc. The existence of time delayworsens the
dynamic performance of a system and even leads to instability of the system. It is quintessen-
tial to understand the impact of time delays on dynamic systems theoretically so that, when
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using time delays to solve real-world problems, the unfavorable consequences of them can be
circumvented. Therefore, the dynamic problem of delayed neural networks has been widely
studied recently [5–7, 12–14]. Huang et al. [7] proposed a class of asymptotically almost
periodic shunting inhibitory cellular neural networks with mixed delays and nonlinear decay
functions. Tian et al. [8] gave an improved delay-partitioning method to stability analy-
sis for neural networks with discrete and distributed time-varying delays. Park et al. [12]
given the synchronization criterion for coupled discrete-time neural networks with interval
time-varying delays. In [13], the dynamics of switched cellular neural networks with mixed
delays were investigated. Dong et al. [15] investigated the robust stability and H∞ control
for nonlinear discrete-time switched systems with interval time-varying delay.

However, it should be noted that most of the neural networks that have been studied are
continuous-time systems.However, in the applicationof neural networks, discrete-timeneural
networks have surpassed the continuous-time networks in their importance because when
implementing continuous-time networks for computer-based simulation, experimentation
or computation, the continuous-time networks are usually discretized. Besides, discrete-
time networks are more suitable to model digitally transmitted signals in a dynamical way.
These two features of the discrete-time networks have inspired researchers to study the
stability and stabilization analysis problems for discrete-time neural networks, and some
stability and stabilization criteria have been proposed in the literature, see [16–20] and the
references therein. Yu et al. [16] investigated exponential stability criteria for discrete-time
recurrent neural networks with time-varying delay. Luo et al. [18] studied the robust stability
for discrete-time stochastic neural networks systems with time-varying delays. In [20], the
stability analysis for discrete-time stochastic neural networks with time-varying delays was
given.

During the modeling process of real nervous systems, stochastic disturbances and param-
eters uncertainties are identified as the two main sources of performance degradations of
the implemented neural networks. Therefore, it is significant to solve the stability analysis
problem for stochastic neural networks, and some academic efforts devoted to this problem
have recently been published, see e.g. [21–24] and the references therein. In [21], the mean
square exponential stability of uncertain stochastic delayed neural networks was considered.
In [22], stochastic stability of uncertainHopfield neural networkswith discrete and distributed
delays was investigated. Zhou et al. [24] considered robust exponential stability of uncertain
stochastic neural networks with distributed delays and reaction–diffusions. However, these
papers mainly concern continuous-time neural networks. To the best of our knowledge, the
robust output feedback stabilization problem for uncertain stochastic discrete-time neural
networks with time-varying delays has not been adequately investigated.

In this paper, the static output feedback stabilization problem for uncertain discrete-time
stochastic neural networks with time-varying delay is studied. By constructing a new aug-
mented Lyapunov–Krasovskii functional, the delay-dependent stabilization criterion, which
guarantees the asymptotical stability of the closed-loop system of a class of discrete-time
stochastic neural networks with time-varying delays in the mean square sense, is obtained.
Then, by static output feedback control, the sufficient conditions of robust global exponential
stabilization in the mean square for uncertain discrete-time stochastic neural networks with
time-varying delay is presented. Finally, some simulation examples are given to illustrate the
effectiveness of our results.

The remainder of this paper is organized as follows. In Sect. 2, formulation and prelimi-
naries are presented. In Sect. 3, robust exponential stabilization criteria in the mean square is
derived for uncertain discrete-time stochastic neural networks with time-varying delays. In

123



Robust Output Feedback Stabilization for Uncertain… 85

Sect. 4, numerical examples are given to demonstrate our results. Finally, some conclusions
are given in Sect. 5.

Notation Throughout this paper, N+ stands for the set of nonnegative integers. Rn and
Rn×m denote the n dimensional Euclidean space and the set of all n × m real matrices
respectively. The superscript “T ” denotes the transpose and the notation X ≥ Y (respectively
X > Y ), where X and Y are symmetric matrices, means that X − Y is positive semi-definite
(respectively positive definite).I is the identitymatrixwith compatible dimension. E{·} stands
for the mathematical expectation operator with respect to the given probability measure P ,
‖ · ‖ stands for the Euclidean vector norm. The asterisk (∗) in a matrix is used to denote
term that is induced by symmetry. We use λmin(·) and λmax(·) to denote the minimum and
maximum eigenvalue of the real symmetric matrix.

2 Problem Formulation and Preliminaries

Consider the following uncertain discrete-time stochastic neural networks with time-varying
delay:

x(k + 1) � (A + �A(k))x(k) + (C + �C(k))x(k − τ (k)) + (B + �B(k)) f (x(k))

+ (D + �D(k))g(x(k − τ (k))) + Nu(k) + δ(k, x(k), x(k − τ (k)))ω(k),

y(k) � Kx(k),

x(θ ) � ϕ(θ ), θ � −τM ,−τM + 1, . . . , 0, (1)

where x(k) � [x1(k), x2(k), · · · , xn(k)]T ∈ Rn is the state vector, u(k) ∈ Rm is the
control input. f (x(k)) � [ f1(x1(k)), . . . , fn(xn(k))]T, g(x(k − τ (k))) � [g1(x1(k −
τ (k))), . . . , gn(xn(k − τ (k)))]T denote the neuron activation functions. ϕ(θ ) is an initial
condition, the positive integer τ (k) denotes the time-varying delay satisfying

0 < τm ≤ τ (k) ≤ τM , (2)

where τm and τM are known positive integers. The diagonalmatrix A � diag(a1, a2, . . . , an)
is real constant diagonal matrix, C, B, D, N and K are the suitable dimension constant
matrices. B � (bi j )n×n and D � (di j )n×n are the connection weight matrix and the delayed
connectionweightmatrix.�A(k),�B(k),�C(k),�D(k) denote the parameter uncertainties,
and assume to satisfy the following admissible condition

[�A(k),�B(k),�C(k),�D(k)] � GF(k)[Ea, Eb, Ec, Ed ], (3)

whereG, Ea, Eb, Ec, Ed are knownmatrices of appropriate dimensions, F(k) is an unknown
time-varying matrix function satisfying

FT(k)F(k) ≤ I , ∀k ∈ N+.

ω(k) is a scalar Wiener process on a probability space (	,
, P) with

E{ω(k)} � 0, E{ω2(k)} � 1, E{ω(i)ω( j)} � 0 (i 
� j).

We make following assumptions for the neuron activation functions in (1).

Assumption 1 [25] For i ∈ { 1, 2, . . . , n} , the neuron activation functions fi (·) and gi (·) are
continuous and bounded, and for any s1, s2 ∈ R(s1 
� s2) satisfy the following conditions:

l−i ≤ fi (s1) − fi (s2)

s1 − s2
≤ l+i ,
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v−
i ≤ gi (s1) − gi (s2)

s1 − s2
≤ v+i ,

fi (0) � gi (0) � 0, (4)

where l−i , l+i , v−
i , v+i are known constants.

Remark 1 The Assumption 1 on the activation functions has been made in many other papers
dealing with the stability problem for neural networks; see, for example, [6, 13, 25, 26].
We note that this assumption is weak in comparison with those made under the Lipschitz
condition [27–29]. In Assumption 1, the constants l−i , l+i , v−

i , v+i are allowed to be positive,
negative or zero. Hence, the resulting activation functions could be nonmonotonic, and are
more general than the usual sigmoid functions and the recently commonly used Lipschitz
conditions.

Assumption 2 δ : Z × Rn × Rn → Rn is the continuous function, and satisfies

δT (k, x(k), x(k − τ (k)))δ(k, x(k), x(k − τ (k))) ≤ ρ1x
T (k)x(k) + ρ2x

T (k − τ (k))x(k − τ (k)),
(5)

where ρ1 > 0 and ρ2 > 0 are known constant scalars.

For obtaining the main results of this paper, the following lemma will be useful for the
proofs.

Lemma 1 [30] For any constant matrix M ∈ Rn×n, M � MT ≥ 0, integers r2 ≥ r1, vector
function ω : { r1, r1 + 1, . . . , r2} → Rn such that the sums in the following are well defined,
then

−(r2 − r1 + 1)
r2∑

i�r1

ωT (i)Mω(i) ≤ −
⎛

⎝
r2∑

i�r1

ω(i)

⎞

⎠
T

M

⎛

⎝
r2∑

i�r1

ω(i)

⎞

⎠.

Definition 1 [31] The system (1) is said to be robustly exponentially stable in the mean
square if there exist constants α > 0 and μ ∈ (0, 1), such that every solution of the system
(1) satisfies that

E{‖x(k)‖2} ≤ αμk max−τM≤i≤0
E{‖x(i)‖2} , ∀k ≥ 0.

for all parameter uncertainties satisfying the admissible condition.

For presentation convenience, in the following, we denote

A(k) � A + �A(k), B(k) � B + �B(k), C(k) � C + �C(k), D(k) � D + �D(k),


1 � diag(l+1 l
−
1 , l+2 l

−
2 , . . . , l+n l

−
n ), 
2 � diag

(
l+1 + l−1

2
,
l+2 + l−2

2
, . . . ,

l+n + l−n
2

)
,

	1 � diag(v+1v−
1 , v+2v−

2 , . . . , v+nv−
n ), 	2 � diag

(
v+1 + v−

1

2
,
v+2 + v−

2

2
, . . . ,

v+n + v−
n

2

)
.

(6)
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3 Main Results

In this section, we aim to provide new delay dependent sufficient conditions which ensure
the exponential stabilization in the mean square of the neural networks (1).

Firstly, we consider following neural networks with time-varying delay

x(k + 1) � Ax(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k))) + Nu(k)

+ δ(k, x(k), x(k − τ (k)))ω(k),

y(k) � Kx(k),

x(θ ) � ϕ(θ ), θ � −τM ,−τM + 1, . . . , 0. (7)

For system (7), we consider the following static output feedback controller

u(k) � My(k). (8)

Under the controller (8), the corresponding closed-loop system for (7) is given by

x(k + 1) � Āx(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k))) + δ(k, x(k), x(k − τ (k)))ω(k),
(9)

where Ā � A + NMK .

Theorem 1 Suppose that Assumptions 1 and 2 hold. For given scalars τm and τM, satisfying
0 < τm ≤ τM, the discrete-time system (9) is asymptotical stability in the mean square, if
there exist matrices ψ � diag(s1, s2, . . . , sn) > 0,
 � diag(h1, h2, . . . , hn) > 0, positive

definite matrices P, Z , Q1, Q2, R, T �
[
T11 T12
∗ T22

]
, and scalars ε > 0, λ∗ > 0 such that

the following matrix inequalities hold:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 Z 0 0 �15 0 ψ
2 0 ĀT P
∗ �22 0 0 0 0 0 0 0
∗ ∗ �33 0 CTP −T12 0 
	2 CT P
∗ ∗ ∗ −Q2 − R 0 0 0 0 0
∗ ∗ ∗ ∗ �55 0 PB PD 0
∗ ∗ ∗ ∗ ∗ −T22 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ψ 0 BTP
∗ ∗ ∗ ∗ ∗ ∗ ∗ −
 DT P
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (10)

P < λ∗ I , (11)

where

�11 � −P + Q1 + Q2 + (τM − τm + 1)T11 + R + λ∗ρ1 I − Z − ψ
1,

�15 � (τM − τm + 1)T12 + ( Ā − I )T P,

�22 � −Q1 − Z , �33 � λ∗ρ2 I − T11 − 
	1,

�55 � (τM − τm + 1)T22 + τ 2m Z − 2P.

Proof Choose the following Lyapunov–Krasovskii functional candidate:

V (k) �
4∑

i�1

Vi (k), (12)
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where

V1(k) � xT (k)Px(k),

V2(k) �
k−1∑

i�k−τm

xT (i)Q1x(i) +
k−1∑

i�k−τM

xT (i)Q2x(i) +
k−1∑

i�k−τ (k)

λT (i)Tλ(i),

V3(k) �
−τm∑

i�−τM+1

k−1∑

j�k+i

λT ( j)Tλ( j),

V4(k) � τm

−1∑

i�−τm

k−1∑

j�k+i

ηT ( j)Zη( j) +
k−1∑

i�k−τM

xT (i)Rx(i),

λ(k) � [
xT (k) ηT (k)

]T
, η(k) � x(k + 1) − x(k). (13)

Define �V (k) � V (k + 1) − V (k), then along the solution of (9) we have

E{�V1(k)} � E{V1(k + 1) − V1(k)}
� E{[ Āx(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k)))]T P[ Āx(k) + Cx(k − τ (k)) + B f (x(k))

+ Dg(x(k − τ (k)))] + (δ(k, x(k), x(k − τ (k)))ω(k))T P(δ(k, x(k), x(k − τ (k)))ω(k)) − xT (k)Px(k)}
≤ E{[ Āx(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k)))]T P[ Āx(k) + Cx(k − τ (k)) + B f (x(k))

+ Dg(x(k − τ (k)))] + λ∗ρ1x
T (k)x(k) + λ∗ρ2x

T (k − τ (k))x(k − τ (k)) − xT (k)Px(k)}, (14)

E{�V2(k)} � E

⎧
⎨

⎩

k∑

i�k−τm+1

xT (i)Q1x(i) −
k−1∑

i�k−τm

xT (i)Q1x(i)

+
k∑

i�k−τM+1

xT (i)Q2x(i) −
k−1∑

i�k−τM

xT (i)Q2x(i) +
k∑

i�k−τ (k+1)+1

λT (i)Tλ(i) −
k−1∑

i�k−τ (k)

λT (i)Tλ(i)

⎫
⎬

⎭

� E

⎧
⎨

⎩xT (k)(Q1 + Q2)x(k) + λT (k)Tλ(k) − xT (k − τm )Q1x(k − τm )

−xT (k − τM )Q2x(k − τM ) − λT (k − τ (k))Tλ(k − τ (k)) +
k−τ (k)∑

j�k+1−τ (k+1)

λT ( j)Tλ( j)

⎫
⎬

⎭

≤ E

⎧
⎨

⎩xT (k)(Q1 + Q2)x(k) + λT (k)Tλ(k) − xT (k − τm )Q1x(k − τm )

− xT (k − τM )Q2x(k − τM ) − λT (k − τ (k))Tλ(k − τ (k)) +
k−τm∑

j�k+1−τM

λT ( j)Tλ( j)

⎫
⎬

⎭

≤ E

⎧
⎨

⎩xT (k)(Q1 + Q2)x(k) + xT (k)T11x(k) + 2xT (k)T12η(k)

+ ηT (k)T22η(k) − xT (k − τm )Q1x(k − τm ) − xT (k − τM )Q2x(k − τM )

− xT (k − τ (k))T11x(k − τ (k)) − 2xT (k − τ (k))T12η(k − τ (k))

− ηT (k − τ (k))T22η(k − τ (k)) +
k−τm∑

j�k+1−τM

λT ( j)Tλ( j)

⎫
⎬

⎭, (15)

E{�V3(k)} � E{V3(k + 1) − V3(k)} � E

⎧
⎨

⎩

−τm∑

i�−τM+1

(λT (k)Tλ(k) − λT (k + i)Tλ(k + i))

⎫
⎬

⎭
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� E

⎧
⎨

⎩(τM − τm )λ
T (k)Tλ(k) −

k−τm∑

i�k−τM+1

λT ( j)Tλ( j)

⎫
⎬

⎭

� E

⎧
⎨

⎩(τM − τm )[x
T (k)T11x(k) + 2xT (k)T12η(k) + ηT (k)T22η(k)] −

k−τm∑

i�k−τM+1

λT ( j)Tλ( j)

⎫
⎬

⎭,

(16)
E{�V4(k)} � E{V4(k + 1) − V4(k)}

� E

⎧
⎨

⎩τm

−1∑

i�−τm

k∑

j�k+1+i

ηT ( j)Zη( j) − τm

−1∑

i�−τm

k−1∑

j�k+i

ηT ( j)Zη( j)

+
k∑

i�k−τM+1

xT (i)Rx(i) −
k−1∑

i�k−τM

xT (i)Rx(i)

⎫
⎬

⎭

� E

⎧
⎨

⎩τm

−1∑

i�−τm

[ηT (k)Zη(k) − ηT (k + i)Zη(k + i)] + xT (k)Rx(k)

− xT (k − τM )Rx(k − τM )

⎫
⎬

⎭

≤ E

⎧
⎨

⎩τ 2mηT (k)Zη(k) − τm

k−1∑

i�k−τm

(ηT ( j)Zη( j))

+xT (k)Rx(k) − xT (k − τM )Rx(k − τM )

⎫
⎬

⎭. (17)

From Lemma 1, it’s easy to find

−τm

k−1∑

j�k−τm

ηT ( j)Zη( j) ≤ −
⎛

⎝
k−1∑

j�k−τm

ηT ( j)

⎞

⎠Z

⎛

⎝
k−1∑

j�k−τm

η( j)

⎞

⎠

≤ −(x(k) − x(k − τm))
T Z (x(k) − x(k − τm)).

So, (17) can replaced that

E{�V4(k)} ≤ E

⎧
⎨

⎩τ 2mηT (k)Zη(k) − τm

k−1∑

i�k−τm

(ηT ( j)Zη( j)) + xT (k)Rx(k) − xT (k − τM )Rx(k − τM )

⎫
⎬

⎭

≤ E
{
τ 2mηT (k)Zη(k) + xT (k)Rx(k) − xT (k − τM )Rx(k − τM )

−(x(k) − x(k − τm ))
T Z (x(k) − x(k − τm ))

}
. (18)

It is easy to see

Eη(k) � E(x(k + 1) − x(k)) � E(( Ā − I )x(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k)))).

So, for any matrices P, we have

2E
[
ηT (k)P

(
( Ā − I )x(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k))) − η(k)

)] � 0

(19)
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From (14)–(19), it follows that

E{�V (k)} ≤ E
{
xT (k)[−P + Q1 + Q2 + (τM − τm + 1)T11 + λ∗ρ1 I − Z + R]x(k)

+ 2xT (k)Zx(k − τm ) − xT (k − τm )(Q1 + Z )x(k − τm )

− xT (k − τM )(Q2 + R)x(k − τM ) + xT (k − τ (k))(λ∗ρ2 I − T11)x(k − τ (k))

− 2xT (k − τ (k))T12η(k − τ (k)) − ηT (k − τ (k))T22η(k − τ (k))

+ 2xT (k)[(τM − τm + 1)T12 + ( Ā − I )T P]η(k)

+ 2xT (k − τ (k))(CT P)η(k) + 2ηT (k)(PB) f (x(k)) + 2ηT (k)(PD)g(x(k − τ (k)))

+ ηT (k)[(τM − τm + 1)T22 + τ 2m Z − 2P]η(k) + ξ T (k)Υ T PΥ ξ (k)
}
, (20)

where

Υ � [
Ā 0 C 0 0 0 B D

]
,

ξ T (k) � [xT (k), xT (k − τm), x
T (k − τ (k)), xT (k − τM ), ηT (k), ηT (k − τ (k)), f T (x(k)),

gT (x(k − τ (k)))].

In addition, from Assumption 1, we have

( fi (xi (k)) − l+i xi (k))
T ( fi (xi (k)) − l−i xi (k)) ≤ 0, i � 1, 2, . . . , n,

(gi (xi (k − τ (k))) − v+i xi (k − τ (k)))T (gi (xi (k − τ (k)) − v−
i xi (k − τ (k))) ≤ 0, i � 1, 2, . . . , n.

So, it follows that for any matrices ψ � diag(s1, s2, . . . , sn) > 0, 
 �
diag(h1, h2, . . . , hn) > 0,

0 ≤ −
n∑

i�1

si ( fi (xi (k)) − l+i xi (k))
T ( fi (xi (k)) − l−i xi (k)) −

n∑

i�1

hi (gi (xi (k − τ (k)))

− v+i xi (k − τ (k)))T (gi (xi (k − τ (k)) − v−
i xi (k − τ (k)))

� −xT (k)ψ
1x(k) + 2xT (k)ψ
2 f (x(k)) − f T (x(k))ψ f (x(k))

− xT (k − τ (k))
	1x(k − τ (k)) + 2xT (k − τ (k))
	2g(k − τ (k))

− gT (k − τ (k))
g(k − τ (k)). (21)

Combining (20) and (21), we can get

E{�V (k)} ≤ E
{
xT (k)[−P + Q1 + Q2 + (τM − τm + 1)T11 + R + λ∗ρ1 I − Z ]x(k)

+ 2xT (k)Zx(k − τm ) − xT (k − τm )(Q1 + Z )x(k − τm )

− xT (k − τM )(Q2 + R)x(k − τM ) + xT (k − τ (k))(λ∗ρ2 I − T11)x(k − τ (k))

− 2xT (k − τ (k))T12η(k − τ (k)) − ηT (k − τ (k))T22η(k − τ (k))

+ 2xT (k)[(τM − τm + 1)T12 + (A − I + NMK )T P]η(k)

+ 2xT (k − τ (k))(PC)T η(k) + 2ηT (k)(PB) f (x(k)) + 2ηT (k)(PD)g(x(k − τ (k)))

− xT (k)ψ
1x(k) + 2xT (k)ψ
2 f (x(k)) − f T (x(k))ψ f (x(k))

− xT (k − τ (k))
	1x(k − τ (k)) + 2xT (k − τ (k))
	2g(x(k − τ (k)))

− gT (x(k − τ (k)))
g(x(k − τ (k))) + ηT (k)[(τM − τm + 1)T22 + τ 2m Z − 2P]η(k)

+ ξ T (k)Υ T PΥ ξ (k)
}

� E{ξ T (k)[Ξ1 + Υ T PΥ ]ξ (k)}, (22)
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where

Ξ1 �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 Z 0 0 �15 0 ψ
2 0
∗ �22 0 0 0 0 0 0
∗ ∗ �33 0 CT P −T12 0 
	2

∗ ∗ ∗ −Q2 − R 0 0 0 0
∗ ∗ ∗ ∗ �55 0 PB PD
∗ ∗ ∗ ∗ ∗ −T22 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ψ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −


⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�11 � −P + Q1 + Q2 + (τM − τm + 1)T11 + R + λ∗ρ1 I − Z − ψ
1,

�15 � (τM − τm + 1)T12 + ( Ā − I )T P, �22 � −Q1 − Z ,

�33 � λ∗ρ2 I − T11 − 
	1, �55 � (τM − τm + 1)T22 + τ 2m Z − 2P.

Applying Schur complement to (10) yields,

Ξ1 + Υ T PΥ < 0. (23)

Therefore, there exists a sufficient small scalar c > 0, such that,

E{�V (k)} ≤ −cE‖x(k)‖2 < 0. (24)

This means that the discrete-time system (9) is asymptotically stable. This completes the
proof of Theorem 1.

Now, we consider the uncertain discrete-time stochastic neural networks (1) under the
control (8). The closed-loop system for (1) with (8) is rewritten to

x(k + 1) � (A + NMK )x(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k))) + Gm(k)

+ δ(k, x(k), x(k − τ (k)))ω(k),

m(k) � F(k)(Eax(k) + Ecx(k − τ (k)) + Eb f (x(k)) + Edg(x(k − τ (k)))). (25)

Theorem 2 Suppose that Assumptions 1 and 2 hold. For given scalars τm and τM satisfying
(2), the closed-loop system (25) is robustly globally exponentially stable in themean square, if
there exist matrices ψ � diag(s1, s2, . . . , sn) > 0, 
 � diag(h1, h2, . . . , hn) > 0, positive

definite matrices P, Z , Q1, Q2, R,T �
[
T11 T12
∗ T22

]
, and scalars ε > 0 and λ∗ > 0 such

that the following matrix inequalities hold:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�11 Z
�

�13 0
�

�15 0
�

�17
�

�18 0
�

�110

∗ �

�22 0 0 0 0 0 0 0 0

∗ ∗ �

�33 0 CT P −T12 εET
c Eb 
	2 + εET

c Ed 0 CT P
∗ ∗ ∗ −Q2 − R 0 0 0 0 0 0

∗ ∗ ∗ ∗ �

�55 0 PB PD PG 0
∗ ∗ ∗ ∗ ∗ −T22 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ �

�77 εET
b Ed 0 BT P

∗ ∗ ∗ ∗ ∗ ∗ ∗ �

�88 0 DT P
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε I GT P
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (26)

P < λ∗ I , (27)
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where
�

�11 � −P + Q1 + Q2 + (τM − τm + 1)T11 + R + εET
a Ea + λ∗ρ1 I − Z − ψ
1,

�

�13 � εET
a Ec,

�

�15 � (τM − τm + 1)T12 + (A − I )T P + (NMK )T P,

�

�17 � ψ
2 + εET
a Eb,

�

�18 � εET
a Ed ,

�

�110 � AT P + (NMK )T P,

�

�22 � −Q1 − Z ,
�

�33 � λ∗ρ2 I − T11 − 
	1 + εET
c Ec,

�

�55 � (τM − τm + 1)T22 + τ 2m Z − 2P,

�

�77 � −ψ + εET
b Eb,

�

�88 � −
 + εET
d Ed . (28)

Proof From (25), we have

2E{ηT (k)P[(A + NMK − I )x(k) + Cx(k − τ (k)) + B f (x(k)) + Dg(x(k − τ (k))) + Gm(k) − η(k)]} � 0,

where η(k) � x(k + 1) − x(k).

Choose the Lyapunov–Krasovskii functional candidate (12). Calculating the difference of
V (k) along the system (25), and taking the mathematical expectation, we have

E{�V (k)} ≤ E
{
xT (k)[−P + Q1 + Q2 + (τM − τm + 1)T11 + R + λ∗ρ1 I − Z ]x(k)

+ 2xT (k)Zx(k − τm ) − xT (k − τm )(Q1 + Z )x(k − τm )

− xT (k − τM )(Q2 + R)x(k − τM ) + xT (k − τ (k))(λ∗ρ2 I − T11)x(k − τ (k))

− 2xT (k − τ (k))T12η(k − τ (k)) − ηT (k − τ (k))T22η(k − τ (k))

+ 2xT (k)[(τM − τm + 1)T12 + (A − I + NMK )T P]η(k)

+ 2ηT (k)PCx(k − τ (k)) + 2ηT (k)PB f (x(k)) + 2ηT (k)PDg(x(k − τ (k)))

+ 2ηT (k)PGm(k) − xT (k)ψ
1x(k) + 2xT (k)ψ
2 f (x(k)) − f T (x(k))ψ f (x(k))

− xT (k − τ (k))
	1x(k − τ (k)) + 2xT (k − τ (k))
	2gx(k − τ (k))

− gT x(k − τ (k))
gx(k − τ (k)) + ηT (k)[(τM − τm + 1)T22 + τ2m Z − 2P]η(k)

+ ξ̄T (k)Ῡ T PῩ ξ̄ (k)
}

� E{ξ̄T (k)(Ξ̃1 + Ῡ T PῩ )ξ̄ (k)}, (29)

where

Ῡ � [
A + NMK 0 C 0 0 0 B D G

]
,

ξ̄ T (k) � [xT (k), xT (k − τm), x
T (k − τ (k)), xT (k − τM), ηT(k), ηT(k − τ (k)), f T (x(k))

gT (x(k − τ (k))),m(k)],

Ξ̃1 �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 Z 0 0 �15 0 ψ
2 0 0
∗ �22 0 0 0 0 0 0 0
∗ ∗ �33 0 CT P −T12 0 
	2 0
∗ ∗ ∗ −Q2 − R 0 0 0 0 0
∗ ∗ ∗ ∗ �55 0 PB PD PG
∗ ∗ ∗ ∗ ∗ −T22 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ψ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −
 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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�11 � −P + Q1 + Q2 + (τM − τm + 1)T11 + R + λ∗ρ1 I − Z − ψ
1,

�15 � (τM − τm + 1)T12 + ( Ā − I )T P, �22 � −Q1 − Z ,

�33 � λ∗ρ2 I − T11 − 
	1, �55 � (τM − τm + 1)T22 + τ 2m Z − 2P.

From (3) and (25), it follows that

εxT (k)(ET
a Ea)x(k) + 2εxT (k)(ET

a Ec)x(k − τ (k))

+ 2εxT (k)(ET
a Eb) f (x(k)) + 2εxT (k)(ET

a Ed )g(x(k − τ (k)))

+ εxT (k − τ (k))(ET
c Ec)x(k − τ (k)) + 2εxT (k − τ (k))(ET

c Eb) f (x(k))

+ 2εxT (k − τ (k))(ET
c Ed )g(x(k − τ (k))) + ε f T (x(k))(ET

b Eb) f (x(k))

+ 2ε f T (x(k))(ET
b Ed )g(x(k − τ (k)))

+ εgT (x(k − τ (k)))(ET
d Ed )g(x(k − τ (k))) − εmT (k)m(k) ≥ 0 (30)

From (29) and (30), we have

E{�V (k)} ≤ E
{
ξ̄ T (k)Ξ̃1(k)ξ̄ (k) + ξ̄ T (k)Ῡ T PῩ ξ̄ (k)

+ εxT (k)(ET
a Ea)x(k) + 2εxT (k)(ET

a Ec)x(k − τ (k))

+ 2εxT (k)(ET
a Eb) f (x(k)) + 2εxT (k)(ET

a Ed )g(x(k − τ (k)))

+ εxT (k − τ (k))(ET
c Ec)x(k − τ (k)) + 2εxT (k − τ (k))(ET

c Eb) f (x(k))

+ 2εxT (k − τ (k))(ET
c Ed )g(x(k − τ (k))) + ε f T (x(k))(ET

b Eb) f (x(k))

+ 2ε f T (x(k))(ET
b Ed )g(x(k − τ (k)))

+ εgT (x(k − τ (k)))(ET
d Ed )g(x(k − τ (k))) − εmT (k)m(k)

}

� E{ξ̄ T (k)[�

Ξ1 + Ῡ T PῩ ]ξ̄ (k)}, (31)

where

�

Ξ1 �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�11 Z εET
a Ec 0

�

�15 0
�

�17 εET
a Ed 0

∗ −Q1 − Z 0 0 0 0 0 0 0

∗ ∗ �

�33 0 CT P −T12 0 
	2+εET
c Ed 0

∗ ∗ ∗ −Q2 − R 0 0 0 0 0

∗ ∗ ∗ ∗ �

�55 0 PB PD PG
∗ ∗ ∗ ∗ ∗ −T22 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ �

�77 εET
b Ed 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −
 + εET
d Ed 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�

�11 � −P + Q1 + Q2 + (τM − τm + 1)T11 + R + εET
a Ea + λ∗ρ1 I − Z − ψ
1,

�

�15 � (τM − τm + 1)T12 + (A − I + NMK )T P,
�

�17 � ψ
2 + εET
a Eb,

�

�22 � −Q1 − Z ,
�

�33 � λ∗ρ2 I − T11 − 
	1 + εET
c Ec,

�

�55 � (τM − τm + 1)T22 + τ 2m Z − 2P,
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�

�77 � −ψ + εET
b Eb,

�

�88 � −
 + εET
d Ed .

Using Schur complement and (26), we have
�

Ξ1 + Ῡ T PῩ < 0.

So, there exists a sufficient small scalar c > 0 such that,

E{�V (k)} ≤ −cE‖x(k)‖2 < 0,

thismeans that system (25) is asymptotically stable for any time-varying delay τ (k) satisfying
(2).

Now, we prove the global exponential stability of system (25), it is easy to get that

V (k) ≤ λmax(P)‖x(k)‖2 + γ1

k−1∑

i�k−τM

‖x(i)‖2 + γ2

k−1∑

i�k−τM

‖x(i + 1)‖2, (32)

where

γ1 � λmax(Q1 + Q2 + R) + (τM − τm + 1)(λmax(T11) + λmax(T12) + 2λmax(T22)) + 2τ2mλmax(Z ),

γ2 � (τM − τm + 1)((λmax(T11) + λmax(T12) + 2λmax(T22)) + 2τ2mλmax(Z ).

For any μ > 1, it seen that

E{μ j+1V ( j + 1) − μ j V ( j)} � E{μ j+1�V ( j) + μ j (μ − 1)V ( j)}
≤ E

{
[−cμ + (μ − 1)λmaxP]μ

j‖x(i)‖2

+ (μ − 1)

⎡

⎣γ1μ
j

j−1∑

i� j−τM

‖x(i)‖2 + γ2μ
j

j−1∑

i� j−τM

‖x(i + 1)‖2
⎤

⎦

⎫
⎬

⎭. (33)

Now, we sum up both side of (33) from 0 to k − 1 and obtain

E{μkV (k) − V (0)} ≤ E

⎧
⎨

⎩[−cμ + (μ − 1)λmaxP]
k−1∑

j�0

μ j‖x( j)‖2

+ (μ − 1)

⎛

⎝γ1

k−1∑

j�0

j−1∑

i� j−τM

μ j‖x( j)‖2 + γ2

k−1∑

j�0

j−1∑

i� j−τM

μ j‖x( j + 1)‖2
⎞

⎠

⎫
⎬

⎭. (34)

According to the method in [16], it is easy to have

k−1∑

j�0

j−1∑

i� j−τM

μ j‖x( j)‖2 ≤
⎛

⎝
−1∑

i�−τM

i+τM∑

j�0

+
k−1+τM∑

i�0

i+τM∑

j�i+1

+
k−1∑

i�k−τM

k−1∑

j�i+1

⎞

⎠μ j‖x( j)‖2

≤ τ 2MμτM max−τM≤s≤0
‖x(s)‖2 + τMμτM

k∑

i�0

μi‖x(i)‖2,

k−1∑

j�0

j−1∑

i� j−τM

μ j‖x( j + 1)‖2 ≤ τ 2MμτM max−τM≤s≤0
‖x(s)‖2 + τMμτM

k∑

i�1

μi‖x(i)‖2.

Meanwhile, from (32), we can easily get

V (0) ≤ λmax(P)‖x(0)‖2 +
⎡

⎣γ1

−1∑

i�−τM

‖x(i)‖2 + γ2

−1∑

i�−τM

‖x(i + 1)‖2
⎤

⎦
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≤ [λmax(P) + τM (γ1 + γ2)] sup
−τM≤s≤0

‖x(s)‖2. (35)

Thus from (32)–(35), it can be obtained that

E{μkV (k)} ≤ E

{
ϑ0(μ) max−τM≤s≤0

‖x(s)‖2 + ϑ1(μ)
k∑

i�0

μi‖x(i)‖2
}

,

where

ϑ0(μ) � λmax(P) + (μ − 1)τ 2MμτM (γ1 + γ2) + τM (γ1 + γ2),

ϑ1(μ) � (μ − 1)λmax(P) − cμ + (μ − 1)τMμτM (γ1 + γ2).

Because ϑ1(1) � −c < 0, there must be a positive scalar μ0 > 1, such that ϑ1(μ0) < 0,
so

E{V (k)} ≤ E

{
ϑ0(μ0)

(
1

μ0

)k

max−τM≤s≤0
‖x(s)‖2

}
.

From definition of V (k), we also get that

V (k) ≥ λmin(P)‖x(k)‖2.
So,

E{‖x(k)‖2} ≤ ϑ0(μ0)

λmin(P)

(
1

μ0

)k

max−τM≤s≤0
E‖x(s)‖2.

Then closed-loop system (25) is globally exponentially stable. This completes the proof
of Theorem 2.

Remark 2 According to the proof of Theorem 2 and Definition 1, we have

α � ϑ0(μ0)

λmin(P)

� 1 +
(μ − 1)τ 2MμτM (γ1 + γ2) + τM (γ1 + γ2)

λmin(P)

> 1 +
τM (γ1 + γ2)

λmin(P)

Remark 3 The steps of calculating the gain matrixM of the static output feedback controller
are as follows:

Step 1LetΠ � (NMK )T P.UsingMATLABLMIToolbox to solve (26) and (27), we can
obtain matrices Π, ψ � diag(s1, s2, . . . , sn), 
 � diag(h1, h2, . . . , hn), positive definite

matrices P, Z , Q1, Q2, R,T �
[
T11 T12
∗ T22

]
, and positive scalars ε and λ∗.

Step 2 From P and Π , we calculate M � N−1P−1ΠT K−1.

When τ (k) � d, where d is a constant, the closed-loop system (25) can be written as:

x(k + 1) � (A + NMC)x(k) + Cx(k − d) + B f (x(k)) + Dg(x(k − d)) + Gm(k)

+ δ(k, x(k), x(k − d))ω(k),

m(k) � F(k)(Eax(k) + Ecx(k − d) + Eb f (x(k)) + Edg(x(k − d))). (36)

The following corollary can be obtained.
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Corollary 1 Suppose that Assumptions 1 and 2 hold. The discrete-time system (36) is globally
exponentially stable in themean square, if there existmatrices Z > 0, Q > 0, R > 0, P > 0,
ψ � diag(s1, s2, . . . , sn) > 0, 
 � diag(h1, h2, . . . , hn) > 0, and scalars ε > 0 and
λ∗ > 0 such that the following matrix inequalities hold:

Ξ̃ �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃11 �̃12 �̃13 �̃14 �̃15 0 �̃17

∗ �̃22 CT P εET
c Eb 
	2 + εET

b Ed 0 CT P
∗ ∗ �̃33 PB PD PG 0
∗ ∗ ∗ −ψ + εET

b Eb εET
b Ed 0 BT P

∗ ∗ ∗ ∗ −
 + εET
d Ed 0 DT P

∗ ∗ ∗ ∗ ∗ −ε I GT P
∗ ∗ ∗ ∗ ∗ ∗ −P

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (37)

P < λ∗ I , (38)

where

�̃11 � Q + R + λ∗ρ1 I − Z − ψ
1 − P + εET
a Ea, �̃12 � Z + εET

a Ec,

�̃13 � (A − I )T P + (NMK )T P, �̃14 � ψ
2 + εET
a Eb,

�̃15 � εET
a Ed , �̃17 � AT P + (NMK )T P

�̃33 � d2Z − 2P, �̃22 � −Q − Z + λ∗ρ2 I − R − 
	1 + εET
c Ec. (39)

Proof Choose the following Lyapunov–Krasovskii functional candidate:

V (k) �
3∑

i�1

Vi (k),

where

V1(k) � xT (k)Px(k),

V2(k) �
k−1∑

i�k−d

xT (i)Qx(i),

V3(k) � d
−1∑

i�−d

k−1∑

j�k+i

ηT ( j)Zη( j) +
k−1∑

i�k−d

xT (i)Rx(i),

η(k) � x(k + 1) − x(k). (40)

Calculating the difference of V (k) along the system (36), and taking the mathematical
expectation, we have

E{�V (k)} ≤ E
{
xT (k)[−P + Q + R + λ∗ρ1 I − Z ]x(k) + 2xT (k)Zx(k − d)

− xT (k − d)(Q + Z + R − λ∗ρ2 I + 
	1)x(k − d)

+ 2xT (k)[(A − I + NMK )T P]η(k) + 2ηT (k)PCx(k − d)

+ 2ηT (k)PB f (x(k)) + 2ηT (k)PDg(x(k − d)) + 2ηT (k)PGm(k)

− xT (k)ψ
1x(k) + 2xT (k)ψ
2 f (x(k)) − f T (x(k))ψ f (x(k))

+ 2xT (k − d)
	2g(k − d) − gT (k − d)
g(k − d)

+ ηT (k)[d2Z − 2P]η(k) + ξ̂ T (k)ζ̂ T (k)P ζ̂ (k))ξ̂ (k)
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+ εxT (k)(ET
a Ea)x(k) + 2εxT (k)(ET

a Ec)x(k − d)

+ 2εxT (k)(ET
a Eb) f (x(k)) + 2εxT (k)(ET

a Ed )g(x(k − d))

+ εxT (k − d)(ET
c Ec)x(k − d) + 2εxT (k − d)(ET

c Eb) f (x(k))

+ 2εxT (k − d)(ET
c Ed )g(x(k − d)) + ε f T (x(k))(ET

b Eb) f (x(k))

+ 2ε f T (x(k))(ET
b Ed )g(x(k − d))

+ εgT (x(k − d))(ET
d Ed )g(x(k − d)) − εmT (k)m(k)

}

� E{ξ̂ T (k)Ξ̃1(k)ξ̂ (k)} + ξ̂ T (k)ζ̂ T P ζ̂ ξ̂ (k)},
where

ζ̂ � [
Ā C 0 B D G

]
,

ξ̂ T (k) � [xT (k), xT (k − d), ηT (k), f T (x(k)), gT (x(k − d)),m(k)],

Ξ̂ �

⎡

⎢⎢⎢⎢⎢⎢⎣

�̃11 �̃12 �̃13 �̃14 �̃15 0
∗ �̃22 CT P εET

c Eb 
	2 + εET
b Ed 0

∗ ∗ �̃33 PB PD PG
∗ ∗ ∗ −ψ + εET

b Eb εET
b Ed 0

∗ ∗ ∗ ∗ −
 + εET
d Ed 0

∗ ∗ ∗ ∗ ∗ −ε I

⎤

⎥⎥⎥⎥⎥⎥⎦
.

From (36) and Schur complement, it follows that

E{�(V (x(k))} ≤ 0.

The rest proofs are omitted as they are similar to the proof of Theorem 2. �.

4 Numerical Examples

In this section, numerical examples are given to demonstrate the high performance of the
proposed approach.

Example 1 Consider the uncertain discrete-time neural networks system (1) with the follow-
ing parameters:

A �
[−1.15 0

0 −0.3

]
, B �

[−0.04 0.02
0.03 −0.1

]
, C �

[
0.05 0.36

−0.06 0.04

]
, K �

[
0.2 0
0 0.3

]
,

D �
[
0.16 −0.19
0.04 0.01

]
, G �

[
0.02 0
0 −0.01

]
, N �

[
1.42 −0.06
0 0.13

]
, I �

[
1 0
0 1

]
,

Ea �
[
0.01 0
−0.1 −0.12

]
, Eb �

[
1.1 0.1
0 0.03

]
, Ed �

[
0.13 0
0.01 0.2

]
, Ec �

[−0.23 0.36
0.15 0.01

]
,

τm � 2, τM � 4, ρ1 � 0.01, ρ2 � 0.02,

f1(s) � tanh(0.6s), f2(s) � tanh(0.4s), g1(s) � tanh(0.2s), g2(s) � tanh(0.6s).

We have l−1 � 0, l+1 � 0.6, l−2 � 0, l+2 � 0.4, v−
1 � 0, v+1 � 0.2, v−

2 � 0, v+2 � 0.6.
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Fig. 1 State trajectories of the closed-loop system in Example 1

Solving (26) and (27) gives feasible solutions as follows:

Q1 �
[

5.9123 −0.4258
−0.4258 7.9406

]
, Q2 �

[
4.7924 −0.3546

−0.3546 6.6075

]
, Z �

[
1.6414 −0.0362

−0.0362 6.7179

]
,

P �
[
70.3238 4.0815
4.0815 150.2842

]
, ψ �

[
31.1982 0

0 32.5105

]
, 
 �

[
48.6095 0

0 32.1939

]
,

T �

⎡

⎢⎢⎣

9.5810 1.0103 5.0096 −0.6113
1.0103 32.3379 −0.6113 22.3382
5.0096 −0.6113 13.4163 −1.2429

−0.6113 22.3382 −1.2429 58.9653

⎤

⎥⎥⎦, R �
[

4.7924 −0.3546
−0.3546 6.6075

]

Π �
[
105.0428 2.5596
2.5596 97.9336

]
, ε � 6.1659, λ∗ � 163.5213.

The output feedback controller gain matrix is

M �
[

5.2260 0.7027
−0.9066 16.7101

]
.

Therefore, it follows from Theorem 2 the closed-loop system (25) is robustly globally
exponentially stable in the mean square. The state trajectory of closed-loop system is shown
in Fig. 1.

Example 2 Consider the uncertain discrete-time system (1) with the following parameters:
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A �
⎡

⎣
0.4 0 0
0 0.2 0
0 0 0.45

⎤

⎦, B �
⎡

⎣
0.04 0.25 0
0 −0.015 −0.02
0.1 0.02 0.01

⎤

⎦, C �
⎡

⎣
0.02 0 0
0 0.03 0.1
0 0.055 −0.1

⎤

⎦

N �
⎡

⎣
0.07 0 0
0 0.08 0
0 0 0.02

⎤

⎦, D �
⎡

⎣
0 0.2 0.01
0.2 0.01 0.1
0.2 −0.4 −0.03

⎤

⎦, Ea �
⎡

⎣
0.01 0 0
0 0.01 0
0 0 1

⎤

⎦,

Eb �
⎡

⎣
0.01 0.03 0
0.02 0 0.1
0.01 0.02 0.2

⎤

⎦, Ec �
⎡

⎣
0.07 0 0
0 0.03 0

0.19 0.2 0.04

⎤

⎦, Ed �
⎡

⎣
0.02 0 0
0.02 0 0.24
0.2 0.1 0.03

⎤

⎦,

G �
⎡

⎣
0.026 0 0.06
0.11 0.023 0.1
0.3 0.03 0.14

⎤

⎦, K �
⎡

⎣
0.2 0 0
0 0.1 0
0 0 1.2

⎤

⎦,

τm � 2, τM � 4, ρ1 � 0.01, ρ2 � 0.02,

f1(s) � tanh(0.6s), f2(s) � tanh(−0.4s), f3(s) � tanh(−0.2s),

g1(s) � tanh(−0.4s), g2(s) � tanh(0.2s), g3(s) � tanh(0.4s).

We have

l−1 � 0, l+1 � 0.6, l−2 � −0.4, l+2 � 0, l−3 � −0.2, l+3 � 0,

v−
1 � −0.4, v+1 � 0, v−

2 � 0, v+2 � 0.2, v−
3 � 0, v+3 � 0.4.

Solving (26) and (27) gives feasible solutions as follows:

Q1 �
⎡

⎣
1.0230 −0.0982 −0.1511

−0.0982 0.4028 −0.0606
−0.1511 −0.0606 0.1159

⎤

⎦, Q2 �
⎡

⎣
0.7052 −0.0693 −0.1065

−0.0693 0.3054 −0.0496
−0.1065 −0.0496 0.0862

⎤

⎦,

R �
⎡

⎣
0.7052 −0.0693 −0.1065

−0.0693 0.3054 −0.0496
−0.1065 −0.0496 0.0862

⎤

⎦, Z �
⎡

⎣
1.6282 −0.1513 −0.2211

−0.1513 0.4138 −0.0323
−0.2211 −0.0323 0.1245

⎤

⎦,

Π �
⎡

⎣
−1.8929 −0.0680 −1.1344
−0.0680 3.7480 −0.1736
−1.1344 −0.1736 2.8007

⎤

⎦, ψ �
⎡

⎣
32.5415 0 0

0 21.5885 0
0 0 21.2519

⎤

⎦,


 �
⎡

⎣
67.5719 0 0

0 129.0876 0
0 0 6.5803

⎤

⎦, P �
⎡

⎣
34.3948 0.8268 1.7891
0.8268 30.3378 −1.4041
1.7891 −1.4041 33.0236

⎤

⎦

T �

⎡

⎢⎢⎢⎢⎢⎢⎣

7.3554 0.3044 0.3033 5.0294 −0.1814 −0.5722
0.3044 5.7897 −0.1615 −0.1814 0.5745 −0.0482
0.3033 −0.1615 3.2956 −0.5722 −0.0482 0.2040
5.0294 −0.1814 −0.5722 13.6489 −0.5704 −1.5403

−0.1814 0.5745 −0.0482 −0.5704 1.4658 −0.0789
−0.5722 −0.0482 0.2040 −1.5403 −0.0789 0.5263

⎤

⎥⎥⎥⎥⎥⎥⎦

ε � 9.2001, λ∗ � 36.0603.

The output feedback controller gain matrix is

M �
⎡

⎣
−3.8099 −0.7091 −0.3383
−0.1405 15.4612 −0.0919
−7.8891 0.1353 −3.4852

⎤

⎦,
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Fig. 2 State trajectories of the closed-loop system in Example 2

Therefore, it follows from Theorem 2 the closed-loop system is robustly globally expo-
nentially stable in the mean square. The state trajectory of closed-loop system is shown in
Fig. 2.

Example 3 Consider the uncertain discrete-time system (1) with the following parameters

A �
[
1.4 0
0 1.3

]
, B �

[−0.04 0.02
0.03 −0.1

]
,C �

[
0.05 0.36

−0.06 0.04

]
, D �

[
0.01 −0.02
0.04 0.01

]
,

G �
[
0.02 0
0 −0.01

]
, N �

[
1.42 −0.06
0.1 3.13

]
, K �

[
0.2 0
0 0.3

]
, Ea �

[
0.01 0
−0. −0.12

]
,

Eb �
[
0.1 0.01
0 0.3

]
, Ed �

[
0.03 0
0.01 0.02

]
, Ec �

[−0.02 0.03
0.01 0.01

]
, I �

[
1 0
0 1

]
,

f1(s) � tanh(0.06s), f2(s) � tanh(0.04s), g1(s) � tanh(0.02s), g2(s) � tanh(0.06s),

l−1 � 0, l+1 � 0.6, l−2 � 0, l+2 � 0.4, v−
1 � 0, v+1 � 0.2, v−

2 � 0, v+2 � 0.6, τm � 2,

τM � 4, ρ1 � 0.01, ρ2 � 0.02.

It is easy to know that the above discrete-time system with u(k) � 0 is unstable.
Solving (26) and (27) gives feasible solutions as follows:

Q1 �
[

4.1517 −0.3146
−0.3146 6.6890

]
, Q2 �

[
3.3319 −0.2556

−0.2556 4.8733

]
, Z �

[
2.7690 −0.2828

−0.2828 10.0273

]
,

P �
[
50.4686 2.5476
2.5476 154.2731

]
, ψ �

[
33.5345 0

0 41.7259

]
, 
 �

[
33.2821 0

0 30.8639

]
,
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Fig. 3 State trajectories of the closed-loop system in Example 3

T �

⎡

⎢⎢⎣

7.4564 0.5890 2.6545 −0.6765
0.5890 26.1464 −0.6765 19.3697
2.6545 −0.6765 6.5202 −1.2429

−0.6765 19.3697 −1.2429 51.7247

⎤

⎥⎥⎦, R �
[

3.3319 −0.2556
−0.2556 4.8733

]
,

Π �
[−53.0533 −2.5680

−2.5680 −144.9013

]
, ε � 0.1642, λ∗ � 164.5935.

The output feedback controller gain matrix is

M �
[−3.6965 −0.0503

0.1192 −0.9986

]
.

Therefore, it follows from Theorem 2 the closed-loop system is robustly globally expo-
nentially stable in the mean square. The state trajectory of closed-loop system is shown in
Fig. 3.

Example 4 Consider the uncertain discrete-time system (1) with the following parameters

A �
[
0.9 0
0 0.23

]
, B �

[−0.4 0.01
0.04 −0.1

]
, C �

[
0.03 0.06

−0.06 0.04

]
, D �

[
0.26 −0.19
0.04 0.1

]
,

G �
[
0.02 0
0 0.01

]
, N �

[−0.42 −0.6
0 0.13

]
, K �

[
0.2 0
0 0.3

]
, Ea �

[
1 0
0 1

]
,

Eb �
[
1 0
0 1

]
, Ed �

[
1 0
0 1

]
, Ec �

[
0.13 0
0.01 0.2

]
,
1 �

[
0 0
0 0

]
,
2 �

[
0.2 0
0 0.3

]
,

	1 �
[
0 0
0 0

]
,	2 �

[
0.3 0
0 0.1

]
, I �

[
1 0
0 1

]
, ρ1 � 0.01, ρ2 � 0.02,

f1(s) � tanh(0.4s), f2(s) � tanh(0.6s), g1(s) � tanh(0.6s), g2(s) � tanh(0.2s).
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Table 1 Value of the upper bound
τM for given τm

τm 1 2 3 4

Theorem 2 12 13 16 18

For different values of τm , we give the upper bounds τM of time-varying delay in Table 1,
which guarantee the robust global exponential stability in the mean square of the system (25).

5 Conclusion

In this paper, we investigate robust exponential stabilization for uncertain discrete-time
stochastic neural networks with time-varying delay. Using the Lyapunov–Krasovskii func-
tional approach, we propose the delay-dependent stabilization criteria to guarantee that the
closed-loop system of a class of discrete-time stochastic neural networks with time-varying
delays is asymptotical stable in themean square. Then, we give sufficient conditions of robust
global exponential stabilization for a class of discrete-time stochastic neural networks with
time-varying delays via output feedback control. Finally, some examples are given to show
the superiority of our proposed stability conditions.
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