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Abstract
Recent work in distance metric learning has significantly improved the performance in k-
nearest neighbor classification. However, the learned metric with these methods cannot adapt
to the support vector machines (SVM), which are amongst the most popular classification
algorithms using distance metrics to compare samples. In order to investigate the possibility
to develop a novel model for joint learning distance metric and kernel classifier, in this
paper, we provide a new parameterization scheme for incorporating the squaredMahalanobis
distance into the Gaussian RBF kernel, and formulate kernel learning into a generalized
multiple kernel learning framework, gearing towards SVM classification. We demonstrate
the effectiveness of the proposed algorithm on the UCI machine learning datasets of varying
sizes and difficulties and two real-world datasets. Experimental results show that the proposed
model achieves competitive classification accuracies and comparable execution time by using
spectral projected gradient descent optimizer compared with state-of-the-art methods.
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1 Introduction

Metric learning, aiming at learning an appropriate distance metric that better represents the
distance between data points, which pulls the semantically similar ones closer and pushes
dissimilar ones farther away, plays an important role in many machine learning and pattern
recognition algorithms [4,13,19,21,38,50]. Traditional uniformed norms, such as Euclidean
distance, tend to ignore the awareness of semantic definition encoded by sample labels in
supervised learning, and fail to highlight the discriminative features in varying applications.
As a generalized version of Euclidean distance,Mahalanobis distance can be seen as perform-
ing a linear projection of the data points firstly and then computing the Euclidean distance
in the projected space. Recent years, a surge of innovation on learning the pseudo-metric
towards Mahalanobis distance has been raising. Due to the learned distance reflecting the
label information, mainstream Mahalanobis distance metric learning methods are usually
geared towards k-nearest neighbor (kNN) classifiers, e.g., Large Margin Nearest Neighbor
(LMNN) proposed by Weinberger et al. [44], Large Margin Component Analysis (LMCA)
proposed by Torresani et al. [37], and Information-Theoretic Metric Learning (ITML) pro-
posed byDavis et al. [7]. Except formethods that are specific to k-nearest neighbors and based
onMahalanobis distance, there are some recentmethods that focus on the sparsemetric learn-
ing, non-linear metric learning, and regularized metric learning [5,16,23,27,30,43,51,53].

Support VectorMachines (SVMs) are also amongst themost popular classifiers for various
pattern recognition problems. They have been widely used not only because of their excellent
predictive performance but also because of their generalization ability supported by the solid
generalization error bounds defined over maximum margin philosophy. More importantly,
the kernel-trick [33] allows SVM to generate higher dimensional non-linear decision bound-
aries with low computational burden. In order to leverage the progress on metric learning,
Nguyen et al. [31] formulated the problem as a quadratic semi-definite programming problem
(QSDP) with local neighborhood constraints, which is based on the SVM framework. The
proposed method called MLSVM outperforms the raw kNN classifier and metric learning
methods based on kNN. Xu et al. [48] investigated the efficacy of three of the most popular
Mahalanobis metric learning algorithms, Neighborhood Component Analysis (NCA) [17],
LMNN [44] and ITML [7], as pre-processing for SVM training and found that none of them
generated metrics particularly suitable for SVM classification. To solve this problem, they
incorporated the distance metric learning idea into a single kernel learning framework, and
proposed an efficient kernel classifier, Support Vector Metric Learning (SVML). Instead of
modeling a particular distance metric, the decomposition of squared Mahalanobis distance,
i.e.,M = LT L, was learnt for SVMclassificationwith a single kernel learningmanner, which
incorporated the squared Mahalanobis distance into the RBF kernel function and iteratively
optimized L via off-the-shelf SVM tools.

Many efforts have been devoted to designing kernel learning algorithms. Among them,
Multiple Kernel Learning (MKL) has been considered as an effective and efficient way to
achieve this goal [2,3,6,24,25,32,35,40,46], where the optimal kernel is modeled as a linear
combination of a set of basis kernels. MKL based SVM methods have been used to solve
kinds of classification tasks in the last decades [20,36,45,52]. Lanckriet et al. [25] formulated
MKL as a quadratically constrained quadratic programming problem, using a �1-norm con-
straint to promote sparse combinations. Considering that the model in [25] is non-smooth,
Bach et al. [3] proposed a smoothed version and proposed a SMO-like algorithm for solv-
ing the problem. Sonnenburg et al. [35] reformulated the problem as a semi-infinite linear
program and addressed the problem by iteratively solving a classical SVM problem. Rako-
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tomamonjy et al. [32] further developed a SimpleMKL algorithm, and demonstrated that the
training time could be further reduced by nearly an order of magnitude on some standard
UCI datasets when the number of kernels was large. To further improve the representative
ability of combined multiple kernels, non-linear combinations of kernels have been recently
considered. Varma et al. [40] developed the Generalized Multiple Kernel Learning (GMKL)
formulation, which allowed fairly general kernel parameterization, including both linear and
non-linear kernel combinations, together with general regularizations on the kernel parame-
ters. Hirarchical multiple kernel learning [2] learned a linear combination of an exponential
number of linear kernels and represented them as a product of sums, classified to a non-linear
kernels combination. In [6] Cortes et al. analyze non-linear combination in the case of regres-
sion and the kernel ridge regression algorithm, making improvement for regression problem
in high dimensions. Besides, to allow for robust kernel mixtures Kloft et al. [24] extended
MKL to arbitrary norms, and Xu et al. [46] presented a soft margin perspective for MKL.
Both of these two methods achieve an effective and sparse solution for MKL. Except for
methods that focus on linear or non-linear mixture of basis kernels, efforts are made to other
kinds of approaches to avoid searching for the optimal combination parameters directly. [18]
proposed a methods to determine the kernels to be preserved and weighted according to the
statistical significance. A radius-margin based MKL algorithm with monotone conjunctive
kernels was proposed in [26]. [1] posed the problem of learning the kernel combination as
a min–max problem solved by kernelized optimization of the margin distribution (KOMD)
algorithm.

In this paper, we suggest a novel method to leverage the progress on multiple kernel
learning and promote the classification performance of SVM from the viewpoint of metric
learning, motivated by the superiority of SVML to representative metric learning methods
such as ITML, NCA and LMNN. We formulate the Mahalanobis distance into the Gaussian
RBF kernel, which behaves as the basis kernel inborn with the thinking of metric learning,
and incorporate it into a GMKL framework. Benefitted from this formulation, we can adopt
GMKL algorithm for joint learning distance metric and kernel classifier. While in the test
stage we can utilize the composition of linear transformation and SVM for classification.
The complexity of our model is independent with the number of basis kernels, and thus
can avoid the computational burden issue of conventional MKL approach. Moreover, radius
information is also incorporated as the supplement of considering the within-class distance
of input data. Extensive experiments on UCI datasets and real world datasets classification
clearly demonstrate the effectiveness of the proposed methods.

This algorithm, which we refer to as Metric Learning-based Multiple Kernel Classifiers
(MLMKC), is particularly contributed to two aspects.

– First, by formulating the Mahalanobis distance into the Gaussian RBF kernel, which
behaves as the basis kernel implanted within-class minimization via additional regular-
ization inherited from Gaussian kernel, the involved kernel matrix can be obtained by
computing the pairwise distance over given pairs of instances in the original feature
space, instead of transforming to complicated high dimension feature spaces.

– Second, the learning of the distance metric kernel can be effortlessly incorporated into
the Generalized MKL framework, and the flexibility of the selection of kernel size can
tremendously reduce the computation overhead of whole MKL framework.

The remainder of this paper is organized as follows. We review the related work in Sect. 2.
In Sect. 3, we formulate the Mahalanobis distance into the Gaussian RBF kernel and jointly
learn the distance metric via GMKL framework for SVM-based classification. In Sect. 4, we
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evaluate the proposed algorithm on several benchmark datasets and two real-world datasets,
and finally conclude this work in Sect. 5.

2 RelatedWork

Consider a binary classification problem in which a training set of n samples is denoted by
X = {(xi , yi )ni=1}, where xi ∈ R

d denotes the i th training sample, yi ∈ {+1,−1} denotes
the class label of xi . SVMs learn a hyperplane Hw : wT x + b = 0 which maximizes the
margin between the two classes. The conventional SVM model can be formulated as:

min
w,b,ξ

1

2
‖w‖22 + C

∑
i
ξi ,

s.t . yi (wT xi + b) ≥ 1 − ξi , ∀i
(1)

where ξ denotes the slack variable.
The performance of kernel based SVM strongly depends on the choice of kernels. A

common approach developed to find the appropriate kernel function and parameters for
heterogeneous data of varying applications is called MKL, where each kernel encodes a
different modality of data. The same technique is suggested by other methods, e.g., dic-
tionary learning [9], hashing based coding [10] and quantization based coding [49] in
similarity search. Let ϕp : R

d → Hp be the pth feature mapping, inducing the cor-
responding basis kernel Kp(·, ·) in the Hilbert space Hp , where p = 1, . . . ,m. In the
MKL framework based on SVM, each sample x is mapped onto m feature spaces by
ϕ(x; γ ) = [√γ1ϕ1(x), . . . ,

√
γmϕm(x)]T , where γp is the weight of the pth basis kernel.

Therefore, the employed kernel can be expressed as a linear or nonlinear combination of the
basis kernels, expressed as K (·, ·; γ ) = ∑m

p=1 γpK p(·, ·) or K (·, ·; γ ) = ∏m
p=1(Kp(·, ·))γp ,

the formulation of which depends on the needs of different applications. To seek the optimal
combination weight for each basis kernel, most MKL approaches [32,35,47] are suggested
to solve the following objective function:

min
w,b,ξ

1

2
‖w‖22 + C

∑
i
ξi ,

s.t . yi (wTϕ(xi ; γ ) + b) ≥ 1 − ξi , ∀i,
ξi ≥ 0, i = 1, 2, · · · , n, ‖γ ‖1 = 1, γ � 0,

(2)

where w is the normal of the separating hyperplane, b is the bias term, ξ is the slack variable
introduced to address the linearly non-separable problem.

Some studies have been given to introduce multiple kernels into metric learning problems.
Wang et al. [42] learned a distance metric in the weighted linear combinations of feature
spaces by exploring the potential correlations between different kernels, the formulation
of which can be seen as learning a projection from the weighted combination of mapped
feature space to an embedding space. Rather than projecting to the single embedding space
kernelized by the weighted combination of multiple basis feature mappings,McFee et al. [29]
defined the embedding as the concatenation of different projections, allowing the algorithm
to learn an ensemble of projections tailored to its corresponding domain space and jointly
optimized to produce an optimal space. By restricting each projection weight matrix to be
diagonal, literature [29] implicitly weighted the contribution of each kernel with respect to
corresponding training point in construction of the embedding. It is claimed that the weighted
combination kernels embedding formulation is much less flexible than the concatenated
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projection embedding formulation, as the former applies the same projection to each feature
space. As a weighted version of [29], Lu et al. [28] introduced weights to the unweighted
concatenated projection formulation by jointly learning multiple metrics and weights via
SVM-based SimpleMKL framework. However, the learned metrics and their corresponding
weights are finally exported to a kNN classifier, which is still enduring the deficiency of
having to store the entire training set during the test stage. Although the literature did not
provide the results of training time, the huge computation burden can be expected.

Under the scenarios that the radius of the smallest data enclosing sphere is no longer
fixed, optimizing over both the margin and the radius in an SVM-based problem can be
expected to achieve a tighter generalization error bound. However, optimizing over both of
them poses several difficulties since the radius is computed in a complex form [15]. Do et
al. [12] proposed ε-SVM, which in addition to the margin maximization also minimized the
within-class distance through the sum of the instance distances from the margin hyperplane.
Except providing the interpretation that LMNN can be seen as a set of local related ε-SVMs
in the quadratic space, their experimental results also demonstrated that ε-SVM performed
much more pronounced in case of using Gaussian kernel, which could be attributed to its
additional regularization on the within-class distance which makes it more appropriate for
high dimensional spaces.

Instead of using the ratio, Do et al. [11] proved that the sum of the radius and the inverse
of the margin can achieve the same optimal solution under proper parameter choices. Their
R-SVM+

μ is formulated as:

min
w,b,μ,Rμ,x0

1

2
‖w‖2 + λR2

μ + C
n∑

i=1

ξi ,

s.t . yi (〈w, D√
μx

i
〉 + b) ≥ 1 − ξi , ∀i, i = 1, 2, · · · , n,

d∑

k=1

μk = 1,μ, ξ ≥ 0,

‖D√
μxi − D√

μx0‖ ≤ R2
μ, ∀i,

(3)

where
√

μ is a vector scaling the transformed feature space; D√
μ is a diagonal linear trans-

formation matrix, whose diagonal elements are given by
√

μ, thus D√
μx gives the image of

an instance x in the transformed feature space; Rμ denotes the radius of the scaled feature
space. Their optimization problem solves SVM from the viewpoint of metric learning, and
approximated the radius of the smallest sphere enclosing the data by the maximum pairwise
distance over all pairs of instances in the transformed feature space, which may result in very
inefficient to solve large-scale problems.

3 Multiple Kernel Classifiers Based onMetric Learning

In this section, by extending Gaussian RBF kernel, we formulate the joint distance metric
and kernel classifier learning problem into the Generalized MKL (GMKL) framework. We
then present the learning algorithm for solving the proposed model, and radius information
is further incorporated to impose the regularization on minimizing the enclosing ball of data
in the feature space endowed with the learned kernel.

123



2904 W. Zhang et al.

3.1 Extension of Gaussian RBF Kernel

Gaussian Radial Basis Function (RBF) kernel is a kernel function which has been widely
adopted in various kernel methods. Given two samples x and y, the Gaussian RBF kernel is
defined as

K (x, y) = exp

(
−‖x − y‖22

σ 2

)
= exp(−d2σ (x, y)), (4)

where d2σ (x, y) = ‖x − y‖22/σ 2 can be explained as a scaled version of squared Euclidean
distance. Here we further extend Gaussian RBF kernel by replacing the scaled Euclidean
distance dσ (x, y) with the Mahalanobis distance,

d2M(x, y) = (x − y)T M(x − y), (5)

where the matrixM ∈ Rd×d is semi-positive definite. The resulting extended kernel function
is then defined as follows:

KM(x, y) = exp (−d2M(x, y)) = exp(−(x − y)T M(x − y)), (6)

It is easy to see that KM(x, y) is a kernel function and satisfies the Mercer condition [34].
Rather than directly learning M, Xu et al. [48] parameterized M = LT L, and suggested a

gradient descent algorithm with respect to L, which is incorporated into a single RBF kernel.
Inspired by the metric learning with multiple kernel embedding proposed by Lu et al. [28]
and Doublet-SVM metric learning methods proposed by Wang et al. [41], we parameterize
M as,

M =
Nk∑

l=1

βl(xl,1 − xl,2)(xl,1 − xl,2)T + λGI

=
Nk∑

l=1

βlXl + λGI, βl ≥ 0, λG > 0

, (7)

where Xl = (xl,1 − xl,2)(xl,1 − xl,2)T , βl is the weight describing the contribution of the
sample pair (xl,1, xl,2) to make up the matrix M. When all of βl = 0, KM(x, y) is identical
to a standard Gaussian RBF kernel. With Eq. (6), the kernel can be reformulated as:

KM(x, y;β) = exp(−(x − y)T

⎛

⎝
Nk∑

l=1

βlXl + λGI

⎞

⎠ (x − y))

= KλG

NK∏

l=1

(exp(−(x − y)T Xl(x − y)))βl

= KλG

NK∏

l=1

(Kl(x, y))βl

. (8)

When fixing λG , the latter denoted by KλG = exp(−λG(x − y)T (x − y)) can be treated as a
constant. By defining the basis kernel Kl = exp(−(x −y)T Xl(x −y)), the kernel function in
Eq. (8) can also be explained from the multiple kernel perspective. If we take all the sample
pairs into account, the number of basis kernels is Nk = n(n − 1)/2, which will be too huge
for large scale dataset. To address this, one can adopt the following strategies to reduce Nk :
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(i) We can refer to the metric learning methods [41] by only using the nearest similar pairs
and the nearest dissimilar pairs to construct the set of basis kernels. (ii) After selecting pairs
based on (i), some clustering methods (e.g., k-means) can be adopted to further reduce the
number of pairs for constructing basis kernels.

3.2 Formulation of Metric Learning-BasedMultiple Kernel Classifier

Denote by ϕM(x;β) the feature mapping associated with the kernel function KM(x, y;β).
Our objective is to learn a function of the form f (x) = wTϕM(xi ;β) + b. Given ϕM(x;β),
one can adopt the SVM solver to learn the global optimal values of (w, b) from the training
data {(xi , yi )ni=1}. If we want to jointly learn β and (w, b), we should consider the MKL
framework. Therefore, we adopt the GMKL formulation in [40],

min
w,b,β

1

2
wtw +

∑

i

l(yi , f (xi )) + r(β)

s.t . β ≥ 0.

, (9)

where both the regularizer r(β) and the kernel should be differentiable with respect to β, and
l(·) could be some loss functions, e.g., hinge loss and logistic loss.

In order to learn the classifier and the Mahalanobis distance metric jointly, we formulate
the problem as:

{w, b, M,β} = arg min
w,b,M

1

2
‖w‖22 + C

∑
i
ξi + λr(β),

s.t . yi (〈w, ϕM(xi ;β)〉 + b) ≥ 1 − ξi ,

β ≥ 0, ξi ≥ 0, ∀i,
(10)

Reformulating above primal as a nested two step optimization, the kernel is learned by
optimizing over β in the outer loop, while the kernel is fixed and the SVM parameters are
learnt in the inner loop. This can be achieved by rewriting the primal as follows:

min
β

J (β), s.t . βl ≥ 0, (11)

with

J (β) =max 1Tα − 1

2
αT YKM(β)Yα + λr(β),

s.t . 1T Yα = 0, 0 ≤ α ≤ C,

where Y is a diagonal matrix with the labels on the diagonal, λ is a tradeoff to balance the
regularization part. As to r(β), its derivative should exist and be continuous. For example, the
non-negative �1-norm regularization r(β) = 1Tβ could be used for learning sparse solutions,
or the �2-norm regularization r(β) = (β − μ)TΣ−1(β − μ) if prior knowledge is available.
If ∇βKM and ∇βr are differentiable functions of β, we can utilize gradient descent in the
outer loop, and J (β) has derivatives given by

∂ J

∂βl
= λ

∂r

∂βl
− 1

2
α∗T ∂YKMY

∂βl
α∗, (12)

In order to take a gradient step, in the inner loop, all we need to do is to obtain α∗, which
can be solved by any off-the-shelf SVM optimization package. To solve the non-convex
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Algorithm 1: MLMKC with spectral projected gradient descent optimizer.
Input: Training samples X = {(xi , yi )ni=1}, kernel number Nk , the number
of similar sample pairs n1 and dissimilar sample pairs n2.
Output: β, α.
1. For each sample xi , find its n1 nearest similar neighbors (xi , xsi,1),…,(xi , xsi,n1 ),

n2 nearest dissimilar neighbors (xi , xdi,1),…,(xi , xdi,n2 );
2. Construct Xk : compute the difference of these doublets and use k-means
find Nk cluster centers {xc1 ,…,xck ,…,xcNk }, Xk = xck xTck ;
3. n ← 0;
4. Randomly initialize β0 from [0,1];
5. repeat
6. Compute the kernel matrix KM from βn :
7. KM ← KM(βn);
8. Call libSVM to obtain α∗:
9. α∗ ← SolveSVMε(KM)

10. λ ← SpectralStepLength
11. pn = βn − max(βn − λ ∂ J

∂βn , 0);

12. sn ← Non-Monotone
13. ε ← TuneSVMprecision
14. βn+1

k = βn
k − sn pn ;

15. n ← n + 1;
16. Until β and α∗ converge

formulation results from regularizing β, the spectral projected gradient (SPG) descent opti-
mizer [22] can be adopted to update it. SPG iteratively approximates the objective function
with a quadratic model and then optimizes the model at each iteration, which includes spec-
tral step length and spectral projected gradient computation, the non-monotone line search
and the SVM solver precision tuning. The proposed MLMKC algorithm is summarized in
Algorithm 1. From Algorithm 1, we can see that the projection operator needs to be applied
only once per iteration without the step variable, for which SPG employs a non-monotone
line search criterion instead of the Armijo rule. The tolerance of the SVM solver automati-
cally decreases as moving closer to the optimum or the step size becoming too small. These
guarantee the robustness to imprecisions in calculating the objective function and the gradi-
ent, and reduce the number of SVM evaluations. The duality gap is used as a stable stopping
criterion for SPG, or the projected gradient if the duality gap is unavailable.

Therefore, after we obtain the optimal α∗, b∗ and β, we can write the SVM decision
function as:

f (x) =sgn

(
n∑

i=1

α∗
i yiKM (xi , x;β) + b∗

)

=sgn

⎛

⎝
n∑

i=1

α∗
i yi

⎛

⎝KλG

Nk∏

l=1

(Kl (xi , x))βl

⎞

⎠ + b∗
⎞

⎠
. (13)

3.3 Computational Complexity

As illustrated in Algorithm 1, for each training sample, n1 similar nearest neighbors and n2
dissimilar nearest neighbors are chosen to construct n1+n2 doublets, and in total N (n1+n2)
doublets. After computing the difference of these doublets, we use k-means to find Nk

cluster centers to construct the distance matrix M as Eq. (7), of which the computational
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complexity is O(N (n1 + n2)d) + O(NkN (n1 + n2)) + O((n1 + n2)d2), where d is the
dimension of the data feature. In Sect. 4 we will show that we can choose n1, n2, Nk � N
in practice, and thus, the computational cost can be reduced to O(Nd) + O(N ) + O(d2).
According to Eq. (8), the computational cost of computing the kernels KM is O(NkN 2d).
For solving the alternating subproblem, the LibSVM library for SVM training is utilized,
and the computational complexity of SMO-type algorithms is O(N 2

k N
2d).

3.4 Incorporating the Radius Information

Although the Gaussian kernel implicitly imposed the regularization onminimizing the within
class distance, considering the fact that the generation error of SVM is actually a function of
the ratio of radius andmargin [39], especially for joint learning of kernels for feature transfor-
mation and classifier, the radius information should be valuable to improve the performance
of the algorithm. Due to the close relationship with the radius of minimum enclosing ball,
instead of incorporating the radius directly, the trace of the total scattering matrix of training
data is integrated into the proposed MLMKC framework, with the manner of summation
rather than ratio as proposed in [11]. Therefore, the proposed model can be reformulated as

{w, b, M,β} = arg min
w,b,M

1

2
‖w‖22 + ρtr(Sβ

T ) + C
∑

i
ξi + λr(β)

s.t . yi (〈w, ϕM(xi ;β)〉 + b) ≥ 1 − ξi ,

β ≥ 0, ξi ≥ 0, ∀i,
(14)

Thus the corresponding dual problem changes to

min
β

J (β), s.t . βl ≥ 0

J (β) = max 1Tα − 1

2
αT YKM(β)Yα + ρtr(Sβ

T ) + λr(β)

s.t . 1T Yα = 0, 0 ≤ α ≤ C

, (15)

where tr(Sβ
T ) denotes the trace of the total scatter matrix in feature space mapped via KM(β),

which can be explicitly expressed in the kernel-induced feature space as

tr(Sβ
T ) = tr(KM(β)) − 1

n
1T KM(β)1 =

Nk∏

l=1

α
βl
l , (16)

where al � tr(Kl) − (1/n)1T Kl1, and KM(β) is the kernel matrix formulated in Eq. (8)
which can be obtained by computing the pairwise distance over all pairs or given pairs of
instances in the original feature space on training set X . After incorporating the radius term,
the derivatives of J (β) in Algorithm 1 becomes

∂ J

∂βl
= λ

∂r

∂βl
− 1

2
α∗T ∂YKMY

∂βl
α∗ + ρ

∂tr(Sβ
T )

∂βl
, (17)

4 Experiments and Discussion

In this section, we first discuss the setting for λG and Nk in Eq. (8). Then we evaluate the
proposed MLMKC algorithm using synthetic datasets with two classes whose distribution is
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Table 1 The UCI datasets used in experiments

Dataset # of samples Feature dimension # of class1 # of class2

ACA 690 14 307 383

CMC 962 9 629 333

Mammo 830 5 403 427

Iono 351 34 225 126

Heart 303 13 139 164

Sonar 208 60 97 111

Liver 345 6 145 200

Wpbc 198 33 151 47

Pima 768 8 268 500

Vote 435 16 168 267

Musk 6598 166 5581 1017

Table 2 The real-world datasets used in experiments

Dataset # of training
samples

# of test
samples

Feature
dimension

PCA
dimension

# of classes

COIL20 1140 300 1024 500 20

USPS 7291 2007 256 100 10

nonlinear separable. After that, eleven datasets from UCI Machine Learning repository [14]
of varying size, dimensionality and task description are used to evaluate the performance
of our method and the state-of-the-art: Australian Credit Approval (ACA), Contraceptive
Method Choice (CMC), Mammographic Mass (Mammo), Musk, Ionosphere (Iono), Heart,
Sonar, Pima, Vote, Wpbc, and Liver. The dataset statistics are shown in Table 1. We compare
the proposed methods with SVML, GMKL and other representative multiple kernel learning
methods, i.e., SimpleMKL, RMKL, �p-MKL, SM1MKL, EasyMKL and RM-GD in terms of
classification accuracy and training time, for the reason that we incorporated distance metric
into the multiple kernel learning framework. All the experiments on UCI datasets use the
following setting: for each dataset, 80% of the data is used for training and the rest is used for
test. All data sets have been normalized to have zero mean and unit variance on each feature.
Apart from the UCI datasets, we also perform experiments on the large scale multiclass real-
world datasets, i.e., handwritten digit set USPS dataset1 and object classification set COIL20
dataset.2 We use the defined training set to train the models using a 1-vs-rest strategy and
calculate the classification error rates on the test set. As the dimensions of these two datasets
are relatively high, PCA is utilized to reduce the feature dimension. Table2 summarizes the
basic information of the large scale real-world datasets.

We use libSVM3 to solve the SVM dual problem of our method and the parameter C
is chosen from {0.1, 1, 10, 102}. The regularization parameter λ and ρ are chosen from
{1, 102, 103, 104}, and the width σ 2 of Gaussian kernel is settled as 1. As MLMKC is not
particularly sensitive to the exact choice of λ (i.e., the regularization parameter in Eq. (15))

1 https://www-i6.informatik.rwth-aachen.de/~keysers/usps.html.
2 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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when λ > 102, and during the experiments we also find that for better results λ and ρ is often
set to 102, so we set them all for default. All the experiments are executed in a PC with 4
Intel Core Xeon E3-1230 V2 CPUs (3.3GHz) and 32GB RAM.

4.1 Parameter Selection

4.1.1 A Reduced Version of MLMKC

Except for several aforementioned standard parameters, the two parameters involved in
Eq. (8), i.e., λG and Nk , tightly correlate to the classification performance of the proposed
model. Here we introduce a reduced version of MLMKC by setting λG = 0, represented as
R-MLMKC, the kernel of which is formulated as:

KM−(x, y;β) =
Nk∏

l=1

exp(−(x − y)TβlXl(x − y))

=
Nk∏

l=1

(exp(−(x − y)T Xl(x − y)))βl

=
Nk∏

l=1

(Kl(x, y))βl

. (18)

M− is formulated as M− = ∑Nk
l=1 βl(xl,1 − xl,2)(xl,1 − xl,2)T = ∑Nk

l=1 βlXl . We use this
formulation to get rid of the consideration on parameter λG , and try to verify the effective
working range of Nk .

In process of choosing sample pairs to construct the matrix M−, instead of using all
pairs of training samples, for each training sample xi , we construct n1 + n2 doublets
(xi , xsi,1),…,(xi , xsi,n1), (xi , xdi,1),…,(xi , xdi,n2), where xsi,k denotes the kth similar nearest

neighbor of xi , and xdi,k denotes the kth dissimilar nearest neighbor of xi . After that we
compute the difference of these doublets and use k-means to find cluster centers, whose
number equals to the predefined kernel size. And then we use the cluster centers to get Xl .
We initialize the R-MLMKCwith different numbers of kernel size, ranging from 4 to 40, and
set n1 = n2 = 2. We choose three UCI datasets, whose feature dimensions are of different
magnitude, to test the influence on the classification accuracywhen varying the size of kernel.
The curves of classification accuracy versus kernel size for R-MLMKC are shown in Fig. 1.
One can see that, the accuracy tends to be stable when Nk ≥ 20 on all three datasets. When
λG > 0, we choose 4 ≤ Nk ≤ 20 in experiment. If the accuracy is not very insensitive
to Nk we can choose a small number of kernels instead which can dramatically reduce the
computational cost. Experiment on larger number of Nk is needed when choosing the best
size of basis kernels for large datasets, and the upper bound is decided by the execution time
and memory. In Sect. 4.1.2, we will give a detailed discussion to the selection of λG and Nk .

4.1.2 Selection for �G and Nk

We first discuss the setting for λG . Leveraging the results of the observation on selecting
different kernel sizes for R-MLMKC, small kernel size, i.e., Nk , which is the summation
of n1, the number of similar pairs, and n2, the number of dissimilar pairs, can be used to
observe the variation on classification performance when changing the model with varying
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Fig. 1 Classification accuracy using R-MLMKC against different number of basis kernels Nk on three UCI
datasets

λG . We consider four circumstances of different Nk settings: (1) constructing the matrix M
with equal small number of similar and dissimilar pairs, e.g., Nk = 4, n1 = n2 = 2; (2)
constructing the matrix M with equal larger number of similar and dissimilar pairs, e.g.,
Nk = 8, n1 = n2 = 4; (3) constructing the matrix M with small number of similar pairs
and larger number of dissimilar pairs, e.g., Nk = 6, n1 = 2, n2 = 4; (4) constructing the
matrix M with larger number of similar pairs and small number of dissimilar pairs, e.g.,
Nk = 6, n1 = 4, n2 = 2. Figure 2 shows the classification accuracy against λG on different
UCI datasets, from left to right are the accuracy curve on Sonar, Heart, Wpbc and Vote
datasets, respectively, when Nk using above settings. One can observe that, for all figures the
classification accuracy declined after λG > 0.02, and the setting of Nk , n1 and n2 seems no
effect on the best choice of λG , so we choose λG within the range of [0, 0.02].

To further validate the effective settings of Nk , n1 and n2, we fixed λG to some valuewithin
the range of [0, 0.02]. Using Wpbc dataset as an example, we get the classification accuracy
on each pair of (n1, n2), where n1, n2 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} and Nk is the sum of n1
and n2. Figure 3 shows the classification accuracy versus n1 and n2 when λG = 0.005, we
can find that the model can approach to the highest performance several times with different
combination of n1 and n2 for different datasets. For example, as shown in Fig. 3b, c, themodel
can achieve the highest accuracy when n2 = 3 and n1 = 2. From Fig. 3c, we can observe
that, when n1 = 2 and 1 ≤ n2 ≤ 5 the model can achieve comparatively stable performance.
The classification accuracy surface for other three different datasets are also illustrated in
Fig. 4. From Figs. 3 and 4, we can see that generally, the model can achieve comparable
performance by choosing small number of n1 and n2. Therefore, we choose n1, n2 ∈ {2, 3}
to reduce the doublets used for k-means. Besides, it seems choosing significantly different
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Fig. 3 Classification accuracy versus n1 and n2. a Results on the Wpbc dataset with λG = 0.005, b classifi-
cation accuracy versus n1 for n2 = 3, c classification accuracy versus n2 for n1 = 2

number of similar pairs and dissimilar pairs of samples is not proper when the number of Nk

is settled, especially choosing more similar ones.

4.2 Result on the Synthetic Data Set

Two synthetic datasetswith two classeswhose distribution is nonlinear separablewere created
to evaluate our method. For the 2-dimensional dataset, feature x1 and x2 are drawn from a
normal distribution of N (μ1, I) and N (μ2, I) with equal probability, where I is an identity
matrix. When y = −1, μ1 = [−0.75,−3]T and μ2 = [0.75, 3]T. When y = +1, μ1 =
[3,−3]T and μ2 = [−3, 3]T. The distribution of x1 and x2 is shown in Fig. 5. This dataset
contains 600 samples and for each sample x, its label y has the equal probability of being
+1 or −1. We also generated a 50-dimensional dataset using the scikit-learn tool, which can
introduce interdependence between features and add further noise to the data. It contains
1000 samples and each class is composed of 5 Gaussian clusters, where the 10 independent
features, 10 useless features, 10 repeated features and noise are drawn from normal Gaussian
distribution. We use m(m = 10, 20, · · · , 90) percent of samples to form the training set
and the rest to form the test set. We evaluate our MLMKC with �1 regularization and radius
information, namelyMLMKC-�1, on these nonlinear binary classification problem compared
with SVML, GMKL, SimpleMKL, �p-MKL and SM1MKL as baselinemethods. For the first
dataset we use only ten basis kernels and for the second dataset we use forty basis kernels. The
basis kernels used for MKL methods are Gaussian kernels with bandwidths selected from
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Fig. 4 Classification accuracy versus n1 and n2 with fixed λG : a results on the Heart dataset with λG = 0.001,
b results on the Sonar dataset with λG = 0.01, and c results on the Vote dataset with λG = 0.01

Fig. 5 Two dimensional synthetic
dataset
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range {0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0, 7.0, 10.0, · · · , 20.0} and polynomial kernels of degree
1 to 3. The parameter C used in SVM is chosen from a large range {10−1, . . . , 103, 104}.
Products of basis kernels are used as the combinations in GMKL framework. For �p-MKL
and SM1MKL, the parameters p and θ are selected according to the setting in [24,46],
respectively.

We show the decision boundaries of the first synthetic dataset, using 50% of the samples
to train and others to test, for our method with different λG and Nk in Fig. 6, in which
setting λG = 0.1 always result in over-fitting,while setting λG = 0.01 can achieve the
highest classification accuracy. When choosing Nk = 10, the proposed MLMKC-�1 can
achieve the highest accuracy with non-sparse and sparse solutions for kernels combination
by setting λG = 0.0 and λG = 0.01, respectively. It is interesting that when Nk = 4,
setting λG = {0.0, 0.001} brings poor result, while λG = 0.01 provides accuracy of 97.67%,
which demonstrates the significance of Gaussian RBF kernel. High classification accuracy
no less than 97.33% can be achieved by setting λG = 0.01, but large Nk (e.g., Nk = 16 in
Fig. 6) causes over-fitting. For the second synthetic dataset, choosing Nk within the range
of {20, 40} leads to higher accuracy, and setting larger Nk for all settings of λG makes no
contribution to the classification accuracy. The accuracy curve with λG = 0.02 exceeds
λG = 0.0 by nearly 10% as illustrated in Fig. 7, which demonstrates that the Gaussian RBF
kernel cannot be replaced in more complex classification task. Above experimental results
verify the effectiveness of our proposed parameterization scheme which incorporating the
squaredMahalanobis distance into theGaussian RBF kernels, and also reveal that by properly
selecting parameter λG and Nk , the classification performance can benefit from the distance
metric based kernels and the Gaussian RBF kernel in our proposed formulation.

We evaluate the proposed MLMKC algorithm using two synthetic datasets, and compare
the proposedmethodswith other representativemodels, i.e., SVML,4 GMKL,5 SimpleMKL,6

�p-MKL,7 and SM1MKL8 in terms of classification accuracy. Experimental results are
reported in Table 3, and the average number of kernels finally used in each method are
reported in the last row. Comparatively, the proposed method achieves a higher accuracy
compared with SVML and GMKL, especially on the first synthetic dataset. It demonstrates
that utilizing the product combination framework of generalized MKL incorporated with
distance metric makes our MLMKC flexible and effective for classification problem. Other
MKL methods which focus on searching the optimal mixture of basis kernels, e.g., Sim-
pleMKL, �p-MKL and SM1MKL get lower accuracy with the same number of input basis
kernels, especially for the second synthetic dataset, which also verifies the effectiveness of
the proposed kernel formulation and the robustness of ourmethod. Sparse solution for kernels
combination is obtained using SimpleMKL, GMKL, �p-MKL and our MLMKC, which we
can see from the number of kernels finally used in Table 3.We find that the number of kernels
finally used in our MLMKC is nearly the same as the number of features beneficial for the
classification. The experimental results show that our method can get preferable results with
less kernels which is more time and space efficient.

4 http://www.cse.wustl.edu/~xuzx/research/code/code.html.
5 http://research.microsoft.com/en-us/um/people/manik/code/GMKL/download.html.
6 http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html.
7 http://doc.ml.tu-berlin.de/nonsparse_mkl/.
8 https://sites.google.com/site/xinxingxu666/.
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Fig. 7 Classification accuracy of the second synthetic dataset with different λG and Nk

Table 3 Classification accuracy (%) comparison of SVML, GMKL, SimpleMKL, �p-MKL, SM1MKL and
our method on the synthetic datasets (d = 2) and (d = 50)

Method SVML GMKL SimpleMKL �p-MKL SM1MKL MLMKC-�1

d=2

10 96.52 96.67 96.25 96.67 96.11 97.03

20 96.52 97.08 96.67 97.08 96.67 96.87

30 95.51 96.67 97.14 97.14 97.38 96.90

40 96.64 97.50 97.22 97.78 97.22 97.78

50 96.15 97.33 97.33 97.33 97.33 97.67

60 96.24 97.92 97.92 97.50 97.50 97.5

70 97.18 97.78 97.78 97.78 98.33 98.33

80 97.93 98.33 97.50 98.33 98.33 98.89

90 98.52 98.33 98.89 98.89 98.89 98.89

# of kernels 1 1 2 8 10 3

d=50

10 55.04 57.60 51.33 50.45 50.31 56.63

20 59.92 54.39 52.17 52.95 51.07 58.85

30 59.97 61.49 50.50 50.22 50.70 62.10

40 62.00 59.58 52.77 53.03 50.26 61.57

50 66.18 65.20 52.50 53.90 50.90 66.70

60 65.60 66.00 52.90 51.80 49.70 66.10

70 67.80 67.0 52.90 51.70 49.20 67.30

80 66.80 67.10 53.20 52.50 50.40 68.20

90 68.40 70.45 53.80 53.30 50.60 71.80

# of kernels 1 3 8.5 13 39 10

Bold values indicate the best classification results over different methods

4.3 Comparison with State-of-the-Art Methods

In this experiment, we evaluate the proposed MLMKC algorithm using eleven UCI
datasets, and compare the proposed methods with other representative models, i.e., SVML,
GMKL, SimpleMKL, �p-MKL, SM1MKL, RMKL,9 EasyMKL9and RM-GD9 in terms

9 https://github.com/IvanoLauriola/MKLpy.
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Table 4 Classification accuracy (mean±SD) of different forms of MLMKC methods on the UCI datasets

Dataset MLMKC

�1 w/ radius �2 w/ radius �1 w/o radius �2 w/o radius

ACA 86.20±0.53 86.14±0.43 86.19±0.48 86.02±0.40

CMC 74.61±0.44 74.46±0.51 74.60±0.43 74.26±0.52

Mammo 83.95±0.37 83.86±0.30 83.89±0.30 83.82±0.30

Iono 94.61±0.50 94.52±0.54 94.66±0.56 94.54±0.57

Heart 84.10±0.45 83.79±0.54 84.01±0.54 83.57±0.59

Sonar 87.93±1.29 87.86±1.22 88.05±1.35 88.04±1.53

Liver 72.51±0.99 71.33±0.74 71.24±0.73 71.29±0.79

Wpbc 78.82±0.71 78.56±0.46 78.99±0.78 78.84±0.56

Pima 77.30±0.36 77.16±0.30 77.13±0.52 77.13±0.61

Vote 94.67±0.46 93.98±0.60 94.41±0.54 94.23±0.63

Musk 99.56±0.28 99.32±0.22 99.58±0.30 99.21±0.23

Bold values indicate the best classification results over different methods

of classification accuracy and training time. The designed RBF kernels are combined
by taking their product for GMKL, and the parameters for �p-MKL and SM1MKL fol-
low the setting in [24,46]. The parameter C used in SVM is chosen from a large range
{10−3, 10−2, . . . , 106, 107}. Basis kernels used in SimpleMKL, �p-MKL and SM1MKL
include Gaussian kernel and polynomial kernel following the construction method in Sim-
pleMKL. The bandwidths of Gaussian kernel used in RMKL and RM-GD are selected as
described in [18], where 20 scales are sampled with σmin = 0.1 and σmax = 20. For
EasyMKL, we construct the RBF based weak kernel following [1]. Results are all obtained
by using 5-folds CV and averaging over 20 runs. The classification results of four forms of
proposed MLMKC methods are reported in Table 4, which includes MLMKC in Eq. (14)
with �1 and �2 regularization and radius information, MLMKC in Eq. (10) with �1 and �2
regularization but without radius information. We can observe an interesting phenomenon
that the proposed MLMKC method with �1 regularization but without radius information
achieves good performance, which is almost the same as MLMKC with �1 regularization
and radius information. Without loss of generality, we take MLMKC-�1 as the substitute of
the proposed MLMKC in following experiments.

The comparison results with SVML, GMKL, SimpleMKL, SM1MKL, �p-MKL, RMKL,
EasyMKL and RM-GD are listed in Table5, where the highest accuracy of all are shown in
solid black for each dataset, respectively. We do not report the accuracy of SVML on the
Wpbc dataset, in that the released SVML code always collapsed when run on it. To compare
the classification performance of these models, we list the average ranks of these models in
the last row of Table5. The average rank is defined as the mean rank of one method over the
11 datasets, which can provide a fair comparison of the algorithms [8].

In Table 5, ourMLMKC-�1 greatly outperforms SVML and fourMKLmethods including
GMKL, SimpleMKL, SM1MKL, and �p-MKL on most datasets with less than 10 kernels,
while othermethods need tens of basis kernels on small datasets and hundreds of basis kernels
on large datasets. The classification accuracy of our method ranks third and is comparable
with RMKL, EasyMKL and RM-GD on some datasets. These three methods solve different
optimization problems instead of searching for the optimum combination directly of provided
basis kernels. RMKL performs a max-variance projection-based learning, aiming at finding a
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Fig. 8 Training time (s) of SVML, SimpleMKL, GMKL, �p-MKL, SM1MKL, EasyMKL, RMKL, RM-GD,
MLMKC-�2, and MLMKC-�1

low-dimensional representation which approximates the original space spanned by the basis
kernels. It has capability of removing the redundancy of interscale kernel similarities, hence
it is flexible with the scale of basis kernels. EasyMKL optimizes a min–max problem over
probability distribution of positive and negative samples sets and the combination parameters
of predefined kernel matrices, focusing on maximizing the margin. It also applies a feature
selection in kernel computation, making it robust to noise features. RM-GD, a state-of-the-art
margin-based MKL method, exploits a radius-margin ratio optimization based on gradient
descent. It demonstrates that the minimization of the radius-margin bound achieves better
results with respect to the margin maximization, while MLMKC minimizes the radius and
maximizes the margin separately.

The experimental results reveal that: (i) the formulation of incorporatingMahalanobis into
the Gaussian RBF kernel to make up the distance metric, and jointly learning the distance
metric and the corresponding kernel classifier via GMKL framework is of great efficiency
for SVM-based classifiers. (ii) The optimization result without considering the radius infor-
mation achieves good performance indicate that the regularizer r(β) related with β in our
kernel function also imposes constraint on the radius of training samples in the feature space.
Regardless of the classification results, these MKL methods need a number of appropriate
basis kernels whether seeking the optimum combination parameters directly or not, compar-
ing with our method. SimpleMKL, SM1MKL and �p-MKL methods need a large number of
basis kernels, which often obtain sparse solution for kernels combination.

The training time of representative methods, and our proposed methods on several small
datasets is showed in Fig. 8. All the experiments are executed in the same PC. The training
time for MLMKC includes the doublets construction, k-means clustering and kernel compu-
tation. In general, we found the training time required forMLMKC-�1 outperforming SVML,
GMKL and SimpleMKL, and 100 times faster than RM-GD and RMKL though achieving
better classification accuracy than other MKL methods. �p-MKL and SM1MKL methods
operate optimization in simple analytical update rules via block coordinate descent algorithm
instead. The chunking optimization reduces the iteration and avoids the time consuming pro-
cedure for kernel combination coefficients in terms of the dual variable. EasyMKL replaces
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Table 6 Classification error rates (%) comparison of different methods on the real-world datasets

Method COIL20 USPS

SVML 2.66 5.79

SimpleMKL 3.09 11.16

GMKL 1.43 –

�p-MKL 1.78 10.00

SM1MKL 1.15 10.00

RMKL 1.10 9.07

EasyMKL 1.67 9.57

RM-GD 1.33 9.57

MLMKC−�2 2.67 10.65

MLMKC−�1 0.67 4.38

Bold values indicate the best classification results over different methods

the kernel matrix with the sum of the predefined weak kernel matrices, making it efficient in
terms of time and space. By adopting SPG optimizer, our method performs efficiently and is
even comparable to EasyMKL, �p-MKL and SM1MKL methods.

The classification error rates of multiclass real-world datasets are listed in Table 6. We
use small number (about half of the feature dimension) of base kernels with SimpleMKL,
�p-MKL and SM1MKL methods to avoid memory exceptions for the real-world datasets.
We do not report the result of GMKL on USPS because it require memory space that our
PC can not provide with. This further validates that on the large scale dataset our proposed
method is competitive with other methods with less kernels. From Table 6, we can see that
our proposedMLMKC achieves the lowest error rate with small number of kernels, Nk < 10,
which verify the effectiveness of the method on the large scale dataset. As demonstrated by
the classification results and the timing results on UCI datasets and real-world datasets, the
proposed method produces overall better performance.

5 Conclusion

In this paper, we investigate metric learning via multiple kernel learning for SVMs. An
effective MKL framework for joint learning of distance metric and kernel classifier is pro-
posed, referred to MLMKC. We reformulate the matrix of Mahalanobis distance metric,
and then incorporate it into the Gaussian RBF kernel to construct a novel kernel function
formulation for the subsequent embedding to the GMKL framework. The regularization on
the radius information, which shows significant improvement on MKL scenarios, although
has been considered during the formulation of the proposed algorithm, shows limited ability
on improving the final classification performance. Experimental results demonstrate that,
dual regularizations, coming from both the regularization of distance metric imposed on the
distance of samples in the original space, and regularizer r(β) imposed on the radius of
training samples in the feature space, guarantee the reliable performance of MLMKC. On
the UCI datasets we demonstrate that our algorithm achieves preferable results in terms of
classification accuracy and comparable training time with state-of-the-art methods. On the
handwritten digit dataset USPS and object classification dataset COIL20, we achieve com-
petitive results and show effectiveness of our proposed method on large scale data with less
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number of kernels. All these aspects make MLMKC a competitive general-purpose metric
learning-based multiple kernels algorithm for SVMs with Gaussian RBF kernels. The future
work is to introduce efficient approximation algorithms to our proposed MLMKC model
with suitable formulation, and finally make it feasible to tackle the scalability issue.
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