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Abstract
This paper investigates the problem of stability analysis for switched complex dynamical
networkswithmixed time-varying delays and parameter uncertainties. The switched complex
dynamical networks are composed ofmmodes that are switched from one to another based on
time, state, etc. Although, the active subsystem is known in any instance, but the switching law
such as transition probabilities are not known. The model for each mode is considered affine
with matched and unmatched perturbations. The main purpose of the addressed problem is to
design a filter error for the switched complex dynamical networks such that the dynamics of
the error converges to the asymptotically irrespective of the admissible parameter variations
with the gains. Then, by utilizing the Lyapunov functional method, the stochastic analysis
combined with the matrix inequality techniques, a sufficient condition in terms of linear
matrix inequalities is presented to ensure the H∞ performance of the complex dynamical
system models. Finally, a numerical example is presented to illustrate the effectiveness of
the proposed design method.
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1 Introduction

In a complex network, each node represents a basic element with certain dynamical char-
acteristics and information systems, while edges represent the relationship or connection
of these basic elements [1]. From a system-theoretic point of view, a complex dynamical
network can be considered as a large-scale system with special interconnections among its
dynamical nodes [2,3]. Complex networks are ubiquitous, and have been considered as a
fundamental tool to understand dynamical behavior and the response of real systems such
as food webs, social networks, power grids, cellular networks, World Wide Web, metabolic
systems, disease transmission networks, and many others (see [4–7] and references there in).
These systems exhibit complicated dynamicswhich are represented by a set of interconnected
nodes, edges and coupling strength [9,10]. Nowadays, extensive research work is focused on
complex dynamical networks (CDNs) due to its wider applications in computer networks,
biological networks, communication networks, etc.

In real complex network systems, such as in the progress of brain nervous activity, time
delay occurs during the information transmission between nerve cells because of the limited
speed of signal transmission as well as in the network traffic congestion systems. Thus,
presence of time delays (coupling delays) in CDNs is unavoidable [11–13]. It leads often as
a source of instability and poor performance of system behaviors, for instance, see [14–16].
In recent decades, considerable attention has been devoted to the time-varying delay systems
due to their extensive applications in practical systems including circuit theory, chemical
processing, bio engineering, complex dynamical networks, automatic control and so on.
In the implementation of complex dynamical networks, time-varying delay is unavoidably
encountered due to the finite speed of signal transmission over the link and the network traffic
congestions [18–21].

Switched systems are a class of hybrid systems which consist of a family of subsystems
and which are controlled by switching laws. There are many practical switched systems in
which switching signals depend on time [22–25]. For example, in [26], the stability problem
has been investigated for a class of switched-capacitor power converter, in which the network
mode switched from one to another according to time. There are numerous applications for
such systems, including water quality control, electric power systems, productive manufac-
turing systems, and cold steel rolling mills [27]. Clearly, the switching signal in the complex
networks depending on time can be implemented easier than the switching signal depending
on the state since it does not need to check the system states [28–30].

When modeling real nervous systems with interconnected nodes, stochastic effects and
parameters uncertainties are probably twomain resources of the performance degradations of
the implemented complex networks [31]. Because in many system, synaptic transmission is
a noisy process brought on by random fluctuation from the release of neurotransmitters, and
the connectionweights of the neuron depend on certain resistance and capacitance values that
include uncertainties (see [32–35] and references there in). Hence, the stability analysis prob-
lem for stochastic time delayed complex networks with or without parameter uncertainties
becomes increasingly significant, and some results related to this problem have recently been
published [36–40]. Moreover, there exist some uncertainties due to the existence of external
disturbance and modeling errors, which might lead to undesirable dynamic behaviors such
as instability [42]. Thus, it is important to study the robust stability of the stochastic switched
complex dynamical network against these uncertainties.

Furthermore, apart from the packet dropouts, inaccuracies or uncertainties usually occur
in the implementation of the filters. The uncertainties could give rise to instability to the filter-
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ing system. To circumvent this obstacle, many researchers commit themselves to designing
a resilient filter which can be insensitive with respect to filter gain uncertainties [43,44].
The problem of filtering has been widely applied in the fields of signal processing, image
processing and control applications (see [45] and references there in). However, inmany prac-
tical applications, the statistical assumptions on the external noise signals cannot be known
exactly. To overcome this limitation, H∞ filtering technique has been introduced to deal with
unavoidable parameter shifts and external disturbances [46]. The main objective is to design
a filter such that the mapping from the external input to the filtering error is minimized or
is less than a prescribed level according to the H∞ norm see e.g. [47–49]. Especially, the
problems of performance analysis and filter design for continuous-time and discrete-time
CDNs were addressed in [50,51], respectively. Motivated by the above discussions, in this
paper, we study the H∞ filtering problem of stochastic switched CDNs with time-varying
delays.

The main contributions of this paper lie in the following aspects:

• Suitable full-order H8 filters are designed for each node for continuous-time CDNs with
time-varying delays is proposed for the first time.

• Lyapunov–Krasovskii function is provided, and reciprocal convex combination and
Jensen’s inequality approach are adopted.

• The properties of Kronecker product is employed to derive the stability conditions in a
more compact form.

• Delay-dependent results for robust H∞ is derived by using Lyapunov–Krasovskii func-
tional approach.

• Reciprocal convex combination approach is adopted to cope with reducing the conser-
vatism of the established delay-dependent conditions.

• Sufficient conditions are proposed in terms of LMIs, which can be solved by using
standard numerical packages.

Notation R
m denotes the m dimensional Euclidean space and R

m×n is the set of all m × n
real matrices. ‖ . ‖ denotes the Euclidean norm inRn . The superscript “T” denotes transpose
of the matrix and the notation Ă ≥ B̆ (respectively, Ă < B̆) where Ă and B̆ are symmetric
matrices, means that Ă − B̆ is positive semidefinite (respectively, positive definite). The
notation E stands for the mathematical expectation operator. While {�,F, {Ft }t≥0,P} is
a probability space , where � is the sample space, F is the algebra of events and P is the
probability measure defined on F . The shorthand diag{·} stands for a diagonal or block
diagonal matrix.

2 Problem Formulation and Preliminaries

We consider the following uncertain stochastic switched complex dynamical networks with
mixed time-varying delays consisting of N identical nodes, in which each node is an n-
dimensional dynamical models:

dxl(t) = [(Ĕρk + �Ĕρk (t))xl(t) + (Ĕ1ρk + �Ĕ1ρk (t)) fρk (xl(t))

+ (Ĕ2ρk + �Ĕ2ρk (t)) fρk (xl(t − δ(t)))

+
N∑

j=1

wρkl jϒ1ρk x j (t) +
N∑

j=1

gρk l jϒ2ρk x j (t − δ(t))

+ (Ĕxρk + �Ĕxρk (t))νl(t)]dt + [(H̆ρk
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+ �H̆ρk (t))xl(t) + (H̆1ρk + �H̆1ρk (t)) fρk (xl(t))

+ (H̆2ρk + �H̆2ρk (t)) fρk (xl(t − δ(t)))]dBl(t),
dyl(t) = [(Ĕ3ρk + �Ĕ3ρk (t))xl(t) + (Ĕ4ρk + �Ĕ4ρk (t)) fρk (xl(t))

+ (Ĕ5ρk + �Ĕ5ρk (t)) fρk (xl(t − δ(t)))

+ (Ĕyρk + �Ĕyρk (t))νl(t)]dt + [(H̆3ρk + �H̆3ρk (t))xl(t)

+ (H̆4ρk + �H̆4ρk (t)) fρk (xl(t))

+ (H̆5ρk + �H̆5ρk (t)) fρk (xl(t − δ(t)))]dBl(t),
xl(t) = ϕl(t), ∀ t ∈ [−δ, 0], l = 1, 2, . . . ., N , (1)

where xl(t) ∈ R
n represents the state of the lth node of the system. νl(t) is the exogenous

disturbance inputs which belong to L2[0,∞); Bl(t) is zero-mean one-dimensional Wiener
processes on (�,F,P) satisfying E{Bl(t)} = 0 and E{B2

l (t)} = t ; yl(t) ∈ Rm is the
measured output of the lth node; ϕl(t) is a compatible vector-valued initial function defined
on [−δ, 0]; Ĕρk , Ĕ1ρk , Ĕ2ρk , Ĕ3ρk , Ĕ4ρk , Ĕ5ρk , H̆ρk , H̆1ρk , H̆2ρk , H̆3ρk , H̆4ρk and H̆5ρk

are known constant matrices with appropriate dimensions; Ĕxρk ∈ R
m×n and Ĕyρk ∈ R

m×n

are some constant matrices. ρk : [0,∞) → M = 1, 2, . . . ,m is the switching signal, which
is a piecewise constant function continuous from the right. fρk : Rn → R

n are continuously
nonlinear vector functions.

W̆ρk = (wρk l j )N×N and Ğρk = (gρk l j )N×N are the non-delayed and delayed outer-
coupling matrices representing respectively the coupling strength and the topological
structure of complexnetworks, inwhichwρk l j and gρkl j are defined as follows: if there is a con-
nection between node l and node j (l 	= j), then wρk l j = wρk jl = 1 and gρk l j = gρk jl = 1;
otherwise, wρk l j = wρk jl = 0 and wρk l j = wρk jl = 0 (l 	= j). The row sums of W̆ρk

and Ğρk are zero, i.e.,
∑N

j=1 wρk l j = −wρk ll and
∑N

j=1 gρkl j = −gρk ll , l = 1, 2, . . . ., N .

ϒ1ρk = diag{ba1ρk , ba2ρk , . . . ., banρk } and ϒ2ρk = diag{ba1ρk , ba2ρk , . . . ., banρk } are
matrices describing the inner-coupling between the subsystems at time t and t − δ(t) respec-
tively; δ(t) is the time-varying delay satisfies the following inequality

0 ≤ δ1 ≤ δ(t) ≤ δ2, δ̇(t) ≤ δd < ∞,

where δ1, δ2 and δd are known scalars.

Remark 1 In [26,27,30,33], the author studied the robust analysis of switched complex net-
works with time delay. Since then, a lot of attempts on synchronization of stochastic complex
dynamical networks have been made in [31,36,37]. In [50,51], the H∞ filtering problem of
CDNs with time-varying delays has been studied. To the best of authors knowledge, H∞
filtering analysis for stochastic switched CDNs with norm-bounded parameter uncertain-
ties and time-varying delay by using reciprocal convex approach has not been studied still
now. In this paper, we first offer an extended uncertain stochastic CDNs model containing
most actual characteristics such as It’o-type stochastic disturbance, norm-bounded parameter
uncertainties, and time-varying delays. Research in this area still remains challenging, which
motivates this paper.

Assumption (A) The nonlinear function fρk (·) : Rn → R
n is assumed to be continuous and

satisfies f(0) = 0. Further the following sector-bounded condition holds
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[fρk (x) − fρk (y) − Fρk1(x − y)]T [fρk (x) − fρk (y) − Fρk2(x − y)] ≤ 0 (2)

where Fρk1 and Fρk2 are known real constant matrices with appropriate dimensions

Assumption (B) Thenorm-boundeduncertainties�Ĕρk (t), �H̆ρk (t), �Ĕxρk (t), �Ĕyρk (t),
�Ĕiρk (t) and �H̆iρk (t)(i = 1, . . . , 5) are real-valued unknown matrices representing time-
varying parameter uncertainties, and are assumed to be of the form:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

�Ĕρk (t) �H̆ρk (t)
�Ĕ1ρk (t) �H̆1ρk (t)
�Ĕ2ρk (t) �H̆2ρk (t)
�Ĕ3ρk (t) �H̆3ρk (t)
�Ĕ4ρk (t) �H̆4ρk (t)
�Ĕ5ρk (t) �H̆5ρk (t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

M̆0ρk
M̆1ρk
M̆2ρk
M̆3ρk
M̆4ρk
M̆5ρk

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

F̆(t)
[
N̆eρk N̆hρk

]
, (3)

[�Ĕxρk (t)
�Ĕyρk (t)

]
=

[
M̆xρk
M̆yρk

]
F̆(t)N̆aρk , (4)

where N̆eρk , N̆hρk , M̆xρk , M̆yρk , N̆aρk and M̆iρk (i = 0, . . . , 5) are known real constant
matrices, F̆(t) is real time-varying matrix satisfying F̆T (t)F̆(t) ≤ I, where I is an identity
matrix with appropriate dimensions.

Remark 2 Our model is more popular and general than the complex dynamical networks
model in [1], we introduce a new model of complex delayed dynamical networks, which
includes the time-varying coupling strength, unknown time-varying diffusive coupling delay
and stochastic perturbations. It is easy to check that the class of systems in the form of
equations includes almost all the well-known chaotic systems with delays or without delays
such as the Lorenz system, Rossler system, Chen system, Chua’s circuit as well as the delayed
Mackey–Glass system or delayed Ikeda equation and so on (see references [17,36,41]). To
illustrate the applicability of the proposed results, Barabasi–Albert (BA) scale-free network
model is considered

Definition 1 The filtering error system (8) with ν(t) = 0 is said to be mean-square robustly
asymptotically stable if for any ε > 0, there exists a σ(ε) > 0 such that E{‖ x̃(t) ‖2} < ε

for any t ≥ 0 and all admissible uncertainties satisfying (3) and (4) when supt∈[−δ,0] E{‖
ϕ̃(t) ‖2} < σ(ε). Moreover, if limt→∞ E{‖ x̃(t) ‖2} = 0, then system (8) with ν(t) = 0 is
said to be globally mean-square robustly asymptotically stable.

Definition 2 For a given positive constant γ , the filtering error system (8) is said to be mean-
square robustly asymptotically stable with disturbance attenuation level γ , if system (8)is
said to be mean-square robustly asymptotically stable, and under the zero initial condition
the following inequality

E

{ ∫ ∞

0
(‖ x(t) − x̂(t) ‖2)dt

}
≤ γ 2

∫ ∞

0
‖ ν(t) ‖2 dt

holds for any nonzero ν(t) ∈ L2[0,+∞).

Remark 3 The lack of research analysis is probably due to difficulty in designing suitable
filter parameters. In this situation, suitable full-order filter is designed for continuous-time
CDNs with time-varying delays. In this paper, we utilized the reciprocal convex combination
approach [53] to derive the sufficient conditions.
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232 M. Syed Ali et al.

In this paper, we will design the following full-order filter to estimate the state and output
in (1).

dx̂l(t) = E f lρk x̂l(t)dt + H f lρk dyl(t), (5)

where x̂l(t) is the filter state vector, yl(t) is the output of the node. E f ρk and H f ρk are
appropriately dimensioned filter matrices to be designed.

Define x̃l(t) = [
xTl (t) x̂ Tl (t)

]T
and ϕ̃l(t) = [

ϕT
l (t) 0T

]T
, the filtering error system is

as follows:

dx̃l(t) = [(Ẽρk + �Ẽρk (t))x̃l(t) + (Ẽ1ρk + �Ẽ1ρk (t))K fρk (x̃l(t)) + (Ẽ2ρk + �Ẽ2ρk (t))K

× fρk (x̃l(t − δ(t))) + G̃ρkKx̃l(t − δ(t))

+ (Ẽ3ρk + �Ẽ3ρk (t))νl(t)]dt+[(H̃ρk +�H̃ρk (t))x̃l(t)

+(H̃1ρk + �H̃1ρk (t))K fρk (x̃l(t)) + (H̃2ρk + �H̃2ρk (t))K fρk (x̃l(t − δ(t)))]dBl(t),
x̃l(t) = ϕ̃l(t), ∀ t ∈ [−δ, 0], l = 1, 2, . . . ., N , (6)

With the matrix Kronecker product, the systems (5) and (6) can be rewritten in the following
compact form:

dx̂(t) = E f ρk x̂(t)dt + H f ρk dy(t), (7)

and

dx̃(t) = [(Ẽρk + �Ẽρk (t))x̃(t) + (Ẽ1ρk + �Ẽ1ρk (t))K fρk (x̃(t))

+ (Ẽ2ρk + �Ẽ2ρk (t))K fρk (x̃(t − δ(t)))

+ G̃ρkKx̃(t − δ(t)) + (Ẽ3ρk + �Ẽ3ρk (t))ν(t)]dt
+ [(H̃ρk + �H̃ρk (t))x̃(t) + (H̃1ρk + �H̃1ρk (t))

× K fρk (x̃(t)) + (H̃2ρk + �H̃2ρk (t))K fρk (x̃(t − δ(t)))]dB(t), (8)

where

Ẽρk =
[
Ĕρk + (W̆ρk ⊗ ϒ1ρk ) 0

H f ρk Ĕ3ρk E f ρk

]
, Ẽ1ρk =

[
Ĕ1ρk

H f ρk Ĕ4ρk

]
, Ẽ2ρk =

[
Ĕ2ρk

H f ρk Ĕ5ρk

]
,

Ẽ3ρk =
[

Ĕxρk
H f ρk Ĕyρk

]
, �Ẽρk (t) =

[ �Ĕρk (t) 0
H f ρk�Ĕ3ρk (t) 0

]
, �Ẽ1ρk (t) =

[ �Ĕ1ρk (t)
H f ρk�Ĕ4ρk (t)

]
,

�Ẽ2ρk (t) =
[ �Ĕ2ρk (t)
H f ρk�Ĕ5ρk (t)

]
, �Ẽ3ρk (t) =

[ �Ĕxρk (t)
H f ρk�Ĕyρk (t)

]
, H̃ρk =

[
H̆ρk 0

H f ρk H̆3ρk 0

]
,

H̃1ρk =
[

H̆1ρk
H f ρk H̆4ρk

]
, H̃2ρk =

[
H̆2ρk

H f ρk H̆5ρk

]
, �H̃ρk (t) =

[ �H̆ρk (t) 0
H f ρk�H̆3ρk (t) 0

]
,

�H̃1ρk (t) =
[ �H̆1ρk (t)
H f ρk�H̆4ρk (t)

]
, �H̃2ρk (t) =

[ �H̆2ρk (t)
H f ρk�H̆5ρk (t)

]
, G̃ρk =

[
Ğρk ⊗ ϒ2ρk

0

]
,

K = [
Ĭ 0

]
, fρk (x̃(t)) =

[
fρk (x(t))
fρk (x̂(t))

]
.

For the sake of convenience, let

Eρk = [
Ẽρk 02n×2n G̃ρk 02n×n Ẽ1ρk Ẽ2ρk 02n×n 02n×n Ẽ3ρk

]
,

Hρk = [
H̃ρk 02n×2n 02n×n 02n×n H̃1ρk H̃2ρk 02n×n 02n×n 02n×n

]
,
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�Eρk (t) = [�Ẽρk (t) 02n×2n 02n×n 02n×n �Ẽ1ρk (t) �Ẽ2ρk (t) 02n×n 02n×n �Ẽ3ρk (t)
]
,

�Hρk (t) = [�H̃ρk (t) 02n×2n 02n×n 02n×n �H̃1ρk (t) �H̃2ρk (t) 02n×n 02n×n 02n×n
]
.

Then system (8) becomes

dx̃(t) = A1(t)dt + A2(t)dB(t) (9)

with

A1(t) = (Eρk + �Eρk (t))ξ(t),

A2(t) = (Hρk + �Hρk (t))ξ(t), (10)

where

ξ(t) = [xT (t) x̂ T (t) x̃ T (t − δ1)KT x̃T (t − δ(t))KT x̃T (t − δ2)KT

f Tρk (x̃(t))K
T f Tρk x̃

T (t − δ(t))KT

AT
1 (t)KT AT

2 (t)KT νT (t)]T .

Set M contains m models of system (1) and in throughout this study, for each possible
ρk = i ∈ M, the system matrices of the i th mode are denoted by Ĕi , Ĕ1i , etc., which are
considered to be real known with appropriate dimensions.

Remark 4 In this paper, we consider a stochastic switched complex dynamical network with
time-varying delay. However, it is difficult to deal with the problem, to facilitate, we need the
above assumptions. Assumption (A) gives some requirements for the dynamics of network.
Therefore, the resulting activation function could be non-monotonic, and are more general
than the usual sigmoid functions and commonly used sector-like bounded conditions [8]
in complex dynamical networks. These kind of functions will be useful in many real time
systems, for example, in electronic circuits where the input–output functions of amplifiers
may be neither monotonically increasing nor continuously differentiable. In addition, a more
generalized sector-like condition is assumed to well describe the nonlinear functions in the
network.

3 Main Results

To establish the main results of the paper, the following lemmas are needed.

Lemma 1 [52] (Jensen’s Inequality) For any constant positive-definite matrix W ∈
R
m×m, W = WT > 0 and α1 ≤ α2, the following inequalities hold:

−(α1 − α2)

∫ α1

α2

φT (s)Wφ(s)ds ≤ −
(∫ α1

α2

φ(s)ds

)T

W
(∫ α1

α2

φ(s)ds

)
. (11)

Lemma 2 (Schur complement) [52] Let S,Q,N be given matrices such that N̆ > 0, then
[
Q ST

S −N

]
< 0 ⇔ Q + STN−1S < 0.

Lemma 3 [42] Let U,W, and XT = X be a real matrices of appropriate dimensions. Set
S = {V : VTV ≤ I}. Then

X + UVW + WTVTUT < 0, ∀ V ∈ S
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234 M. Syed Ali et al.

if and only if there exist a scalar ε > 0 such that

X + ε−1UUT + εWTW < 0.

Lemma 4 (Lower bounds theorem) [53] Let h1, h2, . . . ., hN : Rm −→ R have positive
values in an open subset D of Rm. Then, the reciprocally convex combination of hi over D
satisfies

{αi | αi > 0,
min∑

i

αi = 1}
∑

i

1

αi
hi (t) =

∑

i

hi (t) + max
gi, j (t)

∑

i 	= j

gi, j (t)

subject to

{
gi, j : Rm −→ R, g j,i (t) = gi, j (t),

[
hi (t) gi, j (t)
gi, j (t) h j (t)

]
≥ 0

}
.

Lemma 5 [54] For given matricesQ and Q̃ satisfying

[
Q Q̃
∗ Q

]
≥ 0, scalars δ1 and δ2 subject

to δ12 := δ2 − δ1 > 0, a function δ : R → [δ1, δ2], and a vector-function f : R → R
n such

that the integrations concerned are well defined, the following inequality holds:

E

{
L

∫ −δ1

−δ2

∫ t

t+θ

f T (s)Q f (s)dsdθ
}

≤ δ12 f
T (t)Q f (t) − 1

δ12
ηT (t)

[
Q Q̃
∗ Q

]
η(t), ∀ t ∈ R,

where

η(t) =
[
x(t − δ1) − x(t − δ(t))
x(t − δ(t)) − x(t − δ2)

]
.

Remark 5 It has come to bewidely recognized that themode-dependent filter (5) is a powerful
tool to cope with the state estimation for CDNs with fully available modes information.
However, in practice, the modes information can be transmitted to the filter especially in
communication network medium. Lemmas 4 and 5 are applied to the corresponding terms
in the Lyapunov–Krasovskii functional V(t) in (13) to achieve less conservative results with
fewer decision variables.

The following theorem presents a mean-square robust asymptotical stability with distur-
bance attenuation level γ for the filtering error system (8) in this section.

Theorem 3.1 For given scalars γ > 0, δ1, δ2, δd , and positive scalarsμ1, μ2, the filtering
error system (8) is mean-square robustly asymptotically stable with disturbance attenuation
level γ if there exist matrices PT

i1 = Pi1 > 0, QT
iq = Qiq > 0 (q = 1, 2, 3, 4), RT

iq =
Riq > 0 (q = 1, 2), R̃i2, Li and Si , and scalars εim (m = 1, 2) such that

[
Ri2 R̃i2

∗ Ri2

]
≥ 0,

⎡

⎣
�̃ + εi1�

T
e �e + εi2�

T
h �h �1 �2

∗ −εi1I 0
∗ 0 −εi2I

⎤

⎦ < 0, (12)
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where

�̃ =
[

� HT
i Pi1

∗ −Pi1

]
, �1 =

[ [rT1 rT2 ]Pi1�̃1 + rT8 Li�1

0

]
, �2 =

[
rT9 Si�2

Pi1�̃2

]
,

�m = [
�̃m 0

]
, m = e, h, � = �1 + �2 + �3, �1 = (r1 − r2)T (r1 − r2) − γ 2rT10r10,

�2 = [rT1 rT2 ]Pi1Ei + ET
i Pi1[rT1 rT2 ]T ,

�3 = rT1 (Qi1 + Qi3 − μ1Fi1)r1 + rT3 (Qi2 − Qi1)r3

− rT5 Qi2r5 + rT4 (−(1 − δd)Qi3 − μ2Fi1)r4

+ rT6 (Qi4 − 2μ1)r6 + rT7 (−(1 − δd)Qi4 − 2μ2)r7

+ rT8 (δ1Ri1 + δ12Ri2)r8 − δ−1
1 (r1 − r3)TRi1(r1 − r3)

+ rT1 (μ1Fi2)r6 + rT6 (μ1Fi2)r1

+ rT4 (μ2Fi2)r7 + rT7 (μ2Fi2)r4 + (KEi − r8)TLT
i r8

+ rT8 Li (KEi − r8) + (KHi − r9)T STi r9

+ rT9 Si (KHi − r9) − δ−1
12

[
r3 − r4
r4 − r5

]T [
Ri2 R̃i2

∗ Ri2

] [
r3 − r4
r4 − r5

]
,

�̃s =
{
diag(�s, N̆ai ), i f s = e,
diag(�s, 0), i f s = h,

�s =
{
diag{N̆si , 0, 0, 0, 0, N̆si , N̆si , 0, 0}, i f s = e, h,

�̃1 =
[

�1

[
M̆xi

H f iM̆yi

]]
, �̃2 = [

�1 0
]
, �1 = [

K�1 M̆xi
]
,�2 = [

K�1 0
]
,

�1 =
[[

M̆0i 0
H f iM̆3i 0

]
02n×3n

[
M̆1i

H f iM̆4i

] [
M̆2i

H f iM̆5i

]
02n×2n

]
,

ra =
[
0, . . . , 0︸ ︷︷ ︸

a−1

I 0, . . . , 0︸ ︷︷ ︸
10−a

]
a = 1, . . . ., 10.

Proof By the Schur complement lemma and Lemma 2, inequality (12) is equivalent to

�̃ + �1F̃(t)�e + �T
e F̃

T (t)�T
1 + �2F̃(t)�h + �T

h F̃
T (t)�T

2 < 0

with

F̃(t) = diag(F̆(t), . . . ., F̆(t)︸ ︷︷ ︸
10

).

��
This implies that

� + ��(t) + (Hi + �Hi (t))
TPi1(Hi + �Hi (t)) < 0

with

��(t) = [rT1 rT2 ]Pi1�Ei (t) + �ET
i (t)Pi1[rT1 rT2 ]T + rT8 LiK�Ei (t) + �ET

i (t)KTLT
i r8

+ rT9 SiK�Hi (t) + �HT
i (t)KT STi r9.
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We construct the following Lyapunov–Krasovskii functional candidate for the filtering error
system (8) as

V (t) =
3∑

a=1

Va(t), (13)

where

V1(t) = x̃ T (t)Pi1 x̃(t),

V2(t) =
∫ t

t−δ1

x̃ T (s)KTQi1Kx̃(s)ds +
∫ t−δ1

t−δ2

x̃ T (s)KTQi2Kx̃(s)ds

+
∫ t

t−δ(t)
x̃ T (s)KTQi3Kx̃(s)ds +

∫ t

t−δ(t)
f Ti (x̃(s))KTQi4K fi (x̃(s))ds,

V3(t) =
∫ 0

−δ1

∫ t

t+β

AT
1 (s)KTRi1KA1(s)dsdβ +

∫ −δ1

−δ2

∫ t

t+β

AT
1 (s)KTRi2KA1(s)dsdβ.

By Ito’s differential formula, we get the following stochastic derivative along the trajectory
of dynamical networks (8) from Lemmas 1 and 4 that

E{LV1(t)} = ξ T (t)
[
2[rT1 rT2 ]Pi1(Ei + �Ei (t)) + (Hi + �Hi (t))

TPi1(Hi + �Hi (t))
]
ξ(t)

(14)

E{LV2(t)} = ξ T (t)
[
rT1 Qi1r1 − rT3 (Qi1 − Qi2)r3 − rT5 Qi2r5 + rT1 Qi3r1

− (1 − δd)rT4 Qi3r4 + rT6 Qi4r6 − (1 − δd)rT7 Qi4r7
]
ξ(t) (15)

E{LV3(t)} ≤ ξ T (t)

[
rT8 (δ1Ri1 + δ12Ri2)r8 − δ−1

1 (r1 − r3)TRi1(r1 − r3)

− δ−1
12

[
r3 − r4
r4 − r5

]T [
Ri2 R̃i2

∗ Ri2

] [
r3 − r4
r4 − r5

] ]
ξ(t) (16)

On the other hand, the following equations are true for any matrices Li and Si of appropriate
dimensions according to (10).

2ξ T (t)rT8 Li [K(Ei + �Ei (t)) − r8]ξ(t) = 0, (17)

2ξ T (t)rT9 Si [K(Hi + �Hi (t)) − r9]ξ(t) = 0. (18)

From Assumption (A), for any positive scalars μ1, μ2 the following inequalities hold,

−μ1

[
Kx̃(t)

K fi (x̃(t))

]T [
Fi1 −Fi2

∗ 2I

] [
Kx̃(t)

K fi (x̃(t))

]
≥ 0, (19)

−μ2

[
Kx̃(t − δ(t))

K fi (x̃(t − δ(t)))

]T [
Fi1 −Fi2

∗ 2I

] [
Kx̃(t − δ(t))

K fi (x̃(t − δ(t)))

]
≥ 0. (20)

From (19) and (20), we obtain the following

ξ T (t)
[
rT1 (−μ1Fi1)r1 + rT1 (μ1Fi2)r6 + rT6 (μ1Fi2)r1 + rT6 (−2μ1)r6

]
ξ(t) ≥ 0, (21)

ξ T (t)
[
rT4 (−μ2Fi1)r4 + rT4 (μ2Fi2)r7 + rT7 (μ2Fi2)r4 + rT7 (−2μ2)r7

]
ξ(t) ≥ 0. (22)
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The combination of (13)–(18), (21) and (22) gives that

E{LV (t)} ≤ ξ T (t)
[
�2 + �3 + ��(t) + (Hi + �Hi (t))

TPi1(Hi + �Hi (t))
]
ξ(t). (23)

Now, we present that the filtering error system (8) with ν(t) = 0 is mean-square robustly
asymptotically stable. In fact, when ν(t) = 0, we have E{LV (t)} < 0 from (12) and (22),
since E{V (t)} > 0 implies that

β1E{‖x̃(t)‖2} ≤ E{V (t)} ≤ E{V (0)} ≤ β2

(
sup

t∈[−δ,0]
E{‖ϕ̃(t)‖2}

)
, (24)

where β1 and β2 are positive constants. Also, we can derive E{LV (t)} ≤ −β3E{‖x̃(t)‖2}
for some positive constant β3, which implies that

E

{ ∫ t

0
(‖x̃(s)‖2)ds

}
≤−β−1

3 E{V (t)−V (0)}≤β−1
3 E{V (0)}≤β2β

−1
3

(
sup

t∈[−δ,0]
E{‖ϕ̃(t)‖2}

)
.

Thus, it is easy to see that the filtering error system (8) with ν(t) = 0 is mean-square robustly
asymptotically stable.

In this end, for any nonzero ν(t), under the zero initial conditionwe introduce the following
index

T (t) = E

{ ∫ t

0
(‖x(s) − x̂(s)‖2 − γ 2νT (s)ν(s))ds

}
.

Clearly,

T (t) ≤ E

{ ∫ t

0
(‖x(s) − x̂(s)‖2 − γ 2νT (s)ν(s) + LV (s))ds

}

≤ E

{ ∫ t

0
ξ T (s)

[
� + ��(s) + (Hi + �Hi (s))

TPi1(Hi + �Hi (s))
]
ξ(s)ds

}
∀ t>0.

Hence, if (12) holds, then T (t) < 0 for any t > 0. Therefore, the filtering error system
(8) is mean-square robustly asymptotically stable with disturbance attenuation level γ . This
completes the proof.

Now, the following theorem provides to design a filter in terms of LMIs for the filtering
error system (8) by using Theorem 3.1.

Theorem 3.2 For given scalars γ > 0, δ1, δ2, δd , and positive scalarsμ1, μ2, the filtering
error system (8) is mean-square robustly asymptotically stable with disturbance attenuation

level γ if there exist matrices PT
i1 = Pi1 :=

[
Pi11 Pi12

Pi12 Pi12

]
> 0, QT

iq = Qiq > 0 (q =
1, 2, 3, 4), RT

iq = Riq > 0 (q = 1, 2), E f i , H f i , R̃i2, Li and Si , and scalars εim (m =
1, 2) such that

[
Ri2 R̃i2

∗ Ri2

]
≥ 0,

⎡

⎣
�̆ + εi1�

T
e �e + εi2�

T
h �h �̆1 �̆2

∗ −εi1I 0
∗ 0 −εi2I

⎤

⎦ < 0, (25)
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where

�̆ =
[

�̄ ĤT
i∗ −Pi1

]
, �̆1 =

[ [rT1 rT2 ]�̄1 + rT8 Li�1

0

]
, �̆2 =

[
rT9 Si�2

�̄2

]
,

�̄ = �1 + �̄2 + �3,

�̄2 = [rT1 rT2 ]Êi + ÊT
i [rT1 rT2 ]T , �̄1 =

[
�̆1

[
Pi11M̆xi + Ĥ f iM̆yi

Pi12M̆xi + Ĥ f iM̆yi

] ]
, �̄2 = [

�̆1 0
]
,

�̆1 =
⎡

⎢⎣

[
Pi11M̆0i + Ĥ f iM̆3i 0
Pi12M̆0i + Ĥ f iM̆3i 0

]
02n×3n

[
Pi11M̆1i + Ĥ f iM̆4i

Pi12M̆1i + Ĥ f iM̆4i

] [
Pi11M̆2i + Ĥ f iM̆5i

Pi12M̆2i + Ĥ f iM̆5i

]

02n×2n

⎤

⎥⎦ ,

Êi =
[
Êi 02n×2n Ĝi 02n×n Ê1i Ê2i 02n×n 02n×n Ê3i

]
,

Ĥi =
[
Ĥi 02n×2n 02n×n 02n×n Ĥ1i Ĥ2i 02n×n 02n×n 02n×n

]
,

Êi =
[
Pi11(Ĕi + (W̆i ⊗ ϒ1i )) + Ĥ f i Ĕ3i Ê f i

Pi12(Ĕi + (W̆i ⊗ ϒ1i )) + Ĥ f i Ĕ3i Ê f i

]
, Ê1i =

[
Pi11Ĕ1i + Ĥ f i Ĕ4i

Pi12Ĕ1i + Ĥ f i Ĕ4i

]
,

Ê2i =
[
Pi11Ĕ2i + Ĥ f i Ĕ5i

Pi12Ĕ2i + Ĥ f i Ĕ5i

]
, Ê3i =

[
Pi11Ĕxi + Ĥ f i Ĕyi

Pi12Ĕxi + Ĥ f i Ĕyi

]
, Ĥi =

[
Pi11H̆i + Ĥ f i H̆3i 0
Pi12H̆i + Ĥ f i H̆3i 0

]
,

Ĥ1i =
[
Pi11H̆1i + Ĥ f i H̆4i

Pi12H̆1i + Ĥ f i H̆4i

]
, Ĥ2i =

[
Pi11H̆2i + Ĥ f i H̆5i

Pi12H̆2i + Ĥ f i H̆5i

]
, Ĝi =

[
Pi11(Ği ⊗ ϒ2i )

Pi12(Ği ⊗ ϒ2i )

]
,

and �m(m = 1, 2), �s(s = e, h), ra(a = 1, . . . , 10), �1 and �3 are defined as in
Theorem 3.1.

In this case, the parameters of the desired filter can be given by

E f i = P−1
i12Ê f i , H f i = P−1

i12Ĥ f i .

Proof The proof is similar to that in Theorem 3.1. Thus, we omit its proof. ��
Case 1 If there is no stochastic disturbance, then system (8) is simplified as follows:

ẋ(t) = (Eρk + �Eρk (t))x(t) + (E1ρk + �E1ρk (t))K fρk (x(t))

+ (E2ρk + �E2ρk (t))K fρk (x(t − δ(t)))

+ GρkKx̃(t − δ(t)) + (E3ρk + �E3ρk (t))ν(t), t 	= tκ

x(tκ ) = Jκ x(t
−
κ ), t = tκ . (26)

Corollary 3.3 For given scalars γ > 0, δ1, δ2, δd , and positive scalarsμ1, μ2, the filtering
error system of system (24) based on filter (7) is mean-square robustly asymptotically stable

with disturbance attenuation level γ if there exist matrices PT
i1 = Pi1 :=

[
Pi11 Pi12

Pi12 Pi12

]
>

0, QT
iq = Qiq > 0 (q = 1, 2, 3, 4), RT

iq = Riq > 0 (q = 1, 2), E f i , H f i , R̃i2 and Li ,

and scalars εi1 such that
[
Ri2 R̃i2

∗ Ri2

]
≥ 0,

[
�̂ + εi1�́

T
e �́e �̂1

∗ −εi1I

]
< 0, (27)

123



Robust H∞ Filtering of Stochastic Switched Complex Dynamical… 239

where

�̂ = �́1 + �́2 + �́3, �́1 = (ŕ1 − ŕ2)T (ŕ1 − ŕ2) − γ 2ŕT9 ŕ9, �́2 = [ŕT1 ŕT2 ]Éi + ÉT
i [ŕT1 ŕT2 ]T ,

�́3 = ŕT1 (Qi1 + Qi3 − μ1Fi1)ŕ1 + ŕT3 (Qi2 − Qi1)ŕ3

− ŕT5 Qi2ŕ5 + ŕT4 (−(1 − δd )Qi3 − μ2Fi1)ŕ4

+ ŕT6 (Qi4 − 2μ1)ŕ6 + ŕT7 (−(1 − δd )Qi4 − 2μ2)ŕ7

+ ŕT8 (δ1Ri1 + δ12Ri2)ŕ8 − δ−1
1 (ŕ1 − ŕ3)TRi1

× (ŕ1 − ŕ3) + ŕT1 (μ1Fi2)ŕ6 + ŕT6 (μ1Fi2)ŕ1

+ ŕT4 (μ2Fi2)ŕ7 + ŕT7 (μ2Fi2)ŕ4 + (KEi − r8)TLT
i ŕ8

+ ŕT8 Li (KEi − ŕ8) − δ−1
12

[
ŕ3 − ŕ4
ŕ4 − ŕ5

]T [
Ri2 R̃i2

∗ Ri2

] [
ŕ3 − ŕ4
ŕ4 − ŕ5

]
,

�̂1 =
[ [ŕT1 ŕT2 ]�́1 + ŕT8 Li �́1

0

]
, �́1 =

[
�́1

[
Pi11M̆xi + Ĥ f iM̆yi

Pi12M̆xi + Ĥ f iM̆yi

] ]
,

�́1 =
⎡

⎢⎣

[
Pi11M̆0i + Ĥ f iM̆3i 0
Pi12M̆0i + Ĥ f iM̆3i 0

]
02n×3n

[
Pi11M̆1i + Ĥ f iM̆4i

Pi12M̆1i + Ĥ f iM̆4i

] [
Pi11M̆2i + Ĥ f iM̆5i

Pi12M̆2i + Ĥ f iM̆5i

]

02n×n

⎤

⎥⎦ ,

Éi =
[
Êi 02n×2n Ĝi 02n×n Ê1i Ê2i 02n×n Ê3i

]
,

�́s =
{
diag(�́s , N̆ai ), i f s = e,

�́s =
{
diag{N̆si , 0, 0, 0, 0, N̆si , N̆si , 0}, i f s = e,

�́1 = [
K�́1 M̆xi

]
, �́2 = [

K�́1 0
]
,

ŕa =
[
0, . . . , 0︸ ︷︷ ︸

a−1

I 0, . . . , 0︸ ︷︷ ︸
9−a

]
a = 1, . . . ., 9,

and Êi , Ĝi , Ê1i , Ê2i and Ê3i are defined as in Theorem 3.2. In this case, the parameters
of the desired filter can be given by

E f i = P−1
i12Ê f i , H f i = P−1

i12Ĥ f i .

Proof The proof and calculation are similar to that in Theorems 3.1 and 3.2 by choosing
H̃i = �H̃i (t)) = H̃1i = �H̃1i (t)) = H̃2i = �H̃2i (t)) = 0. Thus, the proof is omitted. ��

Case2 If there are no stochastic disturbance and coupling delay, then system (8) is simplified
as follows:

ẋ(t) = [(Eρk + �Eρk (t))x(t) + (E1ρk + �E1ρk (t))K fρk (x(t))

+ (E2ρk + �E2ρk (t))K fρk (x(t − δ(t)))

+ �E3ρk (t))ν(t), t 	= tκ

x(tκ ) = Jκ x(t
−
κ ), t = tκ . (28)

Corollary 3.4 For given scalars γ > 0, δ1, δ2, δd , and positive scalarsμ1, μ2, the filtering
error system of system (27) based on filter (7) is mean-square robustly asymptotically stable

with disturbance attenuation level γ if there exist matrices PT
i1 = Pi1 :=

[
Pi11 Pi12

Pi12 Pi12

]
>
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0, QT
iq = Qiq > 0 (q = 1, 2, 3, 4), RT

iq = Riq > 0 (q = 1, 2), E f i , H f i , R̃i2 and Li ,

and scalars εi1 such that
[
Ri2 R̃i2

∗ Ri2

]
≥ 0,

[ ´̂
� + εi1�́

T
e �́e �̂1

∗ −εi1I

]
< 0, (29)

where

´̂
� = �́1 + ´̂

�2 + �́3,
´̂
�2 = [ŕT1 ŕT2 ] ´̂Ei + ´̂ET

i [ŕT1 ŕT2 ]T ,

´̂Ei = [
Êi 02n×4n Ê1i Ê2i 02n×n Ê3i

]
,

and �́e, �̂1, �́1, �́3, Êi , Ê1i , Ê2i and Ê3i are defined as in Theorem 3.2. In this case, the
parameters of the desired filter can be given by

E f i = P−1
i12Ê f i , H f i = P−1

i12Ĥ f i .

Proof The proof and calculation are similar to that in Theorems 3.1 and 3.2 by choosing
H̃i = �H̃i (t)) = H̃1i = �H̃1i (t)) = H̃2i = �H̃2i (t)) = G̃i = 0. Thus, the proof is
omitted. ��

4 Numerical Examples

In this section, a numerical example is presented to demonstrate the effectiveness of the
results derived above.

Example For simplicity, we consider a uncertain stochastic switched complex dynamical
networks with three nodes and the state vector of each node being two dimensional, that is
N = 3, l = 2 and ρk = 2 other related parameters are given as follows:

Ĕ1 = diag{−3,−3}, Ĕ2 = diag{−1.2,−1.2},
Ĕ11 =

[ −0.1 −1.2
−0.02 −0.1

]
, Ĕ21 =

[ −0.5 0.1
0.1 −0.5

]
, Ĕ31 =

[ −0.12 0
−0.4 0.1

]
,

Ĕ41 =
[ −0.1 0.2

−0.12 −0.1

]
, Ĕ51 =

[
0.1 0

−0.5 0.1

]
, H̆1 =

[
0.13 0
0 0.41

]
,

H̆11 =
[

0.1 −0.2
−0.02 0

]
, H̆21 =

[
0.5 −0.12

−0.02 0

]
, H̆31 =

[ −0.3 0
0 0.1

]
,

H̆41 =
[

0 −0.2
0.1 −0.6

]
, H̆51 =

[ −0.1 0
0 −0.2

]
, Ĕx1 =

[ −0.19 0
0 −0.6

]
,

Ĕy1 =
[ −0.3 0

0 −0.16

]
, Ĕ12 =

[ −0.15 −1.21
0.02 −0.11

]
, Ĕ22 =

[ −0.1 0
0.1 0.15

]
,

Ĕ32 =
[ −0.2 0.2

−0.14 0.51

]
, Ĕ42 =

[ −0.21 0.25
0.12 −0.16

]
, Ĕ52 =

[
0.16 0

−0.15 0.61

]
,

H̆2 =
[ −0.3 0

−0.2 0.41

]
, H̆12 =

[ −0.5 −0.2
0 0.2

]
, H̆22 =

[
0.15 −0.12
0 0.1

]
,

H̆32 =
[ −0.3 0.4

0 0.16

]
, H̆42 =

[
0.3 −0.2
0.21 −0.6

]
, H̆52 =

[ −0.1 0.5
0 −0.2

]
,

Ĕx2 =
[ −0.19 0

0.2 −0.6

]
, Ĕy2 =

[ −0.13 0.3
0 −0.16

]
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ϒ11 = ϒ12 =
[
0.8 0
0 0.8

]
, ϒ21 = ϒ22 =

[
0.1 0
0 0.1

]
, N̆a1 = N̆a2 =

[
0.14 0.16
0.13 0.15

]
,

M̆01 = M̆02 = diag{0.5, 0.5}, M̆11 = M̆21 = diag{0.2, 0.2}, M̆21 = M̆22 = diag{0.2, 0.2},
M̆31 = M̆32 = diag{0.2, 0.2}, M̆41 = M̆42 = diag{0.2, 0.2}, M̆51 = M̆52 = diag{0.2, 0.2},
M̆x1 = M̆x2 = diag{0.2, 0.2}, M̆y1 = M̆y2 = diag{0.2, 0.2}, N̆e1 = N̆e2 = diag{0.1, 0.1},
N̆h1 = N̆h2 = diag{0.1, 0.1}.

The coupling matrices are

W̆1 = W̆2 =
⎡

⎣
−2 2 0
0 −2 2
2 0 −2

⎤

⎦ , Ğ1 = Ğ2 =
⎡

⎣
−2 1 1
1 −2 1
1 1 −2

⎤

⎦ .

According to (2), the relevant parameter matrices can be chosen as

F11 = F21 =
[
0.05 0.05
0.05 0.05

]
, F12 = F22 =

[−0.05 0.05
−0.15 −0.25

]
.

For given δ1 = 0.05, δ2 = 0.08, δd = 0.5, by using the LMI toolbox of MATLAB to
solve LMI (23), we obtain that the minimal disturbance attenuation level γ = 0.557 and the
corresponding filter matrices are given by

E f 1 =
[ −5.5921 0.2530

0.2283 −6.2849

]
, E f 2 =

[ −3.4408 −0.0094
−0.0065 −3.7484

]
, H f 1 =

[ −1.0417 −0.5962
−0.5532 −0.0138

]
,

H f 2 =
[

0.1090 −0.1278
−0.0948 0.7122

]
, P111 =

[
25.1805 −0.0637
−0.0637 29.3758

]
, P112 =

[
5.0722 0.1299
0.1299 5.2250

]
,

P211 =
[
30.0088 −1.1133
−1.1133 43.7198

]
, P212 =

[
5.7630 −0.0097

−0.0097 7.8273

]
, Q11 =

[
45.7613 −1.9552
−1.9552 54.5097

]
,

Q12 =
[
42.6713 −0.4371
−0.4371 44.8974

]
, Q13 =

[
36.5842 −1.9315
−1.9315 45.7353

]
, Q14 =

[
17.0840 −0.2281
−0.2281 12.9942

]
,

Q21 =
[
32.9495 −0.8270
−0.8270 52.1107

]
, Q22 =

[
35.6719 −0.4289
−0.4289 43.1975

]
, Q23 =

[
23.7386 −0.9602
−0.9602 43.4919

]
,

Q24 =
[
11.0020 −2.0292
−2.0292 9.2163

]
, R11 =

[
1.1448 0.0608
0.0608 0.8824

]
, R12 =

[
1.6318 0.0108
0.0108 1.5230

]
,

R122 =
[
1.3768 0.0005
0.0005 1.3136

]
, R21 =

[
1.5988 0.0170
0.0170 1.1447

]
, R22 =

[
1.3181 0.0059
0.0059 1.0539

]
,

R222 =
[

1.0159 −0.0032
−0.0032 0.8432

]
, L1 =

[
1.8882 0

0 1.8882

]
, L2 =

[
3.9052 0

0 3.9052

]
,

S1 =
[
13.4054 0

0 13.4054

]
, S2 =

[
14.0987 0

0 14.0987

]
.

By choosing the initial conditions x1(t) = [−0.50.1]T , x̂1(t) = [0.5 − 0.5]T , x2(t) =
[−0.20.5]T , x̂2(0) = [0.8 − 0.2]T and the disturbance inputs as νi (t) = sin(t)e−2t , the
simulation results for Example are shown in Figs. 1 and 2. Figure 1 shows the state trajectories
x1(t), its estimates x̂1(t) of mode ρk = 1 and Fig. 2 shows the state trajectories x2(t),
its estimates x̂2(t) of mode ρk = 2. According to Theorem 3.2, the uncertain stochastic
switched complex dynamical networks (12) with the above mentioned parameters is robustly
asymptotically stable in the sense of Definition 2.
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Fig. 1 The state trajectories x1(t) and its estimates x̂1(t) with mode ρk = 1
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Fig. 2 The state trajectories x2(t) and its estimates x̂2(t) with mode ρk = 2

Remark 6 In this Table 1,more design parameters and comparisonswith some existing results
fromcomputational aspects are given. In the table,Sgives storage requirements,N denotes the
number of LMIs, andZ is the size of the main LMI. It is noted that the method in Theorem 3.2
employed free-weighting matrices, however, it deals with the time-delay pattern and utilizes
more decision variables. To avoid numerical computation complexity, LKFs with additive
time-varying delays are constructed using a smaller number of decision variables (NDV)
compared with the methods in [3–6]. The NDV in this paper is 8n(n+1)

2 + 5n2. Thus, our
presented results are significantly less conservative than those of the existing approaches
in [3–6].
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Table 1 A comparison of
computational load

Methods S N Z

[4] 7n(n+1)
2 + 13n2 1 12n × 12n

[3] 6n(n+1)
2 + 15n2 2 13n × 13n

[5] 5n(n+1)
2 + 19n2 4 8n × 8n

[6] 7n(n+1)
2 + 33n2 5 11n × 11n

Theorem 3.2 8n(n+1)
2 + 5n2 1 10n × 10n

5 Conclusion

The robust stability of the proposed network model have been taken into consideration in
this paper, and some sufficient conditions have been established. By Lyapunov–Krasovskii
functional method, an H∞ filter has been designed via the solution of a set of LMIs such
that the resulting augmented system is asymptotically stable with the filter error satisfying
a prescribed H∞ disturbance attenuation level. Then, some advanced techniques such as
the free-matrix-based integral inequality and reciprocally convex combination method are
used to estimate the derivative of the LKF. Finally, the feasibility and effectiveness of the
developed methods has been shown by numerical example. A robust observer-based sensor
fault–tolerant control for PMSM in electric vehicles; Fault detection for linear discrete time-
varying systems subject to random sensor delay are investigated by the authors [55–57]. The
idea and approach developed in those paper will be further utilized to deal with some other
problems on pinning control and synchronization for general complex dynamical networks.
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