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Abstract
In this paper, an original scheme is presented, in order to study the finite-time stability
of the equilibrium point, and to prove its existence and uniqueness, for Caputo–Katugam-
pola fractional-order neural networks, with time delay. The proposed scheme uses a newly
introduced fractional derivative concept in the literature, which is the Caputo–Katugampola
fractional derivative. The effectiveness of the theoretical results is shown through simulations
for two numerical examples.

Keywords Fractional-order calculus · Neural networks · Finite-time stability ·
Caputo–Katugampola derivative

1 Introduction

Nowadays, artificial neural networks can be considered as one of the most used and growing
techniques in technology. For instance, they are extensively exploited in voice recognition
[1], pattern identification [2] and systems control [3]. It is of a great importance to note that,
in electronic implementation of neural networks, time delays are very frequent. This is due
to various reasons, such as circuit integration and communication delays [4]. Thus, it is very
significant to study the stability of delayed neural networks, from both the theoretical aspect
and the practical aspect. During the last three decades, several research works have been

B A. M. Nagy
abdelhameed_nagy@yahoo.com

Assaad Jmal
jmalassaad@yahoo.fr

Abdellatif Ben Makhlouf
benmakhloufabdellatif@gmail.com

1 Control and Energy Management Laboratory, National School of Engineering, Sfax University, BP
1173, 3038 Sfax, Tunisia

2 Department of Mathematics, College of Science, Jouf University, Aljouf, Saudi Arabia

3 Department of Mathematics, Faculty of Science, Kuwait University, 13060 Safat, Kuwait

4 Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-019-10060-6&domain=pdf
http://orcid.org/0000-0003-4335-6990


608 A. Jmal et al.

conducted in this context [5–13]. Though, the great majority of these investigations have
been based on infinite time intervals.

The finite-time stability definition has been introduced for the first time in [14]. Finite-time
stable systems have been proved to have interesting properties, such as disturbance rejection,
better robustness and faster convergence [15]. For this reason, several research works have
been conducted to study finite-time stability and stabilization for different classes of systems
[16–18].

In the last decades, several applications of the fractional calculus in science and engi-
neering have emerged [19, 20]. This fact has considerably stimulated the investigation of
fractional-order systems by researchers in the control theory. Indeed, several papers, dealing
with this area of research, have been elaborated in the last years, and still, many researchers
are working on this field. As examples of the treated queries for fractional-order systems, in
the literature, one can cite: model reference control [21], fault reconstruction [22] and finite-
time stability analysis [23]. In the last two decades and dealingwith artificial neural networks,
many researchers have incorporated the fractional calculus in them, see for instance [24–27].
In particular, some remarkable papers have investigated the finite-time stability problem for
fractional neural networks [28–31]. It is prominent to indicate that, recently, some interesting
papers have been published in relation with finite-time stability for fractional-order neural
networks with time delay [32–36]. Note that, in these four works, the well-known definition
of Caputo fractional derivative has been used.

In the last years, Katugampola has defined a new fractional derivative concept, called the
Caputo–Katugampola derivative. This new concept has been shown to be more general than
the classical Caputo one [37, 38]. The Caputo–Katugampola derivative is characterized by
two parameters: ρ > 0 and 0 < α < 1. It is noteworthy to indicate that, if ρ � 1, this
derivative reduces to the classical Caputo one [39]. From a physical point of view, it is being
shown in the literature that the Katugampola fractional-order representation is of value. See
for instance [40], where it has been insisted that the Caputo–Katugampola derivative is very
significant for quantum mechanics.

Motivated by all the above discussions, the authors propose in this paper an original inves-
tigation, in which it is question of proving the existence and uniqueness of the equilibrium
point, which is finite-time stable, for Caputo–Katugampola fractional-order neural networks,
with time delay. In order to demonstrate the existence of a unique equilibrium point, the
fixed-point theorem is exploited in this paper. It is of value to note that other research works
[41, 42] have used another approach to prove it, which is the topological degree theory. To
the best of the authors’ knowledge, no analogue study has been done in the literature for
the new general class of Katugampola fractional-order systems. To be more precise, some
aspects, in the few similar literature papers, have motivated and have inspired the authors to
develop the present paper. In the following, the contribution aspect is clarified, and the main
advantages of this work, compared to the literature results, are summarized:

• In [32–36], the authors have considered Caputo fractional-order neural networks. The
present paper investigates awider class of systems, since the considered Caputo–Katugam-
pola fractional derivative is more general than the classical Caputo fractional derivative.

• The present paper has another merit, compared to [32, 33, 36], since these three cited
works did not investigate the existence and uniqueness problem of the equilibrium point.
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Throughout the paper, the authors investigate the fractional-order neural networks with
time delay, given by the following representation:

C Dα,ρ
t0 xi (t) � −ci xi (t) +

n∑

j�1

ai j f j
(
x j (t)

)
+

n∑

j�1

bi j f j
(
x j (t − τ)

)
+ Ii , i � 1, 2, . . . , n

(1)

The corresponding vector form is:

C Dα,ρ
t0 x(t) � −Cx(t) + A f (x(t)) + B f (x(t − τ)) + I (2)

for t ∈ [
t0, t f

]
, where C Dα,ρ

t0 is the Caputo–Katugampola fractional derivative (see Def-
inition 3 in the preliminaries’ section), with the derivation parameters: 0 < α < 1,
and ρ > 0. x(t) � (x1(t), x2(t), . . . xn(t))T ∈ R

n is the state vector, f (x(t)) �
( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ R

n is the neuron activation function, C � diag
(c1, c2, . . . cn), is the rate, with which the ith neuron resets its potential to the resting state
in isolation when disconnection from the networks and the external inputs (ci > 0); A �(
ai j

)
n×n and B � (

bi j
)

n×n represent the connection between the jth neuron and the ith neu-

ron at t and t − τ , respectively, (τ is the nonnegative constant delay), I � (I1, I2, . . . In)T

stands for constant inputs.
With the initial conditions:

xi (t0 + s) � ψi (s) (3)

ψi (s) are continuous functions defined on [−τ , 0], such that: ||ψ ||� sups∈[−τ ,0]
∑n

i�1|ψi (s)|.
The rest of the paper is organized as follows. In Sect. 2, some useful preliminaries are

given. In Sect. 3, the main results of this paper are detailed. Two theorems are demonstrated,
in order to prove the existence and uniqueness of the equilibrium point, which is finite-
time stable, for Caputo–Katugampola fractional-order neural networks, with time delay.
Theorem 1 investigates the case 0 < α ≤ 1

2 , while Theorem 2 investigates the case 1
2 < α <

1. Finally, in Sect. 4, The effectiveness of the theoretical results is shown through simulations
for two numerical examples.

2 Preliminaries

Definition 1 [37] (Katugampola fractional integral) Given α > 0, ρ > 0 and an interval
[a, b] of R, where 0 < a < b. The Katugampola fractional integral of a function x ∈ L1

([a, b]) is defined by:

I α,ρ

a+ � ρ1−α

Γ (α)

t∫

a

sρ−1u(s)

(tρ − sρ)1−α
ds,

where Γ is the gamma function.

Definition 2 [38] (Katugampola fractional derivative) Given 0 < α < 1, ρ > 0 and an
interval [a, b] of R, where 0 < a < b. The Katugampola fractional derivative is defined by

Dα,ρ

a+ u(t) � ρα

Γ (1 − α)
t1−ρ d

dt

t∫

a

sρ−1u(s)

(tρ − sρ)1−α
ds,
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Definition 3 (Caputo–Katugampola fractional derivative) Given 0 < α < 1, ρ > 0 and an
interval [a, b] of R, where 0 < a < b. The Caputo–Katugampola fractional derivative is
defined by

C Dα,ρ

a+ u(t) � C Dα,ρ

a+ u(t)[u(t) − u(a)]

� ρα

Γ (1 − α)
t1−ρ d

dt

t∫

a

sρ−1[u(s) − u(a)]

(tρ − sρ)1−α
ds,

Definition 4 [34] The equilibrium point x∗ � (
x∗
1 , x∗

2 , . . . , x∗
n

)T of system (1) is said to be
finite time stable with respect to {t0, δ, ε,Θ, τ }, 0 < δ < ε, δ, ε ∈ R,Θ � [

t0, t0 + t f
]
, such

that for any solution x(t) � (x1(t), x2(t), . . . xn(t))T of system (1) with initial conditions
(3), if and only if

||ψ − x∗||< δ,

implies

||x(t) − x∗||< ε, ∀t ∈ Θ,

where

||ψ − x∗||� sup
s∈[−τ ,0]

n∑

i�1

∣∣ψi (s) − x∗
i

∣∣, ||x(t) − x∗||�
n∑

i�1

∣∣xi (t) − x∗
i

∣∣.

Lemma 1 [43] Let n ∈ N and a1, a2, . . . , an be nonnegative real numbers. Then for l > 1;
(

n∑

i�1

ai

)l

≤ nl−1
n∑

i�1

al
i .

Lemma 2 (Holder inequality, Cauchy–Schwartz inequality) [44]Let p, q > 1 and 1
p +

1
q � 1.

If f1 ∈ L p([a, b]), , f2 ∈ Lq([a, b]), then f1 f2 ∈ L1([a, b]) and:

b∫

a

| f1(x) f2(x)|dx ≤
⎛

⎝
b∫

a

| f1(x)|pdx

⎞

⎠

1
p
⎛

⎝
b∫

a

| f2(x)|qdx

⎞

⎠

1
q

where L p([a, b]) is the Banach space of all Lebesgue measurable functions f : [a, b] → R,

with
b∫

a
| f (x)|pdx < ∞. If p � q � 2, then it reduces to the Cauchy–Schwartz inequality:

b∫

a

| f1(x) f2(x)|dx ≤
⎛

⎝
b∫

a

| f1(x)|2dx

⎞

⎠

1
2
⎛

⎝
b∫

a

| f2(x)|2dx

⎞

⎠

1
2

3 Main Results

First, these assumptions are considered:
(H1) The functions fi are Lipschitz; one can find constants Fi > 0 such that

|| fi (x) − fi (y)||≤ Fi ||x − y||
for any x, y ∈ R, i � 1, 2, . . . , n.
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(H2) Given ai j , bi j , ci and Fj , one has:

n∑

i�1

max
1≤ j≤n

{∣∣ai j
∣∣Fj +

∣∣bi j
∣∣Fj

}
< min

1≤i≤n
{ci }.

Theorem 1 Assume that (H1) and (H2) hold and 0 < α ≤ 1
2 . If the following condition is

satisfied:

q
√
3q−1 + N Aq

2

[
(t0 + τ)ρ − tρ0

]
exp

[
tρf + N

(
Aq
1

q

(
tρf − tρ0

)
+

Aq
1

q

((
t f + δ

)ρ − (t0 + δ)ρ
)
)]

<
ε

δ

(4)

where N � 3q−1ρ−qα

(Γ (α))q

(
Γ (p(α−1)+1)

pαp−p+1

) q
p
, p � 1 + α and q � α+1

α
, A1 � max1≤i≤n(ci ) +

∑n
i�1 max1≤ j≤n

(∣∣ai j
∣∣Fj

)
and A2 � ∑n

i�1 max1≤ j≤n
(∣∣bi j

∣∣Fj
)
. Then, there exists a unique

equilibrium point x∗ � (
x∗
1 , x∗

2 , . . . , x∗
n

)T
of system (1) which is finite time stable with

respect to {t0, δ, ε,Θ, τ }, 0 < δ < ε, δ, ε ∈ R, Θ � [
t0, t0 + t f

]
.

Proof The first step, is to prove that there exists a unique equilibrium point for the
considered class of systems. We consider the function Φ given in [35] by Φ(u) �
(Φ1(u),Φ2(u), . . . , Φn(u))T where

Φi (u) �
n∑

j�1

ai j f j

(
u j

c j

)
+

n∑

j�1

bi j f j

(
u j

c j

)
+ Ii , i � 1, 2, . . . , n

for u � (u1, u2, . . . un)T .

Consider two vectors u � (u1, u2, . . . un)T and v � (v, v2, . . . vn)T . Then, using assump-
tion (H1) and the same development as [35], we get:

||Φ(u) − Φ(v)|| �
n∑

i�1

|Φi (u) − Φi (v)|

≤
∑n

i�1 max1≤ j≤n
{∣∣ai j

∣∣Fj +
∣∣bi j

∣∣Fj
}

min1≤i≤n{ci }
n∑

j�1

∣∣u j − v j
∣∣ (5)

HenceΦ : Rn → R
n is a contraction mapping onRn , which means that there exists a unique

fixed point u∗ ∈ R
n satisfying Φ(u∗) � u∗:

u∗
i �

n∑

j�1

ai j f j

(
u∗

j

c j

)
+

n∑

j�1

bi j f j

(
u∗

j

c j

)
+ Ii , i � 1, 2, . . . , n (6)

Consider ci x∗
i � u∗

i , i � 1, 2, . . . , n, then

− ci x∗
i +

n∑

j�1

ai j f j

(
x∗

j

)
+

n∑

j�1

bi j f j

(
x∗

j

)
+ Ii � 0, (7)

Thus, system (1) has a unique equilibrium point x∗.
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Now, the goal is to check the finite time stability of x∗ � (
x∗
1 , x∗

2 , . . . , x∗
n

)T . Define x
(t) � (x1(t), x2(t), . . . xn(t))T as a solution of system (1). We have

C Dα,ρ
t0

(
xi (t) − x∗

i

) � − ci
(
xi (t) − x∗

i

)
+

n∑

j�1

ai j

(
f j

(
x j (t)

) − f j

(
x∗

j

))

+
n∑

j�1

bi j

(
f j

(
x j (t − τ)

) − f j

(
x∗

j

))
, t ≥ t0, (8)

The integral equation of (8) is

xi (t) − x∗
i � xi (t0) − x∗

i + I α,ρ
t0,t gi (s), t ≥ t0 (9)

where

gi (s) � − ci
(
xi (s) − x∗

i

)
+

n∑

j�1

ai j

(
f j

(
x j (s)

) − f j

(
x∗

j

))
+

n∑

j�1

bi j

(
f j

(
x j (s − τ)

) − f j

(
x∗

j

))
,

(10)

Then,

||x(t) − x∗|| �
n∑

i�1

∣∣xi (t0) − x∗
i + I α,ρ

t0,t gi (s)
∣∣

≤
n∑

i�1

∣∣xi (t0) − x∗
i

∣∣ +
∣∣∣∣∣

n∑

i�1

I α,ρ
t0,t gi (s)

∣∣∣∣∣

≤ ||ψ − x∗||+
∣∣∣∣∣

n∑

i�1

I α,ρ
t0,t gi (s)

∣∣∣∣∣, t ≥ t0, (11)

It follows that,
∣∣∣∣∣

n∑

i�1

I α,ρ
t0,t gi (s)

∣∣∣∣∣ ≤
n∑

i�1

ci I α,ρ
t0,t |xi (s) − x∗

i |

+
n∑

i�1

n∑

j�1

|ai j |Fj I α,ρ
t0,t |x j (s) − x∗

j |

+
n∑

i�1

n∑

j�1

|bi j |Fj I α,ρ
t0,t |x j (s − τ ) − x∗

j |

So,

||x(t) − x ·||≤ ||ϕ||+ max
1≤i≤n

(ci )I α,ρ
t0,t ||x(s) − x∗||+

n∑

i�1

max
1≤ j≤n

∣∣ai j
∣∣Fj I α,ρ

t0,t ||x(s) − x∗||

+
n∑

i�1

max
1≤ j≤n

∣∣bi j
∣∣Fj I α,ρ

t0,t ||x(s − τ) − x∗||, t ≥ t0 ≤ ||ϕ||

+ A1 I α,ρ
t0,t ||x(s) − x∗||+A2 I α,ρ

t0,t ||x(s − τ) − x∗||, t ≥ t0,

where A1 � max1≤i≤n(ci ) +
∑n

i�1 max1≤ j≤n
(∣∣ai j

∣∣Fj
)
, A2 � ∑n

i�1 max1≤ j≤n
(∣∣bi j

∣∣Fj
)

and ϕ � ψ − x∗. Let u(t) � x(t) − x∗. Using the Holder inequality, one has:
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||u(t)|| ≤ ||ϕ||+A1
ρ1−α

Γ (α)

t∫

t0

(
tρ − sρ

)α−1
sρ−1||u(s)||ds

+ A2
ρ1−α

Γ (α)

t∫

t0

(
tρ − sρ

)α−1
sρ−1||u(s − τ)||ds

≤ ||ϕ||+ ρ−α

Γ (α)

⎛

⎝
t∫

t0

ρepsρ

sρ−1(tρ − sρ
)pα−p

ds

⎞

⎠

1
p

×
⎡

⎢⎣A1

⎛

⎝ρ

t∫

t0

e−qsρ

sρ−1||u(s)||q ds

⎞

⎠

1
q

+ A2

⎛

⎝ρ

t∫

t0

e−qsρ

sρ−1||u(s − τ)||q ds

⎞

⎠

1
q
⎤

⎥⎦

Using the change of variable μ � p(tρ − sρ), we get:
t∫

t0

ρepsρ

sρ−1(tρ − sρ
)pα−p

ds ≤ eptρ

pαp−p+1 Γ (p(α − 1) + 1), t ≥ t0,

It follows from Lemma 1 (for n � 3 and l � q) that:
(

e−tρ ||x(t)||
)q ≤ 3q−1||ϕ||q+N

⎡

⎣Aq
1

t∫

t0

ρsρ−1e−qsρ ||x(s)||qds + Aq
2

t∫

t0

ρsρ−1e−qsρ ||x(s − τ)||qds

⎤

⎦

Case 1 Let t ∈ [t0, t0 + τ ]:

We have

(
e−tρ ||x(t)||

)q ≤ 3q−1||ϕ||q+N

⎡

⎣Aq
2

t∫

t0

ρsρ−1e−qsρ ||ϕ(s)||q ds + Aq
1

t∫

t0

ρsρ−1e−qsρ ||x(s)||q ds

⎤

⎦

≤ ||ϕ||q
(
3q−1 + N Aq

2

(
(t0 + τ)ρ − tρ0

))
+ N Aq

1

t∫

t0

ρsρ−1e−qsρ ||x(s)||q ds

Case 2 Let t > t0 + τ :

We have
t∫

t0

ρsρ−1e−qsρ ||x(s − τ)||q ds �
t−τ∫

t0−τ

ρ(u + τ)ρ−1e−q(u+τ )ρ ||x(u)||q du

�
t0∫

t0−τ

ρ(u + τ)ρ−1e−q(u+τ )ρ ||x(u)||q du

+

t−τ∫

t0

ρ(u + τ)ρ−1e−q(u+τ)ρ ||x(u)||q du
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614 A. Jmal et al.

≤ ||ϕ||q
t0∫

t0−τ

ρ(u + τ)ρ−1du +

t∫

t0

ρ(u + τ)ρ−1
(

e−uρ

(||x(u)||)
)q

du

≤ ||ϕ||q(
(t0 + τ)ρ − tρ0

)
+

t∫

t0

ρ(u + τ)ρ−1
(

e−uρ

(||x(u)||)
)q

du

So,
(

e−tρ ||x(t)||
)q ≤ ||ϕ||q(

3q−1 + N Aq
2

(
(t0 + τ)ρ − tρ0

))

+ N

⎡

⎣
t∫

t0

(
ρ Aq

1sρ−1 + ρ Aq
2(s + τ)ρ−1)(e−qsρ ||x(s)||

)q
ds

⎤

⎦

The Gronwall inequality on
[
t0; t f

]
, gives:

(
e−tρ ||x(t)||

)q ≤ ||ϕ||q(
3q−1 + N Aq

2

(
(t0 + τ)ρ − tρ0

))

× exp
[
N

(
Aq
1

(
tρ − tρ0

)
+ Aq

2

(
(t + τ)ρ − (t0 + τ)ρ

))]

Hence,

||x(t)|| ≤ ||ϕ|| q
√
3q−1 + N Aq

2

(
(t0 + τ)ρ − tρ0

)

× exp

[
tρ + N

(
Aq
1

q

(
tρ − tρ0

)
+

Aq
2

q

((
(t + τ)ρ − (t0 + τ)ρ

))
)]

, ∀t ∈ [
t0, t f

]

So, if (4) is satisfied and ||ϕ||< δ, then ||x(t)||<∈, ∀t ∈ [
t0, t f

]
i.e., system (1) is finite-time

stable w.r.t {t0, δ, ε,Θ, τ }
Theorem 2 Suppose α ∈ ( 1

2 , 1
)

and the fractional-order system (1) satisfies the initial con-
dition x(t0 + s) � ϕ(s),−τ < s < 0. If the following condition is satisfied:
√
3 + 2M A2

2

(
(t0 + τ)ρ − tρ0

)
exp

(
T ρ + M

(
A2
1

(
tρf − tρ0

)
+ A2

2

((
t f + τ

)ρ − (t0 + τ)ρ
)))

<
ε

δ
(12)

where M � 3ρ−2αΓ (2α−1)
4α(Γ (α))2

, then (1) is finite-time stable with respect to {t0, δ, ε,Θ, τ }, δ < ε.

Proof As the same in Theorem 1, we have the following estimation:

||x(t)||≤ ||ϕ||+ ρ1−α

Γ (α)

t∫

t0

(
tρ − sρ

)α−1
sρ−1(A1||x(s)||+A2||x(s − τ)||)ds

By using the Cauchy-Schwartz inequality, one has

||x(t)|| ≤ ||ϕ||+ ρ1−α

Γ (α)
A1

t∫

t0

(
tρ − sρ

)α−1
sρ−1||x(s)||ds

+
ρ1−α

Γ (α)
A2

t∫

t0

(
tρ − sρ

)α−1
sρ−1||x(s − τ)||ds
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≤ ||ϕ||+ ρ−α

Γ (α)

⎛

⎝
t∫

t0

ρe2sρ

sρ−1(tρ − sρ
)2α−2

ds

⎞

⎠

1
2

×
⎡

⎢⎣A1

⎛

⎝ρ

t∫

t0

e−2sρ

sρ−1||x(s)||2ds

⎞

⎠

1
q

+ A2

⎛

⎝ρ

t∫

t0

e−2sρ

sρ−1||x(s − τ)||2ds

⎞

⎠

1
2
⎤

⎥⎦

By using the change of variable μ � tρ − sρ , we get:
t∫

t0

ρe2sρ

sρ−1(tρ − sρ
)2α−2

ds ≤ 2
Γ (2α − 1)

4α
e2tρ , t ≥ t0,

It follows from Lemma 1 (for n � 3 and l � 2) that:

||x(t)||2≤ 3||ϕ||2+2Me2tρ

⎡

⎣A2
1

t∫

t0

ρe−2sρ

sρ−1||x(s)||2ds + A2
2

t∫

t0

ρe−2sρ

sρ−1||x(s − τ)||2ds

⎤

⎦,

Hence,

(
e−tρ ||x(t)||

)2 ≤ 3||ϕ||2+2M

⎡

⎣A2
1

t∫

t0

ρe−2sρ

sρ−1||x(s)||2ds + A2
2

t∫

t0

ρe−2sρ

sρ−1||x(s − τ)||2ds

⎤

⎦

In the following, there are two cases as t ∈ [t0, t0 + τ ] or t ∈ [
t0 + τ , t f

]
.

Case 1 t ∈ [t0, t0 + τ ]:

We have

(
e−tρ ||x(t)||

)2 ≤ 3||ϕ||2+2M

⎡

⎣A2
2

t∫

t0

ρsρ−1e−2sρ ||ϕ(s)||2ds + A2
1

t∫

t0

ρsρ−1e−2sρ ||x(s)||2ds

⎤

⎦

≤ ϕ2(3 + 2M A2
2

(
(t0 + τ)ρ − tρ0

))
+ 2M A2

1

t∫

t0

ρsρ−1e−2sρ

x(s)2ds

Case 2 Let t > t0 + τ

We have
t∫

t0

ρsρ−1e−2sρ ||x(s − τ)||2ds �
t−τ∫

t0−τ

ρ(u + τ)ρ−1e−2(u+τ )ρ ||x(u)||2du

�
t0∫

t0−τ

ρ(u + τ)ρ−1e−2(u+τ)ρ ||x(u)||2du

+

t−τ∫

t0

ρ(u + τ)ρ−1e−2(u+τ )ρ ||x(u)||2du
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Table 1 Finite time stability of
Example 1, at δ � 0.31

α ρ t f ||x(t)||

0.5 0.5 0.3216 1.2752

1 0.7967 1.1567

1.5 0.9036 1.0475

2 0.9585 0.9804

0.9 0.5 1.0846 1.8720

1 1.2567 1.4019

1.5 1.1873 1.1244

2 1.1424 0.9592

Table 2 Finite time stability of
Example 2, at δ � 0.31

α ρ t f ||x(t)||

0.5 0.5 0.0151 0.6575

1 0.1583 0.5154

1.5 0.3432 0.5173

2 0.5005 0.5037

0.9 0.5 0.1556 0.9620

1 1.1719 1.2667

1.5 1.1748 1.0236

2 1.1389 0.8457

≤ ||ϕ||2
t0∫

t0−τ

ρ(u + τ)ρ−1du +

t∫

t0

ρ(u + τ)ρ−1
(

e−uρ

(||x(u)||)
)2

du

≤ ||ϕ||2((t0 + τ)ρ − tρ0
)
+

t∫

t0

ρ(u + τ)ρ−1
(

e−uρ

(||x(u)||)
)2

du

So,
(

e−tρ ||x(t)||
)2 ≤ ||ϕ||2(3 + 2M A2

2

(
(t0 + τ)ρ − tρ0

))

+ 2M

⎡

⎣
t∫

t0

(
ρ A2

1sρ−1 + ρ A2
2(s + τ)ρ−1)(e−2sρ ||x(s)||

)2
ds

⎤

⎦

The Gronwall inequality on
[
t0; t f

]
, gives:

(
e−tρ ||x(t)||

)2 ≤ ||ϕ||2(3 + 2M A2
2

(
(t0 + τ)ρ − tρ0

))

× exp
[
2M

(
A2
1

(
tρ − tρ0

)
+ A2

2

(
(t + τ)ρ − (t0 + τ)ρ

))]

Hence,

||x(t)|| ≤ ||ϕ||
√
3 + 2M A2

2

(
(t0 + τ)ρ − tρ0

)

× exp
[
tρ + 2M

(
A2
1

(
tρ − tρ0

)
+ A2

2

((
(t + τ)ρ − (t0 + τ)ρ

)))]
, ∀t ∈ [

t0, t f
]
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Fig. 1 States evolution for Example 1 (different cases of ρ and α)

So, if (12) is satisfied and ϕ < δ, then x(t) < ε,∀t ∈ [
t0, t f

]
i.e., system (1) is finite-time

stable w.r.t {t0, δ, ε,Θ, τ }.
Remark 1 If ρ � 1, then system (1) will be reduced to a fractional-order neural networks
system, under the Caputo derivative definition. For that case of Caputo derivative, the study
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Fig. 2 States evolution for Example 2 (different cases of ρ and α)

on the existence of a unique equilibrium point and finite-time stability for system (1) has
been given in [34, 35]. To the best of the authors’ knowledge, this is the first time that the
problem of finite-time stability for Caputo–Katugampola fractional-order neural networks,
with time-delay, is investigated.
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Remark 2 The proofs of Theorems 1 and 2 have been based on the ones of the authors’
sister paper [23]. It is not possible to demonstrate these to theorems at the same time, using
0 < α ≤ 1. That is why the authors have divided the analysis into two theorems.

4 Numerical Examples

In this section, two expository examples with their numerical results will be given in order
to clarify the validity of the theoretical results which obtained in the previous sections.

Example 1 Let us consider the Caputo–Katugampola fractional-order neural networks sys-
tem, with time delay:

C Dα,ρ
t0 xi (t) � −ci xi (t) +

2∑

j�1

ai j f j
(
x j (t)

)
+

2∑

j�1

bi j f j
(
x j (t − τ)

)
+ Ii , i � 1, 2

where τ � 0.5, f j
(
x j (t)

) � tanh
(
x j (t)

)
, j � 1, 2 and:

C �
(
0.3 0
0 0.2

)
, A �

(
0.01 0.02
0.03 −0.01

)
, B �

(
0.03 −0.01

−0.01 0.03

)
and I �

(−0.7
0.4

)
.

Example 2 Let us consider the Caputo–Katugampola fractional-order neural networks sys-
tem, with time delay:

C Dα,ρ
t0 xi (t) � −ci xi (t) +

3∑

j�1

ai j f j
(
x j (t)

)
+

3∑

j�1

bi j f j
(
x j (t − τ)

)
+ Ii , i � 1, 2, 3

where τ � 0.2, f j
(
x j (t)

) � 1
2 (|x + 1| − |x − 1|), j � 1, 2, 3 and

C �
⎛

⎝
0.45 0 0
0 0.45 0
0 0 0.65

⎞

⎠, A �
⎛

⎝
0.05 0.01 0.02
0.05 0.08 0.03
0.03 0.08 0.02

⎞

⎠, B �
⎛

⎝
0.01 0.03 0.04
0.02 0.05 0.02
0.06 0.02 0.05

⎞

⎠ and I �
⎛

⎝
0.35
−0.5
0.6

⎞

⎠.

Clearly, the function f in both examples satisfies the assumption (H1).Also, the hypothesis
(H2) is satisfied for Fj � 1, j � 1, 2. InExamples 1 and2, let us assume that δ � 0.31, ε � 2.
According to the inequalities (4) and (12) with various values of ρ and α, we can compute
the estimated finite , t f , of the finite-time stability of both examples as shown in Tables 1 and
2. Moreover, it is obvious from the obtained results in Tables 1 and 2 that the norm of the
approximated solutions does not override the value of ε. Figures 1 and 2, show the numerical
simulations with various values of ρ and α. From the obtained results in the tables and all
figures, we can indicate that our results coincided with the theoretical one and the finite-time
stability of the proposed systems.

5 Conclusion

In this research paper, fractional-order neural networks with time-delay have been inves-
tigated. An advantageous and newly introduced fractional-order derivative concept in the
literature, has been exploited: the Caputo–Katugampola fractional derivative. The main pur-
pose of the paper has been to demonstrate the existence of a unique equilibrium point, and to
prove its finite-time stability, for the general considered class of fractional neural networks.
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In order to further show the effectiveness of the used methodology, two simulation examples
have been given and analyzed.
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