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Abstract
This paper is concerned with a class of neutral type recurrent neural networks with time-
varying delays, distributed delay and D operator on time–space scales which unify the
continuous-time and the discrete-time recurrent neural networks under the same framework.
Some sufficient conditions are given for the existence and the global exponential stability of
the pseudo almost periodic solution by using inequality analysis techniques on time scales,
fixed point theorem and the theory of calculus on time scales. An example is given to show
the effectiveness of the derived results via computer simulations.

Keywords Global exponential stability · Neutral-type neural networks · Time space scales ·
D operator · Pseudo-almost periodic solution.
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1 Introduction

During the last fewdecades, artificial neural network (NNs) is utilized to simulate the structure
and function of a biological neural network [1]. Recently, investigations of artificial NNs have
been a prevailing research topic due to their great applications and potentials in various fields,
such as such as multilayer neural networks for pattern recognition [2], memristor-based echo
state network for time-series forecast [1], and concatenated generative adversarial neural
networks to generate videos [3].

Especially, the recurrent NNs are powerful and popular artificial NNs have been widely
applied in many fields owing to the pioneering work of Hopfield [4]. In [4], Hopfield consider
a class of recurrent artificial neural networks, which can be described as following:
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Ci ẋi = − xi
Ri

+
n∑

j=1

ti j f j (x j ) + Ji (1)

where i = 1, 2, . . . , n; xi (t) denotes the potential of the i th neuron at time t ;Ci are a positive
constants and Ri are the neuron amplifier input capacitances and resistances, respectively; ti j
is the synaptic interconnection strength; Ji is the constant input from outside of the network;
f j (x j ) is the activation function. In terms of electrical circuits f j (x j ) represents the output
characteristic of an amplifier with negligible respond time. For more detailed structure of
neural networks (1), the readers are referred to [4]. Denote ei = 1

RiCi
, bi j = ti j

Ci
and Ii = Ji

Ci
.

Then the above neural networks (1) are simplified as

ẋi = −ei xi +
n∑

j=1

bi j f j (x j ) + Ii . (2)

This model has been paid much considerable attention due to its wide applications in various
areas such as electrical engineering, mechanics, control, parallel computation, automatic and
so on [5–12].

In addition, the existence of time delay especially time-varying delay makes the dynamic
behaviors become more complex and may cause divergence, oscillation, instability, chaos
or other poor performance in NNs, which are usually harmful to the applications of NNs
[13,14]. Therefore, the stability analysis for delayed NNs has become an important research
topic and attracted many researchers much attention in the literature [15–19]. For example,
Aouiti et al. [19] studied the following recurrent NNs with time-varying coefficients and
mixed delays:

ẋi (t) = ai (t)xi (t) +
n∑

j=1

ci j (t) f j (x j (t)) +
n∑

j=1

di j (t)g j (x j (t − τ(t)))

+
n∑

j=1

pi j (t)
∫ t

−∞
Ki j (t − s)h j (x j (s))ds + Ji (t), i = 1, 2, . . . , n.

On the other hand, neutral-type phenomenon always exists in the study of population dynam-
ics and automatic control etc [20]. Hence, the dynamic behaviors for different classes of
recurrent NNs with neutral type delays were investigated in [5,20–23]. It should be men-
tioned that all neutral type recurrent NNs models considered in the above references can be
classified into two types:

(i) Non-operator-based neutral functional differential equations (NOBNFDEs) [24,25].
(ii) D-operator-based neutral functional differential equations (DOBNFDEs) [26–30].

As well known, based on the theory of functional differential equations, DOBNFDEs may
have more real significance than NOBNFDEs ones in many practical applications of NNs
dynamics [27]. According to the complex neural reactions, neutral type recurrent NNs with
D-operator may be described by the following neutral functional differential equations [28–
30]:

[xi (t) − qi (t)xi (t − ri (t))]′ = −ci (t)xi (t) +
n∑

j=1

ai j (t)Fj (x j (t))

+
n∑

j=1

bi j (t)G j (x j (t − τi j (t)))
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+
n∑

j=1

di j (t)
∫ +∞

0
G̃ j (x j (t − u))du + Ii (t). (3)

and criteria ensuring the existence of periodic solutions for system (3) are established in [28].
In addition, the theory of time–space scales, which was first introduced by Hilger [31]

in order to unify discrete-time and continuous-time calculus. The books on the subject of
time–space scale, by Bohner and Peterson [32], Agarwal [33], organize and recapping much
of time–space scale calculus. The theory of time–space scale have been successfully applied
in some mathematical models of real processes such as in population dynamics, physics,
economics, biotechnology and so on. Since then, manyworks have investigated the dynamics
of NNs on time scales [34–37,39,40,42]. In [34], the authors studied the global exponential
stability of the equilibrium point for a class of delayed bidirectional associative memory
(BAM) neural network on the time–space scale. The work of [35] studied the pseudo almost
periodic solutions for the following neutral type high-order Hopfield NNs with time-varying
delays and leakage delays on time–space scales:

x∇
i (t) = − ci (t − δ(t)) +

n∑

j=1

ai j (t) f j (x j (t)) +
n∑

j=1

bi j (t)g j (x j (t − τi j (t)))

+
n∑

j=1

di j (t)
∫ t

t−σi j (t)
h j (x

∇
j (s))∇s +

n∑

j=1

n∑

l=1

Ti jl k j (x j (t − ξi jl (t)))kl (xl (t − ζi jl (t)))

+ Ii (t).

The concept of pseudo almost periodicity (PAP), which is the central subject of our work, was
introduced and studied by Zhang [38]. It is well known that PAP solutions, which are more
general and complicated than periodic and almost periodic solutions [6,24,35,42]. In [42] the
authors studied the and global exponential stability of pseudo almost periodic solution for
the following neutral delay BAM neural networks with time-varying delay in leakage terms:

xΔ
i (t) = − ci (t − τi (t)) +

n∑

j=1

ai j (t) f j (x
Δ
j (t − τi j (t)))

+
n∑

j=1

n∑

l=1

bi jl g j (x j (t − σi jl(t)))gl(xl(t − ζi jl(t))) + Ii (t).

Inspired by the above discussions, in this paper, we propose a class of neutral type recurrent
NNs with time-varying delays, distributed delay and D-operator on time–space scales:

[xi (t) − pi (t)xi (t − ri (t))]∇ = −ai (t)xi (t) +
n∑

j=1

ci j (t) f j (x j (t))

+
n∑

j=1

bi j (t)g j (x j (t − τ(t)))

+
n∑

j=1

di j (t)
∫ t

−∞
Ni j (t − s)h j (x j (s))∇s

+ Ii (t), t ∈ T. (4)

where i, j = 1, 2 . . . , n; n donate the number of neurons in layers;T represent the translation
invariant time scale, xi (t) denotes the activations of the i th neuron at time t ; ai (.) > 0 are
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the rate with the i th neuron will reset its potential to the resting state in isolation when they
are disconnected from the network and the external inputs at time t ; ci j (t) , bi j (t) di j (t)
and pi (t) are the elements of feedback template and feed forward template at time t ; f j , g j

and h j are the activation functions; τ(t), ri (t) are transmission delays at time t and satisfy
t − τ(t) ∈ T, t − ri (t) ∈ T for t ∈ T; Ni j (t) are the delay kernel at time t ; Ii (t) denotes the
input of the i th neuron at time t .

We should point out that:
{
x∇(t) = dx(t)

dt , if T = R,

x∇(k) = ∇x(k) = x(k + 1) − x(k), if T = Z, k ∈ Z.

For each interval J of R, we denote by JT = J
⋂

T.
The initial conditions associated with system (4) are of the form:

xi (s) = ϕi (s), s ∈ (−∞, 0]T, 1 ≤ i ≤ n,

where ϕ(.) denotes a real-value bounded right-dense continuous function defined on
(−∞, 0]T.

Throughout this paper, for i, j = 1, 2, . . . , n, it will be assumed that ai , ri are almost
periodic on T and ci j , bi j , di j , pi , and Ii , are pseudo almost periodic functions on T, and
let the positive constants c+

i j ,b
+
i j , d

+
i j , p

+
i , r+

i , I+
i such that

c+
i j = sup

t∈T
| ci j (t) |, b+

i j = sup
t∈T

| bi j (t) |, d+
i j = sup

t∈T
| di jl(t) |,

p+
i = sup

t∈T
|pi (t)|, r+

i = sup
t∈T

|ri (t)|, I+
i = sup

t∈T
| Ii (t) | .

We also assume that the following conditions (H1)–(H4) hold.

(H1) Functions f j , g j , h j ∈ C(R,R) and for each j = {1, 2, . . . , n}, there exist nonneg-
ative constants L f

j , L
g
j and Lh

j such that

f j (0) = 0, | f j (u) − f j (v) |≤ L f
j | u − v |,

g j (0) = 0, | g j (u) − g j (v) |≤ Lg
j | u − v |,

and

h j (0) = 0, | h j (u) − h j (v) |≤ Lh
j | u − v | .

(H2) For i, j,∈ {1, 2, . . . , n}, the delay kernel Ni j : [0,∞)T −→ [0,∞) is continuous,
and there exist nonnegative constants N+

i j such that

N+
i j =

∫ ∞

0
Ni j (s)∇s.

(H3) For all 1 ≤ i ≤ n, ai ∈ C(T,R) with ai ∈ �+
v , and a−

i > 0, where �+
v denotes the

set of positively regressive functions from T to R.
(H4) Assume that

r = p+
i + 1

a−
i

(
a+
i p+

i +
n∑

j=1

(c+
i j L

f
j + b+

i j L
g
j + di j N

+
i j L

h
j )

)
< 1.
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Remark 1 If T = R, then (4) reduces to the following from

[xi (t) − pi (t)xi (t − ri (t))]′ = − ai (t)xi (t) +
n∑

j=1

ci j (t) f j (x j (t)) +
n∑

j=1

bi j (t)g j (x j (t − τ(t)))

+
n∑

j=1

di j (t)
∫ t

−∞
Ni j (t − s)h j (x j (s))ds + Ii (t), t ∈ R. (5)

if T = Z, then (4) reduces to the following from

[xi (k + 1) − pi (k + 1)xi (k + 1 − ri (k + 1))] − [xi (k) − pi (k)xi (t − ri (k))]

= −ai (k)xi (k) +
n∑

j=1

ci j (k) f j (x j (k)) +
n∑

j=1

bi j (k)g j (xk(t − τ(t)))

+
n∑

j=1

di j (k)
∫ k

−∞
Ni j (k − s)h j (x j (k))ds + Ii (k), k ∈ Z. (6)

Remark 2 To the best of our knowledge, this is the first time to study the PAP solutions
of system (4). Since it is a ∇-dynamic system on time–space scales, the results obtained
in [35,42] concerning the ∇-dynamic systems cannot be directly applied to the system (4).
Besides, since it studies the almost periodic problem, although paper [39,40] deals with
∇-dynamic systems on time–space scales, its results also cannot be directly applied to the
system (4).

The organization of the rest of this paper is as follows. In Sect. 2, we will introduce some
necessary notations, definitions and fundamental properties of the space PAP(T,R) and
make some preparations for later sections. In Sects. 3 and 4, based on the results obtained in
the previous sections, Banach’s fixed-point theorem and ∇-differential inequalities on time
scales, we present some sufficient conditions that guarantee the existence and global expo-
nential stability of pseudo almost periodic solutions to (4). In Sect. 5, we present examples
to illustrate the feasibility and effectiveness of our results obtained in Sects. 3 and 4. Finally,
conclusions and open problem are drawn in Sect. 6.

2 Preliminary Results

In this section, we shall first recall some basic definitions and prove some lemmas.
For convenience, we denote by R

n
(
R = R

1
)
the set of all n-dimensional real vectors

(real numbers). For any x = (x1, x2, . . . , xn)T ∈ R
n, we let {xi } = (x1, x2, . . . , xn)T , |x |

denote the absolute-value vector given by |x | = {|xi |}, and define ‖x‖ = max1≤i≤n |xi |.
Let BC(T,Rn) denotes the set of bounded and continued functions from T to Rn . Note that(
BC(T,Rn), ‖.‖∞

)
is a Banach space where ‖.‖∞ denotes the sup norm

‖ f ‖∞ := sup
t∈T

‖ f (t)‖.

Definition 1 [41] Let T be a nonempty closed subset (time scale) of R. The forward and
backward jump operators σ, ρ : T → T and the graininess μ : T → R

+ are defined,
respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t .
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Definition 2 [41] A point t ∈ T is called

⎧
⎪⎪⎨

⎪⎪⎩

left-dense if t > inf T and ρ(t) = t,
left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t,
right-scattered if σ(t) > t .

If T has a left-scattered maximum m, then T
k = T\{m}; otherwise Tk = T.

If T has a right-scattered minimum m, then Tk = T\{m}; otherwise Tk = T.

Definition 3 [41] A function f : T → R is rd-continuous provided it is continuous at each
right-dense point in T and has a left-sided limit at each left-dense point in T.

The set of rd-continuous functions f : T → R will be denoted by Crd(T,R).

Lemma 1 [41] Assume that p, q : T → R are two regressive functions, then

(a) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,
(b) ep(t, s) = 1

ep(s,t)
= e�p (t, s),

(c) ep(t, s)ep(s, r) = ep(t, r),
(d) (ep(t, s))∇ = p(t)ep(t, s).

Lemma 2 [41] Let f , g be ∇-differentiable function on T, then

(a) (v1 f + v2g)∇ = v1 f ∇ + v2g∇ , for any constant v1, v2,
(b) ( f g)∇(t) = f ∇(t)g(t) + f (σ (t))g∇(t) = f (t)g∇(t) + f ∇(t)g(σ (t)).

Lemma 3 [41] Assume that p(t) ≥ 0, for t ≥ s, then ep(t, s) ≥ 1.

Definition 4 [41] A function p : T → R is called ν-regressive if 1 − ν(t)p(t) = 0 for all
t ∈ Tk . If p ∈ Rν then we define the nabla exponential function by

ep(t, s) = exp

( ∫ t

s
ξ̂ν(τ )(p(τ ))∇τ

)
, for all t, s ∈ T,

where μ-cylinder transformation is as in

ξ̂h(z) :=
{− 1

h log(1 + zh) if h = 0
−z if h = 0.

Definition 5 [41] Let ρ : T → R is called μ-regressive provided 1 + μ(t)ρ(t) = 0 for
all t ∈ T

k; ρ : T → R is called positively regressive provided 1 + μ(t)ρ(t) > 0 for all
t ∈ T

k . The set of all regressive and rd-continuous functions ρ : T → R will be denoted by
R = R(T,R), and The set of all regressive and rd-continuous functions ρ : T → R will be
denoted by R+ = R+(T,R).

Lemma 4 [41] Suppose that p ∈ R+, then

(i) ep(t, s) > 0, for all t, s ∈ T,

(ii) if p(t) ≤ q(t) for all t ≥ s, t, s ∈ T, then ep(t, s) ≤ eq(t, s), for all t ≥ s.

Lemma 5 [41] If p ∈ R and a, b, c ∈ T, then

[ep(c, .)]∇ = −p[ep(c, .)]σ
and

∫ b

a
p(t)ep(c, σ (t))∇t = ep(c, a) − eq(c, b).

123



Pseudo Almost Periodic Solution of Recurrent Neural Networks… 303

Definition 6 [41] Let p, q : T → R are two regressive functions, define

(1) (p ⊕ν q)(t) = p(t) + q(t) − ν p(t)q(t),
(2) �ν p(t) = − p(t)

1−ν p(t) ,

(3) p �ν q = p ⊕ν (�νq).

Lemma 6 [41] Let a ∈ T
k, b ∈ T and assume that f : T × T

k → R is continuous at (t, t)
where t ∈ T

k with t > a. Also assume that f ∇(t, .) is rd-continuous on [a, σ (t)]. Suppose
that for each ε > 0, there exists a neighborhood U of τ ∈ [a, σ (t)] such that

|[ f (σ (t), τ ) − f (s, τ )] − f ∇(t, τ )[σ(t) − s]| < ε|σ(t) − s|,∀s ∈ U

where f ∇ denotes the derivative of f with respect to the first variable. Then

g(t) :=
∫ t

a
f (t, τ )∇τ implies g∇(t) :=

∫ t

a
f ∇(t, τ )∇τ + f (σ (t), t),

h(t) :=
∫ b

t
f (t, τ )∇τ implies h∇(t) :=

∫ b

t
f ∇(t, τ )∇τ − f (σ (t), t).

In the following, we recall some definitions, notations and basic results of almost period-
icity and pseudo almost periodicity on time scales. For more details, we refer the reader to
[42]

In this paper, we restrict our discussion on almost periodic time scales.

Definition 7 [42] Let T be an almost periodic time scale. A function f (t) : T → R
n is said

to be almost periodic on T, if for any ε > 0, the set

E(ε, f ) =
{
τ ∈ Π : | f (t + τ) − f (t)| < ε, ∀t ∈ T

}

is relatively dense, that is, for any ε > 0, there exists a constant l(ε) > 0 such that each
interval of length l(ε) contains at least one τ ∈ E(ε, f ) such that

| f (t + τ) − f (t)| < ε, ∀t ∈ T.

The set E(ε, f ) is called the ε-translation set of f (t), τ is called the ε-translation number of
f (t), and l(ε) is called the inclusion of E(ε, f ).

In the following, we introduce some notations

AP(T,Rn) = {
f ∈ C(T,Rn) : f is almost periodic

}
,

PAP0(T,Rn) =
{
f ∈ BC(T,Rn) : f is ∇−measurable such that

lim
r→+∞

1
2r

∫ t0+r

t0−r
| f (s)|∇s = 0, where t0 ∈ T, r ∈ Π

}
.

Definition 8 [42] Let T be an almost periodic time scale. A function f ∈ C(T,Rn) is said
to be pseudo almost periodic, if f = g + φ, where g ∈ AP(T,Rn) and φ ∈ PAP0(T,Rn).

We denote by PAP(T,Rn) the set of all such functions.
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3 Existence of Pseudo Almost Periodic Solution

In this section, we establish some results for the existence and the uniqueness of the pseudo
almost-periodic solution of (4).

Lemma 7 [42] If ϕ,ψ ∈ PAP(T,R), then ϕ + ψ ∈ PAP(T,R).

Lemma 8 [42] If ϕ,ψ ∈ PAP(T,R), then ϕ × ψ ∈ PAP(T,R).

Lemma 9 If f ∈ PAP(T,Rn), satisfies the Lipschitcz condition, θ ∈ C1(T,Π) is almost
periodic, θ(t) ≥ 0 and 1 − θ∇(t) > 0, then f (t − θ(t)) ∈ PAP(T,Rn).

Proof FromDefinition 8, we have f = h+ϕ,where h ∈ AP(T,Rn), and ϕ ∈ PAP0(T,Rn).

Clearly, h(t − θ(t)) ∈ AP(T,Rn).

Letting β = supt∈T 1
1−θ∇ (t)

and s = t − θ(t) give us

0 ≤ 1

2r

∫ t0+r

t0−r
|ϕ(t − θ(t))|∇t ≤ 1

2r

∫ t0+r−θ(t0+r)

t0−r−θ(t0−r)
|ϕ(s)| sup

t∈T
1

1 − θ∇(t)
∇s

≤ β
1

2r

∫ t0+r−θ(r)

t0−(r+θ(t0−r))
|ϕ(s)|∇s

≤ β
r + θ+

r

1

2(r + θ+)

∫ t0+(r+θ+)

t0−(r+θ+)

|ϕ(s)|∇s

which, together with the fact that limr→+∞ 1
2(r+θ+)

∫ t0+(r+θ+)

t0−(r+θ+)
|ϕ(s)|∇s = 0, implies that

limr→+∞ 1
2r

∫ t0+r
t0−r |ϕ(t − θ(t))|∇t = 0, and ϕ(t − θ(t)) ∈ PAP0(T,Rn). ��

Lemma 10 For i, j = 1, . . . , n, if ϕ(.) ∈ PAP(T,Rn), then
∫ +∞

0
Ni j (s)|ϕ(t − s)|∇s ∈ PAP0(T,Rn).

Proof Obviously, one can obtain

1

2r

∫ t0+r

t0−r

( ∫ +∞

0
Ni j (s)|ϕ(t − s)|∇s

)
∇t =

∫ +∞

0
Ni j (s)

(
1

2r

∫ t0+r

t0−r
|ϕ(t − s)|∇t

)
∇s.

Let Mϕ = supθ∈T |ϕ(θ)|, and we get
∫ +∞

0
Ni j (s)

(
1

2r

∫ t0+r

t0−r
|ϕ(t − s)|∇t

)
∇s ≤

∫ +∞

0
Ni j (s)∇sMϕ = N+

i j M
ϕ.

For any sequence {rm}+∞
m=1 satisfying

lim
n→+∞ rm = +∞, rm > 0, m = 1, 2, . . . ,

we denote

fm(s) = Ni j (s)
1

2rm

∫ t0+rm

t0−rm
|ϕ(t − s)|∇t, m = 1, 2, . . . ,

Then

lim
m→+∞ fm(s) = 0,
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and

| fm(s)| ≤ MϕN+
i j , ∀s ∈ [0,+∞)T, m = 1, 2, . . . .

According to the Lebesgue dominated convergence theorem, we have

lim
m→+∞

∫ +∞

0
Ni j (s)

(
1

2rm

∫ t0+rm

t0−rm
|ϕ(t − s)|∇t

)
∇s = 0,

which entails that

lim
r→+∞

1

2r

∫ t0+r

t0−r

( ∫ +∞

0
Ni j (s)|ϕ(t − s)|∇s

)
∇t

= lim
r→+∞

∫ +∞

0
Ni j (s)

(
1

2r

∫ t0+r

t0−r
|ϕ(t − s)|∇t

)
∇s = 0.

Thus
∫ +∞

0
Ni j (s)|ϕ(t − s)|∇s ∈ PAP0(T,Rn).

��
Lemma 11 For i, j = 1, . . . , n, if x j (.) ∈ PAP(T,Rn), then

di j (t)
∫ +∞

0
Ni j (s)h j (x j (t − s))∇s ∈ PAP(T,Rn).

Proof From Definition 8, we have x j (t) = ψ j (t) + ϕ j (t), where ψ j ∈ AP(T,Rn) and

ϕ j ∈ PAP0(T,Rn). Since di j (.) ∈ PAP(T,Rn), then di j (t) = dψ
i j (t) + dϕ

i j (t), where d
ψ
i j ∈

AP(T,Rn), dϕ
i j ∈ PAP0(T,Rn). Therefore,

di j (t)
∫ ∞

0
Ni j (s)h j (x j (t − s))∇s = dψ

i j (t)
∫ ∞

0
Ni j (s)h j (ψ j (t − s))∇s

+ dϕ
i j (t)

∫ ∞

0
Ni j (s)h j (ψ j (t − s))∇s

+ di j (t)
∫ ∞

0
Ni j (s)

[
h j

(
ϕ j (t − s) + ψ j (t − s)

)

− h j (ψ j (t − s))

]
∇s

In view of (H1), the definition of AP(T,Rn) and Lemma 10, we can deduce that

dψ
i j (t)

∫ ∞

0
Ni j (s)h j (ψ j (t − s))∇s ∈ AP(T,Rn), (7)

and
∫ ∞

0
Ni j (s)|ϕ j (t − s)|∇s ∈ PAP0(T,Rn), i, j = 1, 2 . . . , n. (8)

Hence

0 ≤ lim
r→+∞

1

2r

∫ t0+r

t0−r

∣∣∣∣d
ϕ
i j (t)

∫ +∞

0
Ni j (s)h j (ψ j (t − s))∇s
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+ di j (t)
∫ +∞

0
Ni j (s)

[
h j

(
ϕ j (t − s) + ψ j (t − s)

) − h j (ψ j (t − s))

]
∇s

∣∣∣∣∇t

≤ sup
t∈T

∣∣∣∣
∫ +∞

0
Ni j (s)h j (ψ j (t − s))∇s

∣∣∣∣ lim
r→+∞

1

2r

∫ t0+r

t0−r
|dϕ

i j (t)|∇t

+ d+
i j L

h
j lim
r→+∞

1

2r

∫ t0+r

t0−r

( ∫ +∞

0
Ni j (s)|ϕ j (t − s)|∇s

)
∇t = 0, (9)

which, together with (7) and (9), implies that

di j (t)
∫ ∞

0
Ni j (s)h j (x j (t − s))∇s ∈ PAP(T,Rn), i, j = 1, 2, . . . , n.

��
Lemma 12 For i, j = 1, . . . , n, if x j (.) ∈ PAP(T,Rn), then

bi j (t)g j (x j (t − τ(t))) ∈ PAP(T,Rn), ci j (t) f j (x j (t)) ∈ PAP(T,Rn).

Proof By Lemma 9 we have x j (t − τ(t)) ∈ PAP(T,Rn). Furthermore, let

x j (t − τ(t)) = x1j (t) + x2j (t),

where x1j ∈ AP(T,Rn), x2j ∈ PAP0(T,Rn). Since bi j ∈ PAP(T,Rn), i, j = 1, . . . , n,

then

bi j (t) = b1i j (t) + b2i j (t),

where b1i j ∈ AP(T,Rn), b2i j ∈ PAP0(T,Rn), i, j = 1, . . . , n. Then, for all t ∈ T, we get

bi j (t)g j (x j (t − τ(t))) = [
b1i j (t) + b2i j (t)

]
g j

(
x1j (t) + x2j (t)

)

= b1i j (t)g j (x
1
j (t)) + b2i j (t)g j (x

1
j (t))

+ bi j (t)
[
g j (x

1
j (t) + x2j (t)) − g j (x

1
j (t))

]
.

Clearly,

b1i j (t)g j (x
1
j (t)) ∈ AP(T,Rn), i, j = 1, . . . , n. (10)

Now, we choose constants α j and η j such that α j = supt∈T |g j (x1j (t))|, η j =
supt∈T |Lg

j bi j (t)|. Consequently,

0 ≤ lim
r→+∞

1

2r

∫ t0+r

t0−r

∣∣∣∣b
2
i j (t)g j (x

1
j (t)) + bi j (t)

[
g j (x

1
j (t) + x2j (t)) − g j (x

1
j (t))

]∣∣∣∣∇t

≤ lim
r→+∞

1

2r

∫ t0+r

t0−r
|b2i j (t)||g j (x

1
j (t))|∇t + lim

z→+∞
1

2r

∫ t0+r

t0−r
|Lg

j bi j (t)||x2j (t)|∇t

≤ α j lim
r→+∞

1

2r

∫ t0+r

t0−r
|b2i j (t)|∇t + η j lim

r→+∞
1

2r

∫ t0+r

t0−r
|x2j (t)|∇t = 0.

It follows from (10) that bi j (t)g j (x j (t − τ(t))) ∈ PAP(T,Rn). Similarly,

ci j (t) f j (x j (t)) ∈ PAP(T,Rn), i, j = 1, . . . , n.

��
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Lemma 13 Define a nonlinear operator Γ by setting

(Γϕ)(t) =
∫ t

−∞
e−ai (t, σ (s)) Fi (s)∇s, i = 1, 2, . . . , n,

where

Fi (s) = − ai (s)pi (s)ϕi (s − ri (s)) +
n∑

j=1

ci j (s) f j (ϕ j (s)) +
n∑

j=1

bi j (s) f j (ϕ j (s − τ(s)))

+
n∑

j=1

di j (s)
∫ ∞

0
Ni j (s − u)h j (ϕ j (u))∇u + Ii (s), ϕ ∈ PAP(T,R).

Then Γϕ ∈ PAP(T,R).

Proof According to (H1) and (H4), it is easily to see that Γ ∈ BC(T,Rn). From Lemmas
7, 8, 9, 10, 11, 12 we obtain that there are Hi ∈ AP(T,R) and Φi ∈ PAP0(T,R) such that

Fi (t) = Hi (t) + Φi (t) ∈ PAP(T,R), i ∈ {1, 2, . . . , n}
Noting that M[ai ] > 0, using the theory of exponential dichotomy in [42] , we get that

∫ t

−∞
e−ai (t, σ (s))Hi (s)∇s ∈ AP(T,R) (11)

satisfies y∇
i (t) = −ai (t)yi (t) + Hi (t), i ∈ {1, 2, . . . , n}.

Arguing as in the verification of Lemma 11 , one can show

lim
r→+∞

1

2r

∫ t0+r

t0−r

∫ +∞

0
e−a−

i
(u, 0)|Φi (t − u)|∇u∇t = 0, i ∈ {1, 2, . . . , n}.

Then

0 ≤ lim
r→+∞

1

2r

∫ t0+r

t0−r

∫ t

−∞
e−ai (t, σ (s))|Φ j (s)|∇s∇t

≤ lim
r→+∞

1

2r

∫ t0+r

t0−r

∫ t

−∞
e−a−

i
(t, σ (s))|Φ j (s)|∇s∇t

≤ lim
r→+∞

1

2r

∫ t0+r

t0−r

∫ +∞

0
e−a−

i
(u, 0)|Φ j (t − u)|∇u∇t = 0

and
∫ t

−∞
e−ai (t,σ (s))Φ j (s)ds ∈ PAP0(R,R), i, j ∈ {1, 2 . . . , n}.

Combining with (11), it leads to

(Γϕ)(t) =
∫ t

−∞
e−ai (t, σ (s)) Hj (s)∇s

+
∫ t

−∞
e−ai (t, σ (s)) Φ j (s)∇s ∈ PAP(R,R), i = 1, 2, . . . , n,
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Theorem 1 Let (H1)–(H4) hold. Then, system (10) has a pseudo almost periodic solution in

B =
{
ϕ ∈ PAP(R,Rn), ‖ϕ − ϕ0‖∞ ≤ rβ

(1 − r)

}
,

where

ϕ0(t) =
⎛

⎜⎝

∫ t
−∞ e−a1(t, σ (s))I1(s)ds

...∫ t
−∞ e−an (t, σ (s)In(s)ds

⎞

⎟⎠ .

Proof Let

Yi (t) = xi (t) − pi (t)xi (t − ri (t)), 1 ≤ i ≤ n.

We obtain from (4) that

Y∇
i (t) = [xi (t) − pi (t)xi (t − ri (t))]∇

= −ai (t)Yi (t) − ai (t)pi (t)xi (t − ri (t)) +
n∑

j=1

ci j (t) f j (x j (t))

+
n∑

j=1

bi j (t)g j (x j (t − τ(t))) +
n∑

j=1

di j (t)
∫ t

−∞
Ni j (t − s)h j (x j (s))∇s

+ Ii (t), 1 ≤ i ≤ n, t ∈ T. (12)

Define an operator as follows:

Φ : B → B, (ϕ1, . . . , ϕn)
T → (

(Φϕ)1, . . . , (Φϕ)n
)T

,

where

(Φϕ)i (t) = pi (t)xi (t − ri (t)) + (Γϕ)i (t), ∀ϕ ∈ B.

One has

‖ ϕ0 ‖∞ = sup
t∈R

max
1≤i≤n

{∣∣
∫ t

−∞
e−ai (t, σ (s))Ii (s)ds

∣∣
}

≤ max
1≤i≤n

{
I+
i

a−
i

}
= β

after

‖ ϕ ‖∞ ≤ ‖ ϕ − ϕ0 ‖∞ + ‖ ϕ0 ‖∞
≤ ‖ ϕ − ϕ0 ‖∞ +β.

Set B = {ϕ ∈ PAP(R,Rn), ‖ ϕ − ϕ0 ‖∞≤ rβ
(1−r) }. Clearly, B is a closed convex subset of

PAP(R,Rn) and, therefore, for any ϕ ∈ B by using the estimate just obtained, we see that

|Φϕ(t) − ϕ0(t)| =
∣∣∣∣pi (t)ϕi (t − ri (t)) +

∫ t

−∞
e−ai (t, σ (s))

(
− ai (s)pi (s)ϕi (s − ri (s))

+
n∑

j=1

ci j (s) f j (ϕ j (s)) +
n∑

j=1

bi j (s)g j (ϕ j (s − τ(t)))
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+
n∑

j=1

di j (s)
∫ s

−∞
Ni j (s − m)h j (ϕ j (m))∇m

)
∇s

∣∣∣∣

≤ p+
i |ϕi (t − ri (t))| +

∫ t

−∞
e−a−

i
(t, σ (s))

(
a+
i p+

i |ϕi (t − ri (t))|

+
n∑

j=1

c+
i j L

f
j |ϕ j (s)|

+
n∑

j=1

b+
i j L

g
j |ϕ j (s − τ(t))| +

n∑

j=1

d+
i j L

h
j

∫ s

−∞
Ni j (s − m)|ϕ j (m))|∇m∇s

≤ p+
i ‖ ϕ ‖∞ +

∫ t

−∞
e−a−

i
(t, σ (s))∇s

(
a+
i p+

i +
n∑

j=1

(c+
i j L

f
j

+ b+
i j L

g
j + di j N

+
i j L

h
j )

)
‖ ϕ ‖∞

≤ p+
i ‖ ϕ ‖∞ + 1

a−
i

(
a+
i p+

i +
n∑

j=1

(c+
i j L

f
j + b+

i j L
g
j + di j N

+
i j L

h
j )

)
‖ ϕ ‖∞

=
(
p+
i + 1

a−
i

(
a+
i p+

i +
n∑

j=1

(c+
i j L

f
j + b+

i j L
g
j + di j N

+
i j L

h
j )

))
‖ ϕ ‖∞

= ‖ ϕ ‖∞ r ≤ rβ

(1 − r)

which implies that Φϕ ∈ B. Next, we show that Φ : B → B is contraction operator. In view
of (H1), for any ϕ, ψ ∈ B, we have

|Φϕ(t) − Φψ(t)| =
∣∣∣∣pi (t)

(
ϕi (t − ri (t)) − ψi (t − ri (t))

)

+
∫ t

−∞
e−ai (t, σ (s))

[
− ai (s)pi (s)

(
ϕi (s − ri (s)) − ψi (s − ri (s))

)

+
n∑

j=1

ci j (s)( f j (ϕ j (s)) − f j (ψ j (s))

+
n∑

j=1

bi j (s)(g j (ϕ j (s − τ(s))) − g j (ψ j (s − τ(s))))

+
n∑

j=1

di j (s)
∫ s

−∞
Ni j (s − m)(h j (ϕ j (m)) − h j (ψ j (m)))∇m

)]∇s

∣∣∣∣

≤ p+
i

∣∣ϕi (t − ri (t)) − ψi (t − ri (t))
∣∣

+
∫ t

−∞
e−ai (t, σ (s))

[
a+
i p+

i

∣∣ϕi (s − ri (s)) − ψi (s − ri (s))
∣∣

+
n∑

j=1

c+
i j L

f
j

∣∣ϕ j (s) − ψ j (s)
∣∣ +

n∑

j=1

b+
i j L

g
j

∣∣ϕ j (s − τ(s)) − ψ j (s − τ(s)))
∣∣
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+
n∑

j=1

d+
i j L

h
j

∫ s

−∞
Ni j (s − m)

∣∣ϕ j (m) − ψ j (m))
∣∣∇m

]
∇s

≤ p+
i +

∫ t

−∞
e−a−

i
(t, σ (s))∇s

(
a+
i p+

i +
n∑

j=1

(
c+
i j L

f
j

+ b+
i j L

g
j + d+

i j L
h
j N

+
i j

)) ‖ ϕ − ψ ‖∞

≤ p+
i + 1

a−
i

(
a+
i p+

i +
n∑

j=1

(
c+
i j L

f
j + b+

i j L
g
j + d+

i j L
h
j N

+
i j

)) ‖ ϕ − ψ ‖∞

< r ‖ ϕ − ψ ‖∞,

because r < 1, which prove that Φ is a contraction mapping. Then, by virtue of the Banach
fixed point theorem, Φ has a unique fixed point which corresponds to the solution of (4) in
B ⊂ PAP(R,Rn). ��

4 Exponential Stability of Pseudo Almost Periodic Solution

In this section, we establish some results for the global exponential stability of the unique
PAP solutions of (4).

Theorem 2 Assume that (H1)–(H4) hold, then the unique system PAP solution of system (4)
is globally exponentially stable.

Proof From Theorem 1, we see that system (4) has a unique PAP solution

x∗(t) = (x∗
1 (t), . . . , x

∗
n (t))

T ,

with initial value ϕ∗(s) = (ϕ∗
1 (s), . . . , ϕ

∗
n (t))

T . Suppose that x(t) = (x1(t), . . . , xn(t))T is
an arbitrary solution of system (4) with initial value ϕ(s) = (ϕ1(s), . . . , ϕn(t))T and

wi (t) = xi (t) − x∗
i (t), Wi (t) = wi (t) − pi (t)wi (t − ri (t)), i = 1, . . . , n.

Then

W∇
i (t) = [wi (t) − pi (t)wi (t − ri (t))]∇

= −ai (t)Wi (t) − ai (t)pi (t)wi (t − ri (t)) +
n∑

j=1

ci j (t)
(
f j (x j (t)) − f j (x

∗
j (t))

)

+
n∑

j=1

bi j (t)

(
g j (x j (t − τ(t))) − g j (x

∗
j (t − τ(t)))

)

+
n∑

j=1

di j (t)
∫ t

−∞
Ni j (t − s)

(
h j (x j (s)) − h j (x

∗
j (s))

)∇s, i = 1, 2 . . . , n.

From (H4), there exists a constant λ ∈ {0,min1≤i≤n{a−
i }} such that 1 − p+

i exp(λr
+
i ) > 0,

and

123



Pseudo Almost Periodic Solution of Recurrent Neural Networks… 311

max
1≤i≤n

{
1

(1 − p+
i exp(λr+

i ))(a−
i − λ)

(
exp(λr+

i )a+
i p+

i +
n∑

j=1

c+
i j L

f
j +

n∑

j=1

b+
i j L

g
j exp(λτ+)

+
n∑

j=1

d+
i j L

h
j

∫ +∞

0
Ni j (u) exp(λu)∇u

)}
< 1.

Denote

‖ϕ‖0 = sup
t∈(−∞,0]T

max
1≤i≤n

|(ϕi (t) − x∗
i (t)) − pi (t)(ϕi (t − ri (t)) − x∗

i (t − ri (t)))|

and

‖W (t)‖ = max
1≤i≤n

|Wi (t)|.

Let ε > 0 and M > 1. It’s easy to see that

‖W (0)‖ < (‖ϕ‖0 + ε), (13)

and

‖W (t)‖ < (‖ϕ‖0 + ε)e�λ(t, t0) < M(‖ϕ‖0 + ε)e�λ(t, t0), ∀t ∈ (−∞, 0]T. (14)

We claim that

‖W (t)‖ < M(‖ϕ‖0 + ε)e�λ(t, t0), ∀t ∈ (0,+∞)T. (15)

Contrarily, there exist a t1 ∈ (t0,+∞)T and some i ∈ {1, . . . , n} such that
{ |Wi (t1)| = ‖W (t1)‖ ≥ M(‖ϕ‖0 + ε)e�λ(t1, t0),

‖W (t)‖ ≤ M(‖ϕ‖0 + ε)e�λ(t1, t0), t ∈ (t0, t1]T.
(16)

Therefore, there must exist a constant ω > 1 such that
{ |Wi (t1)| = ‖W (t1)‖ = ωM(‖ϕ‖0 + ε)e�λ(t1, t0),

‖W (t)‖ ≤ ωM(‖ϕ‖0 + ε)e�λ(t1, t0), t ∈ (t0, t1]T.
(17)

On the other hand,

eλ(t2, t0)|wi (t2)| ≤ eλ(t2, t0)|wi (t2) − pi (t2)wi (t2 − ri (t2))| + eλ(t2, t0)|pi (t2)wi (t2 − ri (t2))|
≤ eλ(t2, t0)|wi (t2)| + p+

i exp(λr+
i )eλ(t2 − ri (t2), t0)|wi (t2 − ri (t2))|

≤ ωM(‖ϕ‖0 + ε) + p+
i exp(λr+

i ) sup
s≤t

eλ(s, t0)|wi (t)|, (18)

for all t2 ≤ t , t < t1, which implies that

eλ(t, t0)|wi (t)| ≤ sup
s≤t

eλ(s, t0)|wi (s)| ≤ ωM(‖ϕ‖0 + ε)

1 − p+
i exp(λr

+
i )

. (19)

Integrating, for all s ∈ [t0, t]T

e−ai (t0, σ (s))(W∇
i (s) + ai (s)Wi (s)) = e−ai (t0, σ (s))

[
− ai (s)pi (s)wi (s − ri (s))

+
n∑

j=1

ci j (s)
(
f j (x j (s)) − f j (x

∗
j (s))

)
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+
n∑

j=1

bi j (s)

(
g j (x j (s − τ(s))) − g j (x

∗
j (s − τ(s)))

)

+
n∑

j=1

di j (s)
∫ s

−∞
Ni j (s − u)

(
h j (x j (u)) − h j (x

∗
j (u))

)∇u

]
, (20)

we get

Wi (t) = Wi (t0)e−ai (t, t0) +
∫ t

t0
e−ai (t,r(s))

[
− ai (s)pi (s)wi (s − ri (s))

+
n∑

j=1

ci j (s)
(
f j (x j (s)) − f j (x

∗
j (s))

)

+
n∑

j=1

bi j (s)

(
g j (x j (s − τ(s))) − g j (x

∗
j (s − τ(s)))

)

+
n∑

j=1

di j (s)
∫ s

−∞
Ni j (s − u)

(
h j (x j (u)) − h j (x

∗
j (u))

)∇u

]
∇s, s ∈ [t0, t]T,

(21)

Thus, M > 1, (13), (14), (17) and (19) imply that

|Wi (t1)| =
∣∣∣∣Wi (t0)e−ai (t, t0) +

∫ t1

t0
e−ai (t1,σ (s))

[
− ai (s)pi (s)wi (s − ri (s))

+
n∑

j=1

ci j (s)
(
f j (x j (s)) − f j (x

∗
j (s))

)

+
n∑

j=1

bi j (s)

(
g j (x j (s − τ(s))) − g j (x

∗
j (s − τ(s)))

)

+
n∑

j=1

di j (s)
∫ s

−∞
Ni j (s − u)

(
h j (x j (u)) − h j (x

∗
j (u))

)∇u

]
∇s

∣∣∣∣

≤ |Wi (t0)|e−ai (t, t0) +
∫ t1

t0
e−ai (t1,σ (s))

∣∣∣∣ − ai (s)pi (s)wi (s − ri (s))

+
n∑

j=1

ci j (s)
(
f j (x j (s)) − f j (x

∗
j (s))

)

+
n∑

j=1

bi j (s)

(
g j (x j (s − τ(s))) − g j (x

∗
j (s − τ(s)))

)

+
n∑

j=1

di j (s)
∫ s

−∞
Ni j (s − u)

(
h j (x j (u)) − h j (x

∗
j (u))

)∇u

∣∣∣∣∇s

≤ |Wi (t0)|e−ai (t, t0) +
∫ t1

t0
e−ai (t1,σ (s))

(
a+
i p+

i |wi (s − ri (s))|
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+
n∑

j=1

c+
i j L

f
j |x j (s)) − x∗

j (s)|

+
n∑

j=1

b+
i j L

g
j |x j (s − τ(s))) − g j (x

∗
j (s − τ(s))|

+
n∑

j=1

d+
i j

∫ s

−∞
Ni j (s − u)Lh

j |x j (u) − x∗
j (u)|∇u

∣∣∣∣∇s

≤ M(‖ϕ‖0 + ε)e�λ(t1, t0)e−ai⊕λ(t1, t0) +
∫ t1

t0
e−ai (t1,σ (s))

(
a+
i p+

i |wi (s − ri (s))|

+
n∑

j=1

c+
i j L

f
j |x j (s)) − x∗

j (s)| +
n∑

j=1

b+
i j L

g
j |x j (s − τ(s))) − g j (x

∗
j (s − τ(s))|

+
n∑

j=1

d+
i j

∫ s

−∞
Ni j (s − u)Lh

j |x j (u) − x∗
j (u)|∇u

∣∣∣∣∇s

≤ M(‖ϕ‖0 + ε)e�λ(t1, t0)e−ai⊕λ(t1, t0)

+
∫ t1

t0
e−ai⊕λ(t1, σ (s))

(
exp(λr+

i )

1 − p+
i exp(λr

+
i )

a+
i p+

i

+
n∑

j=1

c+
i j L

f
j

1

1 − p+
i exp(λr+

i )
+

n∑

j=1

b+
i j L

g
j

exp(λτ+)

1 − p+
i exp(λr+

i )

+
n∑

j=1

d+
i j N

+
i j L

h
j

exp(λu)

1 − p+
i exp(λr+

i )

)
∇sωM(‖ϕ‖0 + ε)e�λ(t1, t0)

≤ ωM(‖ϕ‖0 + ε)e�λ(t1, t0)

( (
1

ωM
− 1

)
e−a−

i ⊕λ(t1, t0) + 1

)

< ωM(‖ϕ‖0 + ε)e�λ(t1, t0), (22)

which contradicts the first equation of (16). Therefore, (15) holds. Letting ε −→ +∞, we
have

‖W (t)‖ ≤ M‖ϕ‖0e�λ(t, t0), ∀t ∈ (t0,+∞)T. (23)

Therefore, the unique PAP solution of system (4) is globally exponentially stable and the
uniqueness follows from the stability. The proof is complete. ��
Remark 3 Note that from the conditions of Theorems 1 and 2, it is easy to see that both the
continuous time case and the discrete time case of recurrent neural networks (4) have the
same pseudo-almost periodic.

Remark 4 Theorems 1 and 2 are new even for the both cases of differential equations (T = R)

and difference equations (T = R).

Remark 5 Because neutral-type recurrent NNs with D operator is a class of DOBNFDEs,
the stability of its PAP solutions is not easy to be established. Here, the map construction (4)
and the variable substitution Yi (t) = yi (t)− pi (t)yi (t −ri (t)) play a key role in the proof of
Theorem 1, which can be used to analyze the PAP solution problem for other DOBNFDEs.
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Remark 6 Set

C0(R
+,R) = { f ∈ BC(R+,R), lim

t→+∞ | f (t)| = 0}

and

Pw(R+,R) = { f ∈ BC(R+,R), f is w−periodic}.
A function f ∈ BC(R+,R) is said to be asymptotically w-periodic if it can be expressed as
f = g+ h where g ∈ Pw(R+,R) and h ∈ C0(R

+,R). The collection of such functions will
be denoted by APw(R+,R). The study of the existence of periodic solutions to differential
equations is one of the most important topics in the qualitative theory, due both to its mathe-
matical interest and its applications in many scientific fields, such as mathematical biology,
control theory, physics, etc. However, some phenomena in the real world are not periodic, but
approximately periodic or asymptotically periodic. As a result, in the past several decades
many authors proposed and developed several extensions of the concept of periodicity, such
as almost periodicity, almost automorphy, pseudo almost periodicity, pseudo almost auto-
morphy. Then, the space of pseudo almost-periodic functions contains strictly the space of
almost-periodic functions, of asymptotical periodicity functions, and of periodic functions,
the criteria obtained in this paper extend or improve the results given in [43,44].

5 Numerical Simulations

In this section, we give an example to illustrate the feasibility and effectiveness of our results.
Consider the following delayed recurrent NNs with D operator:

[xi (t) − pi (t)xi (t − ri (t))]∇ = − ai (t)xi (t) +
2∑

j=1

ci j (t) f j (x j (t))

+
2∑

j=1

bi j (t)g j (x j (t − τ(t)))

+
2∑

j=1

di j (t)
∫ t

−∞
Ni j (t − s)h j (x j (s))∇s

+ Ii (t), 1 ≤ i ≤ 2, t ∈ T. (24)

where fi (u) = gi (u) = hi (u) = 1
5 sin(u), p1(t) = 0.1 sin(t), p2(t) = 1

15 cos(t), a1(t) =
0.9+0.1 sin(t), a2(t) = 0.8+0.1 cos(t), c11(t) = 0.4+0.1 sin(t), c12(t) = 0.3+0.1 cos(t),
c21(t) = 0.5 + 0.1 cos(t), c22(t) = 0.2 + 0.1 sin(t), b11(t) = 0.2 − 0.1 cos(t), b12(t) =
0.3 + 0.1 sin(t), b21(t) = 0.6 − 0.1 cos(t), b22(t) = 0.5 − 0.1 sin(t), d11(t) = 0.2 +
0.1 sin(t), d12(t) = 0.4 + 0.1 cos(t), d21(t) = 0.2 + 0.1 cos(t), d22(t) = 0.6 + 0.1 sin(t),
r1(t) = | cos(t)|, r2(t) = | sin(t)|, τ(t) = 2|cos(t)|, Ni j = e−t , I1(t) = 0.3+ 0.2 sin(

√
3t),

I2(t) = 0.4 + 0.1 cos(
√
3t).

By simple calculation, we get
L f
i = Lg

i = Lh
i = 1

5 , p
+
1 = 0.1, p+

2 = 1
15 , a

+
1 = 1, a+

2 = 0.9, a−
1 = 0.9, a−

2 = 0.8,
c+
11 = 0.5, c+

12 = 0.4, c+
21 = 0.6, c+

22 = 0.3, b+
11 = 0.3, b+

12 = 0.4, b+
21 = 0.7, b+

22 = 0.6,
d+
11 = 0.3, d+

12 = 0.5, d+
21 = 0.3, d+

22 = 0.7, r+11 = r+
2 = 1, τ+ = 2,
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Fig. 1 The trajectories of x1 and x2 for t ∈ [0, 90] (continuous case T = R)

and

r = max
i=1,2

{
p+
i + 1

a−
i

(
a+
i p+

i +
n∑

j=1

(c+
i j L

f
j + b+

i j L
g
j + d+

i j L
h
j )

)}

= max{0.7444, 0.9417} < 1.

So condition (H4) is satisfied. Therefore, according to Theorems 1 and 2, system (4) has a
unique PAP solution that is globally exponentially stable (see Figs. 1, 2, 3, 4).

Remark 7 In numerical example, the problem of global exponential stability of PAP solutions
of neutral type recurrent NNs (4) with parameters (24) and D operator on time–space scale
has not been studied before. One can see that all results obtained in [35,39,40,42] are invalid
for system (24).

6 Conclusion and Open Problem

In this paper, we have studied the a class of neutral type recurrent neural networks with
time-varying delays, distributed delay and D operator on time–space scales. By using the
Banach’s fixed point theorem and the theory of calculus on time scales, we obtain some
sufficient conditions for the existence, the uniqueness and the global exponential stability of
PAP solutions for system (4). It is the first time that a class of neutral-type recurrent NNs
with time-varying delays, distributed delay and D operator on time–space scales is presented.
Finally, we formulate some open problems.
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Fig. 3 The trajectories of x1 and x2 for t ∈ [0, 100] (continuous case T = Z)

Problem 1
We would like to extend our results to more general recurrent NNs with D operator on
time–space scales, such as fuzzy recurrent NNs models:
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Fig. 4 The orbits of x1 − x2 (continuous case T = Z)

[xi (t) − pi (t)xi (t − qi (t))]∇

= −ci (t)xi (t) +
n∑

j=1

ai j (t) f j (x j (t)) +
n∑

j=1

bi j (t)g j (x j (t − τi j (t)))

+
n∑

j=1

di j (t)
∫ t

−∞
ki j (t − s)h j (x j (s))∇s +

n∑

j=1

ei j (t)ν j (t) +
n∧

j=1

Ti j (t)ν j (t)

+
n∧

j=1

αi j (t) f j (x j (t − τi j (t))) +
n∨

j=1

βi j (t) f j (x j (t − τi j (t))) +
n∨

j=1

Si j (t)ν j (t)

+Ii (t), 1 ≤ i ≤ n, t ∈ T.

where ei j (.) is feed-forward template; αi j (.), βi j (.), Ti j (.) and Si j (.) donate elements of
the fuzzy feedback MIN template, fuzzy feedback MAX template, fuzzy feed-forward MIN
template and fuzzy feed-forward MAX template, respectively;

∨
denote the fuzzy AND

operation and
∧

is the fuzzy OR operation; ν(.) denote the input of the i th neuron. The
corresponding results will appear in the near future.

Problem 2
It is well known that when discussing dynamic behavior of neutral type recurrent neural
networks with time-varying delays, distributed delay and D operator on time–space scales,
the assumption (H1) is very important in the proof process.However, in the existing literatures
(see [28–30]), almost all results on the stability of pseudo almost periodic solution for neutral
type recurrent NNs with D operator are obtained under global Lipschitz neuron activations.
When neuron activation functions do not satisfy global Lipschitz conditions, people want to
know whether the neutral type recurrent NNs is stable. In practical engineering applications,
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people also need to present new neural networks. Therefore, developing a new class of
neutral type recurrent NNs without global Lipschitz neuron activation functions and giving
the conditions of the stability of new neutral type recurrent NNs are very interesting and
valuable. Therefore, studying the existence and the global exponential stability of the pseudo
almost periodic solution of recurrent NNs on time scale and without (H1) will be our future
research interest.

Problem 3
It is known that complex numbers are of great significance to fundamental theory and practical
applications in engineering such as communication, electromagnetic, quantum mechanics,
and so on. At present many research around the stability analysis of complex-valued neural
networks such that the stability in Lagrange sense investigated in [45], some sufficient con-
ditions are established in [46] that ensure the boundedness and stability for a general class of
complex-valuedneural networkswith variable coefficients andproportional delays and in [47]
the authors investigated the boundedness and robust stability for a class of delayed complex-
valued neural networks with interval parameter uncertainties. However, the approach used
in the above mentioned work cannot be extended to solve the problem studied in our paper.
Thus, the existence and the global exponential stability of the pseudo almost periodic solution
of neutral type recurrent neural networks with time-varying delays, distributed delay and D
operator on time–space scales will be a real problem to be studied in the near future work.
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