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Abstract
Themulti-weighted coupled neural networks (MWCNNs) models with and without coupling
delays are investigated in this paper. Firstly, the finite-time anti-synchronization ofMWCNNs
with fixed topology and switching topology is analyzed respectively by utilizing Lyapunov
functional approach as well as some inequality techniques, and several anti-synchronization
criteria are put forward for the considered networks. Furthermore, when the parameter
uncertainties appear in MWCNNs, some conditions for ensuring robust finite-time anti-
synchronization are obtained. Similarly, we also consider the finite-time anti-synchronization
and robust finite-time anti-synchronization for MWCNNs with coupling delays under fixed
and switched topologies respectively. Lastly, two numerical examples with simulations are
provided to confirm the effectiveness of these derived results.

Keywords Finite-time anti-synchronization · Coupled neural networks · Multiple weights ·
Robust anti-synchronization · Switching topology

1 Introduction

In recent years, neural networks (NNs) have become a hot topic because of their widespread
applications, especially in optimization, associate memory, pattern recognition and so on [1–
7]. Actually, these applications are heavily dependent on their dynamical behaviors. Hence, a
lot of meaningful and important research results have been reported on stability and passivity
of NNs [8–13]. Zhang et al. [8] studied the stability for a class of discrete-time NNs with
time-varying delay via an extended reciprocally convex matrix inequality. The authors in [9]
discussed the stability of complex-valued memristive recurrent NNs. By utilizing Lyapunov
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functional approach and some inequality techniques, the passivity and stability problems for
NNs with reaction–diffusion terms were considered in [10].

As a particular sort of complex networks, coupled NNs (CNNs) are composed of many
NNs which interact with each other. As we all known, synchronization is one of the most
significant dynamic properties in CNNs, which has been applied in many areas such as image
processing, secure communication [14,15]. Therefore, it is of great significance to investi-
gate the synchronization of CNNs [16–22].Wang et al. [18] studied the local synchronization
problem for a sort of Markovian nonlinearly CNNs by applying the Lyapunov–Krasovskii
functional as well as free-matrix-based integral inequality. Based on Lyapunov functions,
Halanay inequality and stochastic analysis technique, the exponential synchronization prob-
lem of CNNs with time-varying delay was investigated in [19]. Several criteria for ensuring
exponential synchronization for markovian stochastic CNNs were carried out via adaptive
feedback control in [20]. The work in [22] analyzed the exponential synchronization and pas-
sivity of CNNs with reaction–diffusion terms by adopting appropriate pinning controllers.
What is noteworthy is that anti-synchronization is also a fascinating phenomenon in the real
world, which widely exists in memristive recurrent NNs, periodic oscillators, and so forth.
Moreover, up to now, anti-synchronization has been successfully applied in many fields, for
instance, image processing, information science and so on. Hence, it is highly meaningful to
study anti-synchronization [23–28]. Some conditions for guaranteeing anti-synchronization
of CNNs with mixed time-varying delays were set up via randomly occurring control in [25].
Liu et al. [26] devoted themselves to the anti-synchronization for the considered complex-
valued memristive NNs by employing suitable Lyapunov functional and some inequality
techniques. In [28], the anti-synchronization problem of a memristor-based bidirectional
associate memory NN was studied by utilizing a robust feedback controller with an appro-
priate gain control matrix.

In many practical applications, it is usually required to realize synchronization within
a limited time interval. Accordingly, a large number of literatures on finite-time synchro-
nization have been reported [29–40]. In [29], several conditions for ensuring the finite-time
synchronization of CNNs with time-varying delays were derived by designing a stochastic
multiple Lyapunov–Krasovskii function and using weighted integral inequality. Some dis-
continuous or continuous controllers were constructed for the finite-time synchronization
problem of switched CNNs in [30]. Sun et al. [32] investigated the finite-time synchroniza-
tion for two complex-variable chaotic systems with unknown parameters via nonsingular
terminal sliding mode control. However, only a few results have been obtained about finite-
time anti-synchronizaton up to now [41,42]. In [41], the finite-time anti-synchronization
for a class of time-varying delayed NNs was studied via feedback control with intermittent
adjustment. The authors proposed some finite-time anti-synchronization criteria for mem-
ristive NNs by designing a nonlinear controller in [42]. As far as we know, a great many of
existing networks can be described more accurately by multi-weighted complex dynamical
networks (MWCDNs), for instance, transportation networks, social networks, communica-
tion networks and so on. Therefore, it is of great significance to study MWCDNs [43]. Qiu
et al. [43] proposed several finite-time synchronization conditions for MWCDNs with and
without coupling delays by means of Lyapunov functional approach and state feedback con-
trollers. However, there are only a few results reported on the finite-time synchronization of
MWCNNs [44]. In [44], several novel criteria for guaranteeing finite-time synchronization
of MWCNNs with and without coupling delays were provided by exploiting new defini-
tions of finite-time synchronization and designing appropriate controllers. It is a pity that
the finite-time anti-synchronization of MWCNNs has not yet been considered in existing
research results.
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As is well known, the connection topology ofmost of networksmentioned above is always
supposed to be fixed. Nevertheless, in practical applications, this requirement is very strict
because of the impacts of limited communications and external disturbances. Therefore,
more and more researchers devoted themselves to studying the synchronization of NNs with
switching topology [45–48]. In [46], the authors investigated the finite-time synchronization
of a sort of uncertain CNNs with switching topology by constructing appropriate Lyapunov-
like functionals and using the average dwell time technique. The work in [47] proposed some
conditions for guaranteeing pinning synchronization of directed networks with switching
topologies by employing a multiple Lyapunov functions approach. Based on Lyapunov func-
tional approach and some inequality techniques, Qin et al. [48] studied the synchronization
andH∞ synchronization of MWCDNs with fixed and switching topologies. However, there
is no research results reported on the finite-time anti-synchronization for MWCNNs with
switching topology until now.

On the other hand, some uncertain factors may be occurred in NNs due to the existence of
environmental noises and modeling errors, which might cause the exact parameter values of
NNs could not be obtained. Therefore, it is important to consider the robust synchronization
of CNNs which consisting of several identical uncertain NNs [49–52]. In [49], the authors
investigated the robust synchronization of fractional-order CNNs by utilizing pinning control
strategies. The robust synchronization problem for delayed CNNs with uncertain parame-
ters was studied by intermittent pinning control in [50]. By using inequality techniques
and constructing appropriate Lyapunov functional, Qin et al. [51] discussed the robust syn-
chronization and H∞ synchronization of MWCDNs with uncertain parameters. To our best
knowledge, the robust finite-time anti-synchronization for MWCNNs with uncertain param-
eters has never been discussed.

On the basis of the above discussion, we study the finite-time anti-synchronization and
robust finite-time anti-synchronization of MWCNNs with fixed and switching topologies
in this paper. Firstly, we present two MWCNN models. The first one is with constant
coupling, and the second MWCNN is with delayed coupling. Then, several finite-time
anti-synchronization criteria for these considered networks with fixed as well as switch-
ing topologies are derived respectively. Furthermore, some sufficient conditions for ensuring
robust finite-time anti-synchronization of MWCNNs with fixed and switching topologies are
also established.

In view of the above-mentioned discussion, the principal objective of this paper is to study
the finite-time anti-synchronization ofmulti-weighted coupled neural networks (MWCNNs).
The main contribution of this paper can be summarized as follows.

(1) The finite-time anti-synchronization of MWCNNs with fixed and switching topologies
is studied and several criteria are put forward by designing a suitable controller and
constructing an appropriate Lyapunov functional.

(2) Some conditions for guaranteeing the robust finite-time anti-synchronization of MWC-
NNs with uncertain parameters under fixed and switching topologies are established
respectively.

(3) For the delayed MWCNNs, the finite-time anti-synchronization and robust finite-time
anti-synchronization conditions are also derived similarly.

The outline of this paper is organized as follows. Several lemmas needed to be used
throughout this paper are provided in Sect. 2. Section 3 is devoted to analyzingfinite-time anti-
synchronization and the robust finite-time anti-synchronization forMWCNNs with fixed and
switching topologies, respectively. In Sect. 4, the network model ofMWCNNswith coupling
delays is introduced, and then the finite-time anti-synchronization and the robust finite-time
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anti-synchronization for this kind of MWCNNs with fixed and switching topologies are
investigated. Two simulation examples are presented in Sect. 5 to verify the effectiveness of
the obtained theoretical results. Finally, this paper is concluded in Sect. 6.

2 Preliminaries

0 � χ ∈ R
n×n (0 � χ ∈ R

n×n) symbols the matrix χ is semi-negative (semi-
positive) definite and symmetric, 0 > χ ∈ R

n×n (0 < χ ∈ R
n×n) shows that the

matrix χ is negative (positive) definite and symmetric. λM (·) and λm(·) respectively sig-
nify the maximum and minimum eigenvalues of the corresponding matrix. In addition, for

e(t) = (e1(t), e2(t), . . . , en(t))T ∈ R
n, we have ‖e(t)‖2 =

( ∑n
ι=1 e

2
ι (t)

) 1
2

.

Lemma 1 (see [53]) Suppose that a continuous and positive-definite function H(t)meets the
following inequality:

Ḣ(t) � −μ(H(t))ω, t � 0, H(0) � 0,

where 0 < μ ∈ R and 0 < ω < 1 are constants. Then,

(H(t))1−ω � (H(0))1−ω − μ(1 − ω)t, 0 � t � T ,

and

H(t) = 0, t � T ,

with T given by

T = (H(0))1−ω

μ(1 − ω)
.

Lemma 2 (see [54]) For νξ ∈ R, ξ = 1, 2, . . . , n, 0 < k � 1, then

|ν1|k + |ν2|k + · · · + |νn |k � (|ν1| + |ν2| + · · · + |νn |)k .

3 Finite-Time Anti-synchronization of MWCNNs

3.1 Anti-synchronization in Finite Time for MWCNNs

3.1.1 Anti-synchronization in Finite Time for MWCNNs with Fixed Topology

Consider the following MWCNNs with fixed topology:

Ẏι(t) = − AYι(t) + Dg(Yι(t)) + c1

κ∑
j=1

G1
ι jΓ1Y j (t) + c2

κ∑
j=1

G2
ι jΓ2Y j (t) + · · ·

+ cm

κ∑
j=1

Gm
ι jΓmY j (t) + uι(t), ι = 1, 2, . . . , κ, (1)

where Yι(t) = (Yι1(t), Yι2(t), . . . , Yιn(t))T ∈ R
n is the state vector of the ιth node; A =

diag(a1, a2, . . . , an) ∈ R
n×n > 0, D = (dι j )n×n ∈ R

n×n symbols a constant matrix;
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g(Yι(t)) = (g1(Yι1(t)), g2(Yι2(t)), . . . , gn(Yιn(t)))T ∈ R
n and R � cs > 0 represents

coupling strength for the sth coupling form; uι(t) ∈ R
n means the control input; Γs ∈ R

n×n

is the inner coupling matrix of the sth coupling form; Gs = (Gs
ι j )κ×κ ∈ R

κ×κ expresses
coupling weight between nodes in the sth coupling form, where Gs

ι j is defined as follows:
Gs

ι j = Gs
j ι > 0 if and only if there exists a connection between node ι and node j for the sth

coupling form; if not, Gs
ι j = Gs

j ι = 0 (ι �= j); and

Gs
ιι = −

κ∑
j=1
j �=ι

Gs
ι j , ι = 1, 2, . . . , κ,

where s = 1, 2, . . . ,m.

Assumption 1 The function gk(·) (k = 1, 2, . . . , n) satisfies

|gk(α1) + gk(α2)| � θk |α1 + α2|,
for any α1, α2 ∈ R, where 0 < θk ∈ R. Take Θ = diag(θ21 , θ22 , . . . , θ2n ) ∈ R

n×n.

Suppose Y0(t) = (Y01(t), Y02(t), . . . , Y0n(t))T ∈ R
n is an arbitrary solution for the

network (1), then

Ẏ0(t) = − AY0(t) + Dg(Y0(t)). (2)

Definition 1 For all ι = 1, 2, . . . , κ , if there exists a constant T > 0 such that

lim
t→T

‖Yι(t) + Y0(t)‖2 = 0,

and ‖Yι(t) + Y0(t)‖2 = 0, f or t > T ,

then the network (1) is called to be anti-synchronized in finite time.

Design the following controller for the network (1):

uι(t) = −Wι(Yι(t) + Y0(t)) − ηP
a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a, (3)

whereWι ∈ R
n×n , 0 < a < 1, sign(Yι(t)+Y0(t)) = diag(sign(Yι1(t)+Y01(t)), sign(Yι2(t)+

Y02(t)), . . . , sign(Yιn(t) + Y0n(t))), |Yι(t) + Y0(t)|a = (|Yι1(t) + Y01(t)|a, |Yι2(t) +
Y02(t)|a, . . . , |Yιn(t) + Y0n(t)|a)T , 0 < η ∈ R, 0 < P = diag(p1, p2, . . . , pn) ∈ R

n×n ,

P
a−1
2 = diag(p

a−1
2

1 , p
a−1
2

2 , . . . , p
a−1
2

n ). Then, we have

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓsY j (t) − Wι(Yι(t) + Y0(t))

− ηP
a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Take eι(t) = Yι(t) + Y0(t). Then, one can get

ėι(t) = − Aeι(t) + Dg(Yι(t)) + Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t)

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a . (4)
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Theorem 1 If there exist matrices 0 < P = diag(p1, p2, . . . , pn) ∈ R
n×n and W =

diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ such that

K1 + K2 +
m∑
s=1

csG
s ⊗ (PΓs + Γ T

s P) � 0, (5)

where K1 = Iκ ⊗ (−PA− AP + PDDT P +Θ), K2 = −(Iκ ⊗ P)W −WT (Iκ ⊗ P), then
the network (1) is said to be finite-timely anti-synchronized under the controller (3). What’s

more, the settling time of anti-synchronization T satisfies T � T1 = (V1(0))
1−a
2

η(1−a)
.

Proof Define the following Lyapunov functional for network (4):

V1(t) =
κ∑

ι=1

eTι (t)Peι(t). (6)

Then, one has

V̇1(t) = 2
κ∑

ι=1

eTι (t)P

(
− Aeι(t) + Dg(Yι(t)) +

m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t)

+ Dg(Y0(t)) − Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a

)
.

Obviously,

2eTι (t)PD(g(Yι(t)) + g(Y0(t))) � eTι (t)(PDDT P + Θ)eι(t). (7)

From (7), we can obtain

V̇1(t) � 2
m∑
s=1

κ∑
ι=1

κ∑
j=1

csG
s
ι j e

T
ι (t)PΓse j (t) +

κ∑
ι=1

eTι (t)(−PA − AP + PDDT P

+ Θ)eι(t) − 2
κ∑

ι=1

eTι (t)PWιeι(t) − 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a

= eT (t)

[
Iκ ⊗ (−PA − AP + PDDT P + Θ) +

m∑
s=1

csG
s ⊗ (PΓs

+ Γ T
s P) − (Iκ ⊗ P)W − WT (Iκ ⊗ P)

]
e(t)

− 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a, (8)

where e(t) = (eT1 (t), eT2 (t), . . . , eTκ (t))T . According to Lemma 2, we can easily obtain

κ∑
ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a =

κ∑
ι=1

n∑
j=1

p
a+1
2

j |eι j (t)|a+1

�
κ∑

ι=1

⎛
⎝ n∑

j=1

p j e
2
ι j (t)

⎞
⎠

a+1
2
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=
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 . (9)

From (5), (8), (9) and Lemma 2, we can get

V̇1(t) � eT (t)

[
Iκ ⊗ (−PA − AP + PDDT P + Θ) +

m∑
s=1

csG
s ⊗ (PΓs + Γ T

s P)

− (Iκ ⊗ P)W − WT (Iκ ⊗ P)

]
e(t) − 2η

κ∑
ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t)

) a+1
2

= − 2η(V1(t))
a+1
2 .

By Lemma 1, we can get V1(t) = 0, t > T1 with T1 = (V1(0))
1−a
2

η(1−a)
.

On the other hand,

0 � λm(P)

κ∑
ι=1

eTι (t)eι(t) � V1(t), (10)

where λm(P) > 0.
From (10), we obtain ‖eι(t)‖2 = 0, t > T1, where ι = 1, 2, . . . , κ . Therefore, the network

(1) achieves finite-time anti-synchronization under the controller (3). The proof is completed.
	


3.1.2 Anti-synchronization in Finite Time for MWCNNs with Switching Topology

In this section, we consider the following MWCNNs with switching topology:

Ẏι(t) = − AYι(t) + Dg(Yι(t)) + c1

κ∑
j=1

G1,ω(t)
ι j Γ1Y j (t) + c2

κ∑
j=1

G2,ω(t)
ι j Γ2Y j (t) + · · ·

+ cm

κ∑
j=1

Gm,ω(t)
ι j ΓmY j (t) + uι(t), ι = 1, 2, . . . , κ, (11)

where Yι(t), g(·), A, D, uι(t), cs, Γs(s = 1, 2, . . . ,m) are defined similarly as those
in Sect. 3.1.1, ω(t) : [0,∞) → I = {1, 2, . . . , i} symbols switching signal. For each
ς ∈ I , Gs,ς = (Gs,ς

ι j )κ×κ represents the coupling configuration matrix in the sth coupling

form for the ς th topology, which satisfies Gs,ς
ι j = Gs,ς

j ι > 0 if nodes ι and j are connected

for the ς th topology; otherwise, Gs,ς
ι j = Gs,ς

j ι = 0 (ι �= j); and

Gs,ς
ιι = −

κ∑
j=1
j �=ι

Gs,ς
ι j , ι = 1, 2, . . . , κ.
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For the network (11), design the same controller as (3). Then, we can obtain

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j ΓsY j (t) − Wι(Yι(t) + Y0(t))

− ηP
a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Let eι(t) = Yι(t) + Y0(t), then

ėι(t) = − Aeι(t) + Dg(Yι(t)) + Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t)

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a . (12)

Theorem 2 If there exist matrices 0 < P = diag(p1, p2, . . . , pn) ∈ R
n×n and W =

diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ such that

K1 + K2 +
m∑
s=1

csG
s,ς ⊗ (PΓs + Γ T

s P) � 0, (13)

where ς = 1, 2, . . . , i, K1 = Iκ ⊗ (−PA − AP + PDDT P + Θ) and K2 = −(Iκ ⊗
P)W − WT (Iκ ⊗ P), then the network (11) is finite-timely anti-synchronized under the
controller (3). Moreover, the settling time of anti-synchronization T satisfies T � T1 =
(V1(0))

1−a
2

η(1−a)
.

Proof Select the same Lyapunov functional as (6) for the network (12). Then, we have

D+V1(t) = 2
κ∑

ι=1

eTι (t)P

(
− Aeι(t) + Dg(Yι(t)) +

m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t) + Dg(Y0(t))

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a

)

� 2
m∑
s=1

κ∑
ι=1

κ∑
j=1

csG
s,ς
ι j eTι (t)PΓse j (t) +

κ∑
ι=1

eTι (t)(−PA − AP + PDDT P

+ Θ)eι(t) − 2
κ∑

ι=1

eTι (t)PWιeι(t) − 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a

= eT (t)

[
Iκ ⊗ (−PA − AP + PDDT P + Θ) +

m∑
s=1

csG
s,ς ⊗ (PΓs

+ Γ T
s P) − (Iκ ⊗ P)W − WT (Iκ ⊗ P)

]
e(t)

− 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a .

It follows from (9), (13) and Lemma 2 that
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D+V1(t) � − 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t)

) a+1
2

= − 2η(V1(t))
a+1
2 .

Similar to the proof of Theorem 1, we can derive ‖eι(t)‖2 = 0, t > T1, where
ι = 1, 2, . . . , κ . Thus, the network (11) reaches finite-time anti-synchronization under the
controller (3). The proof is completed. 	


3.2 Robust Anti-synchronization in Finite Time for MWCNNs

3.2.1 Robust Anti-synchronization in Finite Time for MWCNNs with Fixed Topology

During the modeling process of CNNs, the existence of environmental noise, limitations
of equipment and external interference may lead to the parameters varying within bounded
ranges in some circumstances. Therefore, we consider a MWCNNs with parameteric uncer-
tainties consisting of κ identical nodes in this section which can be described as

Ẏι(t) = − AYι(t) + Dg(Yι(t)) + c1

κ∑
j=1

G1
ι jΓ1Y j (t) + c2

κ∑
j=1

G2
ι jΓ2Y j (t) + · · ·

+ cm

κ∑
j=1

Gm
ι jΓmY j (t) + uι(t), ι = 1, 2, . . . , κ, (14)

where Yι(t), g(·), cs, Gs
ι j , Γs, s = 1, 2, . . . ,m, uι(t) have the same meanings as those in

Sect. 3.1.1, and the parameters A and D change in the following given ranges:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AI := {A = diag(ar ) : A− � A � A+, i .e., 0 < a−
r � ar � a+

r ,

r = 1, 2, . . . , n,∀A ∈ AI },
DI := {D = (dr j )n×n : D− � D � D+, i .e., d−

r j � dr j � d+
r j , r ,

j = 1, 2, . . . , n,∀D ∈ DI }.

(15)

For convenience, we define

d̃r j = max{|d−
r j |, |d+

r j |}, r = 1, 2, . . . , n, j = 1, 2, . . . , n.

Definition 2 For all ι = 1, 2, . . . , κ, A ∈ AI and D ∈ DI , if there exists a constant T > 0
satisifying

lim
t→T

‖Yι(t) + Y0(t)‖2 = 0,

and ‖Yι(t) + Y0(t)‖2 = 0, f or t > T ,

then the network (14) with the parameter ranges defined by (15) is said to be robustly anti-
synchronized in finite time.
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For the network (14), design the same controller as (3). Then, we can obtain

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓsY j (t) − Wι(Yι(t) + Y0(t))

− ηP
a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Let eι(t) = Yι(t) + Y0(t), then

ėι(t) = − Aeι(t) + Dg(Yι(t)) + Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t)

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a, (16)

where A and D belong to the parameter ranges defined by (15).

Theorem 3 If there exist matrices 0 < P = diag(p1, p2, . . . , pn) ∈ R
n×n and W =

diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ such that

K3 + K2 +
m∑
s=1

csG
s ⊗ (PΓs + Γ T

s P) � 0, (17)

where K2 = − (Iκ⊗P)W−WT (Iκ⊗P), K3 = Iκ⊗(−PA− − A−P + �DP2 + Θ), �D =∑n
r=1

∑n
j=1 d̃

2
r j , then the network (14) with the parameter ranges defined by (15) is robust

finite-timely anti-synchronized under the controller (3). What’s more, the settling time of

anti-synchronization T satisfies T � T1 = (V1(0))
1−a
2

η(1−a)
.

Proof Define the same Lyapunov functional as (6) for network (16). Then, one has

V̇1(t) = 2
κ∑

ι=1

eTι (t)P

(
− Aeι(t) + Dg(Yι(t)) +

m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t) + Dg(Y0(t))

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a

)
.

Obviously,

2
κ∑

ι=1

eTι (t)PD(g(Yι(t)) + g(Y0(t))) �
κ∑

ι=1

eTι (t)(PDDT P + Θ)eι(t)

�
κ∑

ι=1

eTι (t)(�D P2 + Θ)eι(t). (18)

From (18), we can obtain

V̇1(t) � 2
m∑
s=1

κ∑
ι=1

κ∑
j=1

csG
s
ι j e

T
ι (t)PΓse j (t) +

κ∑
ι=1

eTι (t)(−PA− − A−P)eι(t)

− 2
κ∑

ι=1

eTι (t)PWιeι(t) − 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a

+
κ∑

ι=1

eTι (t)(�D P2 + Θ)eι(t)
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= eT (t)

[
Iκ ⊗ (−PA− − A−P + �DP2 + Θ) +

m∑
s=1

csG
s ⊗ (PΓs

+ Γ T
s P) − (Iκ ⊗ P)W − WT (Iκ ⊗ P)

]
e(t)

− 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a . (19)

It follows from (9), (17) and Lemma 2 that

V̇1(t) � − 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t)

) a+1
2

= − 2η(V1(t))
a+1
2 .

Similar to the proof of Theorem 1, we can derive ‖eι(t)‖2 = 0, t > T1, where ι =
1, 2, . . . , κ . Hence, the network (14) with the parameter ranges defined by (15) achieves
robust finite-time anti-synchronization under the controller (3). The proof is completed. 	


3.2.2 Robust Anti-synchronization in Finite Time for MWCNNs with Switching Topology

In this subsection, we consider the switched MWCNNs with parameter uncertainties:

Ẏι(t) = − AYι(t) + Dg(Yι(t)) + c1

κ∑
j=1

G1,ς
ι j Γ1Y j (t) + c2

κ∑
j=1

G2,ς
ι j Γ2Y j (t) + · · ·

+ cm

κ∑
j=1

Gm,ς
ι j ΓmY j (t) + uι(t), ι = 1, 2, . . . , κ, (20)

whereYι(t), g(·), uι(t), cs, Γs(s = 1, 2, . . . ,m) are defined similarly as those in Sect. 3.1.1,
Gs,ς

ι j has the same definition as in Sect. 3.1.2, and A, D belong to the parameter ranges given
by (15).

For the network (20), design the same controller as (3). Then, we can obtain

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j ΓsY j (t) − Wι(Yι(t) + Y0(t))

− ηP
a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Let eι(t) = Yι(t) + Y0(t), then

ėι(t) = − Aeι(t) + Dg(Yι(t)) + Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t)

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a, (21)

in which the parameters A and D change in some given parameter ranges defined by (15).
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Theorem 4 If there exist matrices 0 < P = diag(p1, p2, . . . , pn) ∈ R
n×n and W =

diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ such that

K3 + K2 +
m∑
s=1

csG
s,ς ⊗ (PΓs + Γ T

s P) � 0, (22)

where ς = 1, 2, . . . , i, K3 = Iκ ⊗ (−PA− − A−P + �DP2 + Θ), K2 = −(Iκ ⊗ P)W −
WT (Iκ ⊗ P), �D = ∑n

r=1
∑n

j=1 d̃
2
r j , then the network (20) with the parameter ranges

defined by (15) is robust finite-timely anti-synchronized under the controller (3). Moreover,

the settling time of anti-synchronization T satisfies T � T1 = (V1(0))
1−a
2

η(1−a)
.

Proof Select the same Lyapunov functional as (6) for the network (21). Then, one has

D+V1(t) = 2
κ∑

ι=1

eTι (t)P

(
− Aeι(t) + Dg(Yι(t)) +

m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t) + Dg(Y0(t))

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a

)

� 2
m∑
s=1

κ∑
ι=1

κ∑
j=1

csG
s,ς
ι j eTι (t)PΓse j (t) +

κ∑
ι=1

eTι (t)(−PA− − A−P)eι(t)

− 2
κ∑

ι=1

eTι (t)PWιeι(t) − 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a

+
κ∑

ι=1

eTι (t)(�D P2 + Θ)eι(t)

= eT (t)

[
Iκ ⊗ (−PA− − A−P + �DP2 + Θ) +

m∑
s=1

csG
s,ς ⊗ (PΓs

+ Γ T
s P) − (Iκ ⊗ P)W − WT (Iκ ⊗ P)

]
e(t)

− 2η
κ∑

ι=1

eTι (t)P
a+1
2 sign(eι(t))|eι(t)|a .

It follows from (9), (22) and Lemma 2 that

D+V1(t) � − 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t)

) a+1
2

= − 2η(V1(t))
a+1
2 .

Similar to the proof of Theorem 1, we can derive ‖eι(t)‖2 = 0, t > T1, where ι =
1, 2, . . . , κ . Therefore, the network (20) with the parameter ranges defined by (15) achieves
robust finite-time anti-synchronization under the controller (3). The proof is completed. 	
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Remark 1 In recent years, somemeaningful research results have been reported on the dynam-
ical behaviors ofMarkovian jump systems [55–61]. Shen et al. [56] investigated thefinite-time
event-triggered H∞ control problem for Takagi-Sugeno Markov jump fuzzy systems. As is
well known, Markov jump systems can be used to model some real-life systems experienc-
ing random changes in their parameters or structures. Therefore, it would be very interesting
to apply a Markov process into the MWCNNs considered in our paper and investigate the
finite-time anti-synchronization of MWCNNs with Markovian jump topology. This would
be a meaningful problem for our future research.

4 Finite-Time Anti-synchronization of MWCNNs with Coupling Delays

4.1 Anti-synchronization in Finite Time for DelayedMWCNNs

4.1.1 Anti-synchronization in Finite Time for Delayed MWCNNs with Fixed Topology

In this section, we consider the following network model of MWCNNs with coupling delays:

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓsY j (t − τs(t)) + uι(t), (23)

where ι = 1, 2, . . . , κ, Yι(t), g(·), A, D, cs, Gs
ι j , Γs, uι(t) are defined similarly as those

in Sect. 3.1.1, τs(t) is the time-varying delay with 0 � τs(t) � τ , s = 1, 2, . . . ,m.
Construct the controller for the network (23) as follows:

uι(t) = − ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
(Yι(h) + Y0(h))T Qs

ι (Yι(h) + Y0(h))dh

) a+1
2

× Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a

− Wι(Yι(t) + Y0(t)). (24)

where 0 < Qs
ι ∈ R

n×n, Qs = diag(Qs
1, Q

s
2, . . . , Q

s
κ ), s = 1, 2, . . . ,m, Wι, a, P, η,

sign(Yι(t) + Y0(t)), |Yι(t) + Y0(t)|a have the same meanings as in (3). Then, we have

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓsY j (t − τs(t)) − Wι(Yι(t) + Y0(t))

− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
(Yι(h) + Y0(h))T Qs

ι (Yι(h) + Y0(h))dh

) a+1
2

× Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Let eι(t) = Yι(t) + Y0(t). Obviously, we can obtain

ėι(t) = − Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t−τs(t)) − Wιeι(t)
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− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2 eι(t)

‖eι(t)‖22
− ηP

a−1
2 sign(eι(t))|eι(t)|a, (25)

where ι = 1, 2, . . . , κ .

Theorem 5 Suppose τ̇s(t) � γs < 1. The network (23) realizes finite-time anti-
synchronization under the controller (24) if there exist matrices 0 < P = diag(p1, p2, . . . ,
pn) ∈ R

n×n, W = diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ and 0 < Qs = diag(Qs

1, Q
s
2, . . . , Q

s
κ )

∈ R
nκ×nκ , such that

K1 + K2 +
m∑
s=1

cs

(
FT
s Q−1

s Fs + 1

1 − γs
Qs

)
� 0, (26)

where K1 = Iκ ⊗ (−PA − AP + PDDT P + Θ), K2 = −(Iκ ⊗ P)W − WT (Iκ ⊗
P), Fs = Gs ⊗ (Γ T

s P). In addition, the settling time of anti-synchronization T satisfies

T � T2 = (V2(0))
1−a
2

η(1−a)
.

Proof Construct a Lyapunov functional for network (25):

V2(t) =
κ∑

ι=1

eTι (t)Peι(t) +
m∑
s=1

cs
1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh. (27)

Then,

V̇2(t) � 2
κ∑

ι=1

eTι (t)P

(
−Aeι(t)+Dg(Yι(t))+Dg(Y0(t))+

m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t−τs(t))

− Wιeι(t)−ηP
a−1
2 sign(eι(t))|eι(t)|a

)
−

m∑
s=1

cse
T (t−τs(t))Qse(t−τs(t))

− 2η
κ∑

ι=1

m∑
s=1

(
cs

1−γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2 +

m∑
s=1

cs
1−γs

eT (t)Qse(t),

where e(t − τs(t)) = (eT1 (t − τs(t)), eT2 (t − τs(t)), . . . , eTκ (t − τs(t)))T . Obviously,

2
m∑
s=1

κ∑
ι=1

κ∑
j=1

csG
s
ι j e

T
ι (t)PΓse j (t − τs(t))

= 2
m∑
s=1

cse
T (t)

[
Gs ⊗ (PΓs)

]
e(t − τs(t))

�
m∑
s=1

cse
T (t)

[
Gs ⊗ (PΓs)

]
Q−1

s

[
Gs ⊗ (Γ T

s P))
]
e(t)

+
m∑
s=1

cse
T (t − τs(t))Qse(t − τs(t)). (28)
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From (7), (9), (26), (28) and Lemma 2, we can obtain

V̇2(t) � eT (t)
[
Iκ ⊗ (−PA − AP + PDDT P + Θ)

]
e(t) +

m∑
s=1

cs
1 − γs

eT (t)Qse(t)

+
m∑
s=1

cse
T (t)

[
Gs ⊗ (PΓs)

]
Q−1

s

[
Gs ⊗ (Γ T

s P)
]
e(t) − 2

κ∑
ι=1

eTι (t)PWιeι(t)

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

= eT (t)

{
Iκ ⊗ (−PA − AP + PDDT P + Θ) +

m∑
s=1

cs
1 − γs

Qs − (Iκ ⊗ P)W

− WT (Iκ ⊗ P) +
m∑
s=1

cs
[
Gs ⊗ (PΓs)

]
Q−1

s

[
Gs ⊗ (Γ T

s P)
]}

e(t)

− 2η
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t) +
m∑
s=1

cs
1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

= − 2η(V2(t))
a+1
2 .

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι = 1, 2, . . . , κ, t >

T2. Obviously, the network (23) is finite-time anti-synchronization. The proof is completed.
	


4.1.2 Anti-synchronization in Finite Time for Delayed MWCNNs with Switching
Topology

Describe the network model of MWCNNs with coupling delays and switching topology in
this section as follows:

Ẏι(t) = −AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j ΓsY j (t − τs(t)) + uι(t), (29)

where ι = 1, 2, . . . , κ, Yι(t), g(·), A, D, cs, uι(t), Γs represent the same definitions as
in Sect. 3.1.1, τs(t) is the time-varying delay as that in Sect. 4.1.1, and Gs,ς

ι j has the same
meaning as that in Sect. 3.1.2.
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Construct the same controller as (24) for the network (29). Then, one has

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j ΓsY j (t − τs(t)) − Wι(Yι(t) + Y0(t))

− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
(Yι(h) + Y0(h))T Qs

ι (Yι(h) + Y0(h))dh

) a+1
2

× Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Let eι(t) = Yι(t) + Y0(t). Then, we have

ėι(t) = − Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t−τs(t)) − Wιeι(t)

− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2 eι(t)

‖eι(t)‖22
− ηP

a−1
2 sign(eι(t))|eι(t)|a, (30)

where ι = 1, 2, . . . , κ .

Theorem 6 Suppose τ̇s(t) � γs < 1. The network (29) realizes finite-time anti-
synchronization under the controller (24) if there exist matrices 0 < P = diag(p1, p2, . . . ,
pn) ∈ R

n×n, W = diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ and 0 < Qs = diag(Qs

1, Q
s
2, . . . , Q

s
κ )

∈ R
nκ×nκ , such that

K1 + K2 +
m∑
s=1

cs

(
FT
s,ς Q

−1
s Fs,ς + 1

1 − γs
Qs

)
� 0, (31)

where ς = 1, 2, . . . , i, K1 = Iκ ⊗ (−PA − AP + PDDT P + Θ), K2 = −(Iκ ⊗
P)W − WT (Iκ ⊗ P) and Fs,ς = Gs,ς ⊗ (Γ T

s P). What’s more, the settling time of anti-

synchronization T satisfies T � T2 = (V2(0))
1−a
2

η(1−a)
.

Proof Construct the same Lyapunov functional as (24) for network (30). Then,

D+V2(t) � 2
κ∑

ι=1

eTι (t)P

(
−Aeι(t)+Dg(Yι(t))+Dg(Y0(t))+

m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t

− τs(t))−Wιeι(t)−ηP
a−1
2 sign(eι(t))|eι(t)|a

)
+

m∑
s=1

cs
1−γs

eT (t)Qse(t)

− 2η
κ∑

ι=1

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2

−
m∑
s=1

cse
T (t

− τs(t))Qse(t − τs(t))

� eT (t)
[
Iκ ⊗ (−PA −AP+PDDT P +Θ)

]
e(t) +

m∑
s=1

cs
1 − γs

eT (t)Qse(t)
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+
m∑
s=1

cse
T (t)

[
Gs,ς ⊗(PΓs)

]
Q−1

s

[
Gs,ς ⊗(Γ T

s P)
]
e(t)−2

κ∑
ι=1

eTι (t)PWιeι(t)

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1−γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

= eT (t)

{
Iκ ⊗ (−PA − AP + PDDT P + Θ) +

m∑
s=1

cs
1 − γs

Qs − (Iκ ⊗ P)W

− WT (Iκ ⊗ P) +
m∑
s=1

cs
[
Gs,ς ⊗ (PΓs)

]
Q−1

s

[
Gs,ς ⊗ (Γ T

s P)
]}

e(t)

− 2η
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t) +
m∑
s=1

cs
1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

= − 2η(V2(t))
a+1
2 .

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι = 1, 2, . . . , κ, t >

T2. Obviously, the network (29) achieves finite-time anti-synchronization. The proof is com-
pleted. 	


4.2 Robust Anti-synchronization in Finite Time for DelayedMWCNNs

4.2.1 Robust Anti-synchronization in Finite Time for Delayed MWCNNs with Fixed
Topology

The MWCNNs model with coupling delays and parameter uncertainties is described by:

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓsY j (t − τs(t)) + uι(t), (32)

where ι = 1, 2, . . . , κ, Yι(t), g(·), cs, Gs
ι j , Γs, uι(t) are defined similarly as those in

Sect. 3.1.1, A, D are intervalized as those in (15), τs(t) is the time-varying delay as that in
Sect. 4.1.1.

Design the same controller for the network (32) as (24). Then,

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓsY j (t − τs(t)) − Wι(Yι(t) + Y0(t))
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− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
(Yι(h) + Y0(h))T Qs

ι (Yι(h) + Y0(h))dh

) a+1
2

× Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Let eι(t) = Yι(t) + Y0(t). Then, we have

ėι(t) = − Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t−τs(t)) − Wιeι(t)

− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2 eι(t)

‖eι(t)‖22
− ηP

a−1
2 sign(eι(t))|eι(t)|a, (33)

where ι = 1, 2, . . . , κ , A and D are uncertain parameters which belong to the ranges given
in (15).

Theorem 7 Suppose τ̇s(t) � γs < 1. The network (32) with the parameter ranges defined by
(15) achieves robust finite-time anti-synchronization under the controller (24) if there exist
matrices 0 < P = diag(p1, p2, . . . , pn) ∈ R

n×n, W = diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ

and 0 < Qs = diag(Qs
1, Q

s
2, . . . , Q

s
κ ) ∈ R

nκ×nκ , such that

K3 + K2 +
m∑
s=1

cs

(
FT
s Q−1

s Fs + 1

1 − γs
Qs

)
� 0, (34)

where K3 = Iκ ⊗ (−PA− − A−P + �DP2 + Θ), �D = ∑n
r=1

∑n
j=1 d̃

2
r j , K2 = −(Iκ ⊗

P)W−WT (Iκ ⊗P), Fs = Gs⊗(Γ T
s P). In addition, the settling time of anti-synchronization

T satisfies T � T2 = (V2(0))
1−a
2

η(1−a)
.

Proof The Lyapunov functional is constructed similarly as that in Theorem 5 for network
(33). Then,

V̇2(t) � 2
κ∑

ι=1

eTι (t)P

(
−Aeι(t)+Dg(Yι(t))+Dg(Y0(t))+

m∑
s=1

κ∑
j=1

csG
s
ι jΓse j (t−τs(t))

− Wιeι(t) − ηP
a−1
2 sign(eι(t))|eι(t)|a

)
−

m∑
s=1

cse
T (t − τs(t))Qse(t−τs(t))

− 2η
κ∑

ι=1

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2

+
m∑
s=1

cs
1 − γs

eT (t)Qse(t)

� eT (t)
[
Iκ ⊗ (−PA− − A−P + �DP2 + Θ)

]
e(t) +

m∑
s=1

cs
1 − γs

eT (t)Qse(t)

+
m∑
s=1

cse
T (t)

[
Gs ⊗ (PΓs)

]
Q−1

s

[
Gs ⊗ (Γ T

s P)
]
e(t)−2

κ∑
ι=1

eTι (t)PWιeι(t)

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2
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= eT (t)

{
Iκ ⊗ (−PA− − A−P + �DP2 + Θ) +

m∑
s=1

cs
1 − γs

Qs − (Iκ ⊗ P)W

− WT (Iκ ⊗ P) +
m∑
s=1

cs
[
Gs ⊗ (PΓs)

]
Q−1

s

[
Gs ⊗ (Γ T

s P)
]}

e(t)

− 2η
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t) +
m∑
s=1

cs
1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

= − 2η(V2(t))
a+1
2 .

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι = 1, 2, . . . , κ, t >

T2. Obviously, the network (32) with the parameter ranges defined by (15) achieves robust
finite-time anti-synchronization under the controller (24). The proof is completed. 	


4.2.2 Robust Anti-synchronization in Finite Time for Delayed MWCNNs with Switching
Topology

In this subsection, the network model of delayedMWCNNs with the parameter uncertainties
and switching topology is described by:

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j ΓsY j (t − τs(t)) + uι(t), (35)

where ι = 1, 2, . . . , κ, Yι(t), g(·), cs, uι(t), Γs represent the same definitions as those in
Sect. 3.1.1, A, D change in some given precision described by (15), τs(t) is the time-varying
delay as that in Sect. 4.1.1, and Gs,ς

ι j has the same meaning as that in Sect. 3.1.2.
Construct the same controller as (24) for the network (35). Then,

Ẏι(t) = − AYι(t) + Dg(Yι(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j ΓsY j (t − τs(t)) − Wι(Yι(t) + Y0(t))

− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
(Yι(h) + Y0(h))T Qs

ι (Yι(h) + Y0(h))dh

) a+1
2

× Yι(t) + Y0(t)

‖Yι(t) + Y0(t)‖22
− ηP

a−1
2 sign(Yι(t) + Y0(t))|Yι(t) + Y0(t)|a .

Let eι(t) = Yι(t) + Y0(t). Then, we have

ėι(t) = − Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +
m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t−τs(t)) − Wιeι(t)
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− ηP−1
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2 eι(t)

‖eι(t)‖22
− ηP

a−1
2 sign(eι(t))|eι(t)|a, (36)

where ι = 1, 2, . . . , κ , A and D are uncertain parameters which belong to the ranges given
in (15).

Theorem 8 Suppose τ̇s(t) � γs < 1. The network (35) with the parameter ranges defined by
(15) achieves robust finite-time anti-synchronization under the controller (24) if there exist
matrices 0 < P = diag(p1, p2, . . . , pn) ∈ R

n×n, W = diag(W1,W2, . . . ,Wκ ) ∈ R
nκ×nκ

and 0 < Qs = diag(Qs
1, Q

s
2, . . . , Q

s
κ ) ∈ R

nκ×nκ , such that

K3 + K2 +
m∑
s=1

cs

(
FT
s,ς Q

−1
s Fs,ς + 1

1 − γs
Qs

)
� 0, (37)

where ς = 1, 2, . . . , i, K3 = Iκ ⊗ (−PA− − A−P + �DP2 + Θ), K2 = −(Iκ ⊗ P)W −
WT (Iκ ⊗ P), �D = ∑n

r=1
∑n

j=1 d̃
2
r j , Fs,ς = Gs,ς ⊗ (Γ T

s P). What’s more, the settling

time of anti-synchronization T satisfies T � T2 = (V2(0))
1−a
2

η(1−a)
.

Proof Construct the same Lyapunov functional as in Theorem 5 for network (36). Then,

D+V2(t) � 2
κ∑

ι=1

eTι (t)P

(
−Aeι(t)+Dg(Yι(t))+Dg(Y0(t)) +

m∑
s=1

κ∑
j=1

csG
s,ς
ι j Γse j (t

− τs(t))−Wιeι(t)−ηP
a−1
2 sign(eι(t))|eι(t)|a

)
+

m∑
s=1

cs
1 − γs

eT (t)Qse(t)

− 2η
κ∑

ι=1

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eTι (h)Qs

ι eι(h)dh

) a+1
2

−
m∑
s=1

cse
T (t

− τs(t))Qse(t − τs(t))

� eT (t)
[
Iκ ⊗ (−PA− − A−P + �DP2 + Θ)

]
e(t) +

m∑
s=1

cs
1 − γs

eT (t)Qse(t)

+
m∑
s=1

cse
T (t)

[
Gs,ς ⊗(PΓs)

]
Q−1

s

[
Gs,ς ⊗(Γ T

s P)
]
e(t)−2

κ∑
ι=1

eTι (t)PWιeι(t)

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

= eT (t)

{
Iκ ⊗ (−PA− − A−P + �DP2 + Θ) +

m∑
s=1

cs
1 − γs

Qs − (Iκ ⊗ P)W

− WT (Iκ ⊗ P) +
m∑
s=1

cs
[
Gs,ς ⊗ (PΓs)

]
Q−1

s

[
Gs,ς ⊗ (Γ T

s P)
]}

e(t)
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− 2η
m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

− 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2

� − 2η
κ∑

ι=1

(eTι (t)Peι(t))
a+1
2 − 2η

m∑
s=1

(
cs

1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

� − 2η

(
κ∑

ι=1

eTι (t)Peι(t) +
m∑
s=1

cs
1 − γs

∫ t

t−τs (t)
eT (h)Qse(h)dh

) a+1
2

= − 2η(V2(t))
a+1
2 .

Similar to the proof of Theorem 1, it is easy to obtain ‖eι(t)‖2 = 0, ι = 1, 2, . . . , κ, t >

T2. Obviously, the network (35) with the parameter ranges defined by (15) achieves robust
finite-time anti-synchronization under the controller (24). The proof is completed. 	


Remark 2 In this paper, by designing suitable state feedback controllers, several sufficient
conditions which guarantee the finite-time anti-synchronization ofMWCNNs with and with-
out coupling delays are obtained. To the best of knowledge, this is the first paper toward to
studying anti-synchronization for MWCNNs in finite time. Recently, a few scholars estab-
lished some novel finite-time synchronization criteria for complex networks via intermittent
feedback control scheme [35,36]. Incorporating this new control approach and techniques
into the research on finite-time anti-synchronization of MWCNNs is a very interesting and
challenging problem, which would become one of research topics of our future work.

5 Numerical Examples

Example 4.1 Consider the switched MWCNNs with parameter uncertainties as follows:

Ẏι(t) = − AYι(t) + Dg(Yι(t)) + 0.5
6∑
j=1

G1,ς
ι j Γ1Y j (t) + 0.8

6∑
j=1

G2,ς
ι j Γ2Y j (t)

+ 1.1
6∑
j=1

G3,ς
ι j Γ3Y j (t) + uι(t), (38)

where ι = 1, 2, . . . , 6, ς = 1, 2, gk(σ ) = |σ+1|−|σ−1|
4 (k = 1, 2, 3), G1,1 and G1,2 are

two possible topologies which are switched as G1,1 → G1,2 → G1,1 → G1,2 → · · · ,
and each graph is active for 1s, G2,1, G2,2, G3,1, G3,2 are switched in the same way. The
inner coupling matrices Γ1, Γ2, Γ3 and the coupling matrices G1,1 = (G1,1

ι j )6×6, G1,2 =
(G1,2

ι j )6×6, G2,1 = (G2,1
ι j )6×6, G2,2 = (G2,2

ι j )6×6, G3,1 = (G3,1
ι j )6×6, G3,2 = (G3,2

ι j )6×6

are chosen as, respectively

Γ1 =
⎛
⎝ 0.6 0.1 0

0 0.4 0
0 0.2 0.5

⎞
⎠ , Γ2 =

⎛
⎝ 0.7 0 0.2

0 0.4 0
0.3 0 0.7

⎞
⎠ , Γ3 =

⎛
⎝ 0.2 0 0

0 0.7 0.2
0.1 0 0.6

⎞
⎠ ,
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G1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.7 0.1 0.1 0.3 0.2 0
0.1 − 0.8 0 0.2 0.2 0.3
0.1 0 − 0.4 0.2 0 0.1
0.3 0.2 0.2 − 1.2 0.3 0.2
0.2 0.2 0 0.3 − 0.9 0.2
0 0.3 0.1 0.2 0.2 − 0.8

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.6 0.2 0 0.2 0.1 0.1
0.2 − 0.5 0.1 0.1 0.1 0
0 0.1 − 0.7 0 0.4 0.2
0.2 0.1 0 − 0.5 0.2 0
0.1 0.1 0.4 0.2 − 0.9 0.1
0.1 0 0.2 0 0.1 − 0.4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G2,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.8 0.2 0.1 0.2 0.3 0
0.2 − 0.6 0 0.2 0 0.2
0.1 0 − 1.0 0.3 0.4 0.2
0.2 0.2 0.3 − 1.2 0.1 0.4
0.3 0 0.4 0.1 − 1.0 0.2
0 0.2 0.2 0.4 0.2 − 1.0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G2,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.5 0.1 0 0.1 0.1 0.2
0.1 − 0.7 0.4 0.1 0.1 0
0 0.4 − 1.2 0 0.5 0.3
0.1 0.1 0 − 0.5 0.3 0
0.1 0.1 0.5 0.3 − 1.1 0.1
0.2 0 0.3 0 0.1 − 0.6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G3,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.7 0.3 0.1 0 0.1 0.2
0.3 − 0.9 0.3 0.1 0 0.2
0.1 0.3 − 0.9 0.2 0.3 0
0 0.1 0.2 − 0.8 0.4 0.1
0.1 0 0.3 0.4 − 0.9 0.1
0.2 0.2 0 0.1 0.1 −0.6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G3,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.6 0.2 0 0.1 0.2 0.1
0.2 − 0.8 0.2 0.2 0.2 0
0 0.2 − 0.7 0 0.1 0.4
0.1 0.2 0 −0.6 0.3 0
0.2 0.2 0.1 0.3 −1.0 0.2
0.1 0 0.4 0 0.2 −0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The parameters A = diag(a1, a2, . . . , an), D = (dr j )n×n in the network (38) can be changed
in the following given precisions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AI := {A = diag(ar ) : A− � A � A+, i .e., 0 < 0.5r � ar � 0.6r ,

r = 1, 2, . . . , n,∀A ∈ AI },
DI := {D = (dr j )n×n : D− � D � D+, i .e.,

0.2 j

r + j
� dr j � 0.3 j

r + j
,

r , j = 1, 2, . . . , n,∀D ∈ DI }.

(39)

Obviously, gk(·) (k = 1, 2, 3) satisfies Assumption 1 with θk = 0.5. Take W =
diag(0.2I3, 0.4I3, 0.3I3, 0.6I3, 0.7I3, 0.5I3). The following matrix P satisfying (22) can
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Fig. 1 ‖eι(t)‖, ι = 1, 2, . . . , 6

be computed by utilizing MATLAB Toolbox:

P =
⎛
⎝ 0.3252 0 0

0 0.2505 0
0 0 0.1992

⎞
⎠ .

According to Theorem 4, the network (38) with the parameter ranges defined by (39)
achieves robust finite-time anti-synchronization under the controller (3) and the time esti-
mation of achieving anti-synchronization is T1 = 9.32. The simulation result is displayed in
Fig. 1.

Example 4.2 Consider the following switched MWCNNs with the parameter uncertainties
and coupling delays:

Ẏι(t) = −mAYι(t) + Dg(Yι(t)) + 0.2
6∑
j=1

G1,ς
ι j Γ1Y j (t − τ1(t)) + 0.1

6∑
j=1

G2,ς
ι j Γ2Y j (t

− τ2(t)) + 0.3
6∑
j=1

G3,ς
ι j Γ3Y j (t − τ3(t)) + uι(t), (40)

where ι = 1, 2, . . . , 6, ς = 1, 2, gk(σ ) = |σ+1|−|σ−1|
8 (k = 1, 2, 3), τ1(t) = 1

10 −
1
30e

−t , τ2(t) = 1
10 − 1

40e
−t , τ3(t) = 1

10 − 1
50e

−t , τ = 1
10 , γ1 = 1

30 , γ2 = 1
40 , γ3 = 1

50 ,
G1,1 and G1,2 are two possible topologies which are switched as G1,1 → G1,2 → G1,1 →
G1,2 → · · · , and G2,1, G2,2, G3,1, G3,2 are switched in the same way with activation time
of 1s for each graph. The inner coupling matrices Γ1, Γ2, Γ3 and the coupling matrices

G1,1 = (G1,1
ι j )6×6, G1,2 = (G1,2

ι j )6×6, G2,1 = (G2,1
ι j )6×6, G2,2 = (G2,2

ι j )6×6, G3,1 =
(G3,1

ι j )6×6, G3,2 = (G3,2
ι j )6×6 are chosen as, respectively
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Γ1 =
⎛
⎝ 0.4 0.1 0

0 0.5 0
0 0.2 0.6

⎞
⎠ , Γ2 =

⎛
⎝ 0.6 0 0.3

0 0.2 0
0.1 0 0.4

⎞
⎠ , Γ3 =

⎛
⎝ 0.3 0 0
0.1 0.4 0.2
0 0 0.5

⎞
⎠ ,

G1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.5 0.2 0.1 0 0.1 0.1
0.2 − 1.0 0.2 0.3 0.1 0.2
0.1 0.2 − 0.6 0.2 0 0.1
0 0.3 0.2 − 0.9 0.3 0.1
0.1 0.1 0 0.3 − 0.5 0
0.1 0.2 0.1 0.1 0 − 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1.0 0.3 0 0.2 0.3 0.2
0.3 − 0.8 0.1 0.2 0.2 0
0 0.1 − 0.8 0 0.5 0.2
0.2 0.2 0 − 0.5 0.1 0
0.3 0.2 0.5 0.1 − 1.4 0.3
0.2 0 0.2 0 0.3 − 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G2,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.9 0.3 0.2 0 0.3 0.1
0.3 − 1.0 0 0.3 0.1 0.3
0.2 0 − 0.8 0.1 0.5 0
0 0.3 0.1 − 0.7 0.1 0.2
0.3 0.1 0.5 0.1 − 1.0 0
0.1 0.3 0 0.2 0 − 0.6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G2,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.7 0.2 0 0.2 0.1 0.2
0.2 − 0.8 0.2 0.2 0.2 0
0 0.2 − 0.8 0 0.4 0.2
0.2 0.2 0 − 0.7 0.3 0
0.1 0.2 0.4 0.3 − 1.3 0.3
0.2 0 0.2 0 0.3 − 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G3,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.7 0.1 0.1 0.3 0.2 0
0.1 − 0.8 0.2 0 0.3 0.2
0.1 0.2 − 1.0 0.2 0.3 0.2
0.3 0 0.2 − 0.6 0 0.1
0.2 0.3 0.3 0 − 0.9 0.1
0 0.2 0.2 0.1 0.1 − 0.6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

G3,2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 0.8 0.2 0 0.4 0.1 0.1
0.2 − 0.8 0.3 0.2 0.1 0
0 0.3 − 0.8 0 0.4 0.1
0.4 0.2 0 − 0.8 0.2 0
0.1 0.1 0.4 0.2 − 1.0 0.2
0.1 0 0.1 0 0.2 − 0.4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The parameters A = diag(a1, a2, . . . , an), D = (dr j )n×n in the network (40) can be
changed same as those in (39). Obviously, gk(·) (k = 1, 2, 3) satisfies Assumption 1 with
θk = 0.25. Take W = diag(0.2I3, 0.1I3, 0.3I3, 0.6I3, 0.4I3, 0.5I3). By employing MAT-
LAB Toolbox, the following matrices P, Q1, Q2 and Q3 satisfying (37) can be obtained:

P =
⎛
⎝ 0.4613 0 0

0 0.3981 0
0 0 0.3020

⎞
⎠ ,
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Q1 = I6 ⊗
⎛
⎝ 0.2083 0 0

0 0.2107 0
0 0 0.2110

⎞
⎠ ,

Q2 = I6 ⊗
⎛
⎝ 0.1050 0 0

0 0.1053 0
0 0 0.1054

⎞
⎠ ,

Q3 = I6 ⊗
⎛
⎝ 0.3067 0 0

0 0.3145 0
0 0 0.3157

⎞
⎠ .

According to Theorem 8, the network (40) with the parameter ranges defined by (39)
achieves robust finite-time anti-synchronization under the controller (24) and the time esti-
mation of achieving anti-synchronization is T2 = 4.46. The simulation result is displayed in
Fig. 2.

6 Conclusion

In this paper, the finite-time anti-synchronization and robust finite-time anti-synchronization
for MWCNNs with and without coupling delays have been respectively studied. By making
use of Lyapunov functional method as well as inequality techniques, some finite-time anti-
synchronization and robust finite-time anti-synchronization conditions have been derived
for those network models. Furthermore, we have also considered the finite-time anti-
synchronization and robust finite-time anti-synchronization of MWCNNs with switching
topology. Finally, several simulation examples have been provided to verified the correctness
of our results.
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