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Abstract
In this paper, we propose a method to design Neural Networks with Random Weights in the
presence of incomplete data.We present a method, under the general assumption that the data
is missing-at-random, to estimate the weights of the output layer as a function of the uncer-
tainty of the missing data estimates. The proposed method uses the Unscented Transform to
approximate the expected values and the variances of the training examples after the hidden
layer. We model the input data as a Gaussian Mixture Model with parameters estimated via a
maximum likelihood approach. The validity of the proposed method is empirically assessed
under a range of conditions on simulated and real problems. We conduct numerical experi-
ments to compare the performance of the proposed method to the performance of popular,
parametric and non-parametric, imputation methods. By the results observed in the experi-
ments, we conclude that our proposed method consistently outperforms its counterparts.

Keywords Neural networks · Missing data · Unscented transform

1 Introduction

Artificial Neural Networks (ANN) are a broad class of mathematical models, inspired by the
neural mechanism of animals, that have been extensively investigated in the past decades.
Successful applications of ANN have been reported in various domains such as signal pro-
cessing [47], control systems [36] and computer vision [51].

Among the aspects that influence the performanceof anANN, the learningmethod is one of
the most relevant. In this context, gradient-based learning algorithms have played a dominant
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role in training ANN [45]. However, problems such as slow convergence and convergence to
local minima increased the popularity of Neural Networks with Random Weights (NNRW).
NNRWs provide a solution to these issues by randomly assigning the hidden weights and
adjusting only the output neurons during the training step. In one of the first works to analyze
NNRW, [43] reported that the weights of the output layer are the most relevant, and the other
weights may not need to be tuned once they are properly initialized. The authors argue that
randomly setting the parameters in the hidden neurons helps to remove the redundancy of
the model in parameter space and thus makes the performance less sensitive to the resulting
parameters compared with other typical learning rules such as back-propagation. Similar
basic ideas were also reported in the seminal work of Broomhead and Lowe [3], where
the authors showed that the random selection of centers among the training data is a valid
alternative to sophisticated clustering algorithms used in RBF neural networks.

Since the 90s, NNRWs have become increasingly popular and various models were pro-
posed. For example, in [37], the authors proposed a newNNRWmodel namedRandomVector
Functional Link (RVFL). The RVFL model differs from the model presented by Schmidt et
al. [43] since it includes a direct link between the inputs and the output layer. Later, several
authors showed that the direct linkmay enhance the performance of RVFL [46]. Furthermore,
various authors such as [2,14,15] introduced NNs with a randomly initialized hidden layer,
trained using the pseudo-inverse. The universal approximation capability ofNNRWswas also
addressed in works such as [20,26,40]. More recently, several authors introduced NNRWs
with different characteristics such as constructive/selective NNs [49] and deep architectures
[13,48]. Such models achieved remarkable performances and may point promising future
research directions. It is worth pointing that the literature of NNRW is vast and, in this paper,
we do not aim to present it in details. For a more complete survey on NNRW including
historical perspectives and current challenges, the reader may refer to [42,52].

Despite the vast number of successful applications [5,39,41], the use of NNRW can be
limited by the presence of observations with one or more missing values. The occurrence of
missing values can be caused bymany reasons such asmeasurement error, devicemalfunction
and operator failure. To overcome the problems derived from the occurrence of these miss-
ing components, it is necessary to understand the mechanisms governing this phenomenon.
According [29], the missingness mechanism can be characterized as Not Missing at Random
(NMAR), Missing Completely at Random (MCAR) and Missing at Random (MAR).

The NMAR mechanism describes the situation in which the probability of a component
being missing is related to the value of this component. If missing data are NMAR, building
a missingness model is the only way to obtain unbiased estimates of the missing values.
In MCAR, the missingness of a component is independent of its real value or any value of
other components on the dataset. Such a characterization is very restrictive, and it makes the
MCAR case unlikely in real life problems [8]. A more reasonable assumption states that the
data are MAR. In the MAR mechanism, the missingness of a component is independent of
the value itself but can be related to the observed values. Under the assumption that the data
are MAR, strategies for dealing with missing data in machine learning methods (including
neural networks) can be grouped into three different approaches: deletion of incomplete
cases, imputation of missing values and design of learning methods that can handle missing
data directly.

The deletion approach is, by far, the most common [50]. In the listwise deletion, instances
with at least one missing attribute are eliminated, and the analysis is performed using the rest
of the examples. Although commonly used, listwise deletion can lead to a performance loss
when the number of instances with missing attributes is significant [12].
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The imputation approach consists of strategies for filling the missing values using the
information available from the observed values of the dataset. These methods can be split
into single and multiple imputation procedures. In single imputation, each missing value is
filledwith a single estimated value. Examples of single imputationmethods are the incomplete
case nearest neighbors imputation (ICk-NNI, [17]), where the value is imputed according
to the k-nearest neighbors obtained with an incomplete distance metric and the Expectation
Conditional Maximization (ECM, [31]). In the ECMmethod, a parametric model is assumed
for the dataset, and the EM algorithm is used to estimate the parameters of the distribution.
After that, the missing values are imputed with its expected value conditioned to the observed
values of the instance. After the imputation procedure, a standard learning algorithm can be
applied.

In contrast to single imputation,multiple imputationmethods attribute a set of possible val-
ues rather than a single value for the missing attributes. Hence, these methods generate some
different datasets where the complete instances are identical, but the incomplete instances
have different values [23]. After that, learning algorithms are trained on each dataset, and a
final result is obtained by combining all generated models. It is worth noting that multiple
imputation methods present a significant increase in computational cost when compared to
single imputationmethods. However,multiple imputation approaches can handle the inherent
uncertainty from the missing value estimation process in the final machine learning model
thus leading to better results.

The third group of strategies consists of the adaptation of learning methods to handle
missing data on its formulation. Such methods avoid direct imputation procedures [12]. In
[9], the authors propose amethod to estimate the expected value of pairwise distances between
vectors with missing data using a Gaussian Mixture Model (GMM) for the distribution of the
dataset. The proposed method is used to design a k-NN classifier for datasets with missing
values. Support Vector Machines (SVM) and Gaussian Process (GP) variants for missing
data were proposed in [44], where both SVM and GP are cast in a general framework for
kernel methods as an estimation problem using exponential families in feature space. Also
for SVM, the work in [38] propose a modified risk function that incorporates a probability
distribution for missing data. Mesquita et al. [33] presents a method to estimate the expected
value of the Gaussian kernel calculated over incomplete vectors.

Considering NNRWs, methods for directly handling missing data are indeed rare. Most
of the works available in the literature are related to the use of neural networks for single
imputation, as can be seen in [1,19]. Other authors propose single imputation methods [35]
or evaluate the impact of various well-known imputation methods on the performance of
NNRW [30]. It is worth noting that these single imputation methods were not particularly
designed to work with NNRW and can be used with almost any machine learning method.

In this paper, we propose a method to design NNRW models that can handle missing
components directly. In the proposed framework, we consider each entry as a random vari-
able with its distribution modeled with a GMM. We use the Unscented Transform (UT)
to estimate both the expected value and the variance of each entry after going through the
hidden layer. Then, we estimate the weights of the output layer using an uncertainty robust
least squares formulation. We tested our method on two NNRW models in synthetic and
real datasets. Results show that our approach outperformed other commonly used missing
data treatments, especially when the number of missing components is high. The proposed
method differs from other missing data treatments because it accounts for the uncertainty
of the imputation process, similar to multiple imputation methods, whereas it does not rely
on a computationally intensive sampling procedure. In this way, our method can be seen as
an alternative to single and multiple imputation methods, since it provides more accurate
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estimates than single imputation methods (since it considers the uncertainty) with a reduced
computational cost when compared to multiple imputation procedures.

The remainder of this paper is organized as follows. Section 2 presents a brief review
of basis functions and NNRW models. Section 3 describes the proposed method to design
NNRW models that are capable of handling missing values. Section 4 summarizes the steps
to be followed to implement the proposed method. Section 5 presents the results obtained
in numerical experiments conducted to evaluate the performance of the proposed method.
Concluding remarks are given in Sect. 6.

2 Basis Expansion and Neural Networks with RandomWeights

Let D = {X ,Y} be a training set with N examples, such that X = {Xi }Ni=1 and Y =
{Yi }Ni=1 are, respectively, a set of D-dimensional input points and their corresponding outputs.
Assuming the existence of a continuousmapping f : X → Y between the input and the output
space, we want to estimate f from data. In many NNRWmodels, f can be expressed as a linear
combination of nonlinear functions (basis functions) over the input variables as follows:

Ŷi =
M∑

j=0

β jφ j (Xi ), (1)

where the function φ j (·) : RD → R is the j-th basis function, β j is its corresponding weight
and M is the number of hidden neurons. Usually φ0(·) = 1 and β0 is the bias term.

The resulting model, referred as linear basis expansion, can approximate a nonlinear
function while still linear in the parameters. Under the condition that these basis functions are
infinitely differentiable, this model can approximate any given function ([6,11,16]). Since the
model is linear concerning the basis functions outputs, the parameters are typically estimated
with maximum likelihood or Bayesian techniques.

The use of different basis functions defines various neural networks with random weights
models such as the Feedforward Neural Network with Random Weights (FNNRW, [43]),
the Random Vector Functional Link (RVFL, [36]) and the q-Generalized Random Neural
Network (QGRNN, [45]) among others. To illustrate our point, we present reformulated
versions of FNNRWandQGRNNaccording to the basis expansionmodel. Similar procedures
can be performed for other NNRW models and require only straightforward mathematical
manipulations.

The FNNRW model, originally proposed in [43], was one of the first to introduce the
concept of NNRW. The FNNRWcomprises a multilayer perceptronmodel where the weights
between the input and the hidden neurons are randomly assigned. Such model can be written
as:

Ŷi =
M∑

j=0

β j f (w
T
j Xi + c j ) (2)

where w j is the weight vector connecting the input layer and the j-th hidden neuron, β j is
the weight connecting the j-th hidden neuron and output layer, c j is the threshold of the j-th
hidden neuron and f (·) is the logistic sigmoid function. As can be noticed, in the FNNRW
model the basis function is defined as a sigmoid function over the linear combination of the
input vector.
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TheQGRNNmodel can bewritten similarly. The q-Generalized RandomNeural Network
is a recently proposed NNRW that uses radial basis neurons and a q-Gaussian activation
function. The resulting model can be expressed as:

Ŷi =
M∑

j=0

β j g(Xi ) (3)

where:
g(α) = eq(−||α − γ ||2/η2) (4)

where γ and η represent, respectively, the center and the width of the q-Gaussian, and eq is
the q-exponential defined by:

eq(α) = [1 + (1 − q)α] 1
1−q (5)

The choice of q , the entropic index, is of fundamental importance since it results in
different deformations of the Gaussian distribution. Once again, the NNRW model can be
expressed as a linear basis expansion model.

3 Neural Networks with RandomWeights for Datasets with Missing
Values

Given a set of possibly incomplete training inputs X and the set of corresponding outputs Y ,
we wish to estimate the weight vector B = (β0, . . . , βM)T . To do so, we model the missing
entries as random variables and choose B to minimize the expected sum of square errors loss
function. We derive a solution in terms of the expected values and the covariance matrices
of the transformed inputs. In turn, we provide a method to estimate these statistics given the
distribution of the input data. Furthermore, we consider that missing values are MAR [29]
and that the full version of the examples in X are i.i.d.

3.1 Formulation

Given the aforementioned assumptions, each φ j (Xi ) is an univariate random variable since
it is a transform of Xi for which several components may be missing. In such scenario, B
can be estimated by solving the following optimization problem:

minimize
B

E

[ N∑

i=1

(
Yi −

M∑

j=0

β jφ j (Xi )
)2]

(6)

For a compact notation, let us denoteψi =(φ0(Xi ), . . . , φM(Xi ))
T ,Ψ =(ψ1, . . . ,ψN )T ,

Y = (Y1, . . . , YN )T and B = (β0, . . . , βM)T . Thus, the same problem can be expressed as:

minimize
B

E
[||Y − ΨB||22

]
(7)

We can assume that Ψ is a random variable with Ψ = E[Ψ ], so we can describe Ψ as
Ψ = Ψ +U , whereU is a randommatrix with zeromean. By doing so, the objective function
in Eq. (7) can be expressed as:
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E
[||Y − ΨB||22

] = E
[
(Y − ΨB −UB)T (Y − ΨB −UB)

]

= (Y − ΨB)T (Y − ΨB) + E
[BTUTUB]

= ||Y − ΨB||22 + BT PB
(8)

where P = E[UTU ]. Therefore, the problem has the form of a regularized least squares
problem and the solution is given by:

B = (Ψ
T
Ψ + P)−1Ψ

T
Y (9)

We can express P as a function of the moments of the random variable Ψ . For any
l, l ′ ∈ {1, . . . ,M}, the element Pl,l ′ , in the intersection of the l-th line with the l ′-th column
of P is given by:

Pl,l ′ =
N∑

i=1

E[Ui,lUi,l ′ ]

�
N∑

i=1

(
Cov(Ui,l ,Ui,l ′) + E[Ui,l ]E[Ui,l ′ ]

)

=
N∑

i=1

Cov(Ui,l ,Ui,l ′)

=
N∑

i=1

Cov(Ψi,l , Ψi,l ′).

According to this result, it follows directly that:

P =
N∑

i=1

Cov(ψi ) (10)

Consequently, estimating P consists in computing the covariancematrices of the projected
input vectorsψ1, . . . , ψN and summing over them. According to the results presented in Eqs.
(9) and (10), we have to estimate E[ψ] and Cov(ψ) to obtain B.

3.2 ComputingEEE[Ã] and Cov(Ã)

Let X ∈ {X1, . . . , XN } be an input vector and ψ its projected version. The problem of
computing the expectation of ψ consists in evaluating individually the expectation of its
entries φ1(X), . . . , φM(X), given by:

E[φl(X)] =
∫

RD
φl(X)p(X)dX ∀l ∈ {1, . . . ,M}, (11)

while the elements of the covariance matrix Cov(ψ) are given by:

Cov(φl(X), φl ′(X)) =
∫

RD
(φl − E[φl ])(φl ′ − E[φl ′ ])p(X)dX

∀l, l ′ ∈ {1, . . . ,M}
(12)

for which there is no trivial general solution and tailored ones depend on both the format of
φ(·) and p(·). However, for any φ(·) and p(·), it is possible to approximate Eqs. (11) and
(12) via sampling or numerical integration methods.
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The Unscented Transform (UT), initially proposed in [21], is a sampling-based method
that estimates the statistical moments of a probability distribution associated with a random
variable which results from a nonlinear transformation of another random variable [24]. Here,
wewish to estimate themoments ofψ , which results from the application ofφ1(·), . . . , φM(·)
on the random variable X .

The UT pipeline consists of (1) selecting a set of samples from the original distribution.
We consider the sampling scheme proposed by Julier and Uhlmann [22], where a set of
L = 2|M | + 1 samples is deterministically chosen, where |M | is the number of missing
entries of X . Additionally, we compute a set of weights that will be later used to retrieve
the moments of the transformed variable. (2) Evaluating the values of φ1(·), . . . , φM(·) on
the previously selected samples. (3) Estimate the moments of the transformed variable ψ

using the transformed samples obtained in step 2 and the weights from step 1. Further details
regarding the UT are presented in the Appendix.

Although this UT approach could be applied directly to estimate the statistical moments of
an arbitrary basis function, the number of required samples growswith the number of missing
entries, increasing the computational burden of the procedure. To alleviate this problem, we
propose two methodologies based on the UT that require only three one-dimensional sigma
points, independent of |M |. The first one, presented in Sect. 3.2.1, is tailored to the logistic
function and can be easily generalized to any φ(·) that can be expressed as a transform of
wT X . The second one, presented in Sect. 3.2.2, deals with the q-Gaussian function and
can be adapted for any function that is a transform of ‖wT X‖2. In this paper, we consider
that Cov(ψi ), . . . ,Cov(ψN ) are diagonal matrices. Thus, to obtain an approximation of
P , it suffices to compute the individual variances of the basis functions evaluated at each
X ∈ {Xi , . . . , XN }.

3.2.1 Sigmoid Function

Given an input vector X , the sigmoid function is given by:

f (X) = 1

1 + e−wT X
(13)

where w = (w1, . . . , wD)T is a predefined constant vector.
Note that f (X) can be written as a transform of the random variable wT X , whose expec-

tation is given by:

E[wT X ] =
D∑

d=1

wdE[xd ], (14)

and has variance:

Var[wT X ] =
D∑

d=1

w2
dVar[xd ]. (15)

Using the UT scheme (see details in Appendix), we can approximateE[ f (X)]with L = 3
sigma points as follows:

E[ f (X)] ≈
∑

i∈{−1,0,1}

ui
3

(16)

where:

ui = (
1 + exp{−E[wT X ] + i

√
Var[wT X ]})−1 (17)
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Analogously, the variance of the logistic function f (X) is given by:

Var( f (X)) ≈
∑

i∈{−1,0,1}

1

3

(
ui − E[ f (X)]

)2
(18)

It is important to notice this methodology also applies to any transform of X that can be
written as a function of wT X .

3.2.2 q-Gaussian Function

Given an input vector X , the q-Gaussian activation function can be expressed as:

g(X) = eq(−‖X − w‖2ν−1) (19)

where w = (w1, . . . , wD)T , ν > 0 and q ∈ R are predefined constants while

eq(α) = [1 + (1 − q)α] 1
1−α . (20)

Note that g(X) can be written as a transform of ‖X −w‖2, whose expectation is given by

E[‖X − w‖2] =
D∑

d=1

(E[xd ] − wd)
2 + Var[xd ], (21)

and has variance:

Var[‖X − w‖2] =
D∑

d=1

E[x4d ] − E[x2d ]2 + 4w2
dVar[xd ]. (22)

Thus, E[g(X)] can be approximated using the aforementioned UT scheme with L = 3
sigma points, as follows:

E[g(X)] ≈
∑

i∈{−1,0,1}

ri
3

(23)

where
ri = eq(−(E[‖X − w‖2] + i

√
Var[‖X − w‖2])ν−1) (24)

Analogously, the variance of the q-Gaussian activation function g(X) is given by:

Var(g(X)) ≈
∑

s∈{−1,0,1}

1

3

(
ri − E[g(X)]

)2
(25)

Notice that this methodology can be trivially adapted to estimate the value of any specific
transform g(X) that can be expressed as a function of ‖X − w‖2.

3.3 Modeling the Data with a GaussianMixture Distribution

The developments presented so far require the computation of the expected values and vari-
ances of the missing components in each feature vector. For this purpose, we modeled the
distribution of the input data with a Gaussian Mixture. Then, we condition this distribution
on the observed features, obtaining the statistical moments of interest.
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In order to provide a flexible representation for the distribution from which the feature
vectors were drawn, we assume that it is possible to model the distribution as a linear super-
position of C D-dimensional Gaussian densities. Each Gaussian density has mean μ(c) and
covariance matrix Σ(c), with c = [1, . . . ,C], i.e. a Gaussian Mixture Model (GMM). Given
an arbitrary Xi ∈ R

D , the probability density function of a GMM with the aforementioned
parameters takes the form [18]:

p(Xi ) =
C∑

c=1

w(c)N (Xi |μ(c), Σ
(c)

), (26)

where {w(c)}Cc=1 is a set of non-negative scalars that satisfies the constraint
∑C

c=1 w(c) =
1. The GMM model is a flexible and powerful modeling tool capable to model a wide
range of continuous distributions, provided a sufficient number of Gaussian components. The
parameters {w(c), μ(c), Σ(c)}Cc=1 of the GMM can be estimated via Maximum Likelihood
using Expectation Maximization [31].

Consider an arbitrary vector Xi , with missing component values Xi,M and observed com-
ponent values Xi,O , where M and O denote the sets of indexes of missing and observed
component values, respectively. Then, the parameters μ(c) and Σ(c) of the c-th component
of the GMM can be partitioned into two blocks as follows:

μ(c) =
[
μ

(c)
O

μ
(c)
M

]
, Σ(c) =

[
Σ

(c)
OO Σ

(c)
OM

Σ
(c)
MO Σ

(c)
MM

]
. (27)

Then, the mean vector μ̃
(c)
i = E(c)[Xi,M |Xi,O ] and the covariance matrix of the c-th

Gaussian in the GMM, conditioned on Xi,O , Σ̃
(c)
i = Var(c)[Xi,M |Xi,O ], are given by:

μ̃
(c)
i = μ

(c)
M + Σ

(c)
MO(Σ

(c)
OO )−1(Xi,O − μ

(c)
O ), (28)

Σ̃
(c)
i = Σ

(c)
MM − Σ

(c)
MO (Σ

(c)
OO)−1Σ

(c)
OM , (29)

and the expected value and the covariance matrix of the missing features Xi,M are given by:

E[Xi,M ] =
C∑

c=1

w(c)μ̃
(c)
i , (30)

Cov(Xi,M ) =
C∑

c=1

w(c)(Σ̃
(c)
i + μ̃

(c)
i μ̃

(c)T

i ) − E[Xi,M ]E[Xi,M ]T . (31)

4 Implementation

Given a dataset X = {Xi }Ni=1 ⊂ R
D with possibly incomplete feature vectors, we wish to

compute the weights for a NNRW model. The proposed method can be briefly described by
the following steps:

1. Estimate the parameters of the Gaussian mixture distribution of the data X with
C components (mean vectors μ(c), covariance matrices Σ(c) and coefficients w(c),
with c = 1 . . . ,C) by maximizing the likelihood function of the mixture model by
Expectation-Maximization adapted for incomplete data [18,31];
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2. Compute the mean vectors μ̃
(c)
i and the covariance matrices Σ̃

(c)
i of the missing compo-

nents Xi,M for each of the c = 1, . . . ,C components, using Eqs. (28) and (29);
3. Compute the expected value and the covariance matrix Xi,M , using Eqs. (30) and (31);
4. Compute the expected value E[ψ] and the covariance matrix Cov(ψ) of the transformed

input vectors, as described in Sect. 3.2;
5. Compute B using Eq. (9).

5 Experiments and Results

In order to assess the performance of the proposed framework, we conducted experiments
with the logistic and the q-Gaussian basis functions as well as the NNRW models based on
both basis functions (FNNRW and QGRNN). The objective of our experiments is twofold:
verify howwell our proposal can approximate the value of a basis function over an incomplete
vector and assess the performance of NNRWmodels that use our framework. All experiments
are described in details in the following subsections.

5.1 Multivariate Normal Data with Known Parameters

In this experiment, we want to estimate the q-Gaussian and the sigmoid activation func-
tions computed over a vector with missing components. The vectors were drawn from a
5-dimensional multivariate normal distribution with known mean and covariance matrix. We
varied the number of missing components. The design of an experiment with a known dis-
tribution aims at verifying the effect of the number of missing components in our proposal
without the influence of the distribution estimation algorithm (i.e. GMM).

Initially,we randomly selected the parameters thatwill generate the tested vectors. For that,
the mean vector was sampled from the standard normal distribution N (0, 1). The covariance
matrix is given by Σs = LT L , where L is an upper triangular matrix whose non-zero
entries were also drawn from the same distribution N (0, 1). The procedure to generate those
parameters was repeated 20 times and the results reported in this section are the average of
these 20 rounds.

Given the mean μs and covariance matrix Σs , we created a dataset with 103 samples
drawn from this Normal distribution. We gradually increased the number of missing entries
and verified the impact on the performance of our method as well as on two other common
imputation methods. At each round, the entries of w, used for both the q-Gaussian and the
sigmoid functions, were drawn at random from a standard normal N (0, 1).

Our proposal was compared to the Single Mean Imputation (SMI), that imputes all miss-
ing components with the average value calculated using the complete components and the
ConditionalMean Imputation (CMI, [31]). In CMI, themissing entries are imputed with their
expected values conditioned to the observed entries of the same vector. Then, we calculated
the basis function using the imputed values. For all methods, the data distribution was con-
sidered to be known. Since all methods share the same statistical model, the performance of
each one depends only on its formulation.

Tables 1 and 2 show, respectively, the Average Root Mean Squared Errors (ARMSE)
between real and estimated basis functions computed for the logistic function and the q-
Gaussian function.

By the results, we observe that the performance of all methods degrades as the number
of missing entries increases. We also conclude that all methods have similar performances
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Table 1 ARMSE for the logistic
function

% SMI CMI UT

20 0.017475 0.001142 0.001119

40 0.037474 0.012283 0.011103

60 0.070443 0.041540 0.036681

80 0.111060 0.085178 0.073529

Table 2 ARMSE for the
q-Gaussian function

% SMI CMI UT

20 0.1219 0.0031 0.0030

40 1.0684 0.2342 0.2153

60 2.5528 1.2162 1.0932

80 11.1290 4.7209 4.2292

for the lowest missingness levels. In such cases, the uncertainty on the imputation procedure
seems to have a small impact on the estimate of the basis functions. It is worth noting that
our method outperforms all other methods for the highest missingness levels. This result
is expected since the high number of missing components increases the uncertainty of the
estimation process and our method is the only one that includes this factor in its formulation.

5.2 Experiments Using Real-World Data

We evaluate the performance of the proposed method using real-world datasets. For that pur-
pose, eleven datasets (see Table 3) were selected from the UCIMachine Learning Repository
[28].

For both the logistic and the q-Gaussian functions, twenty similar rounds of the experiment
were carried out. In each of these rounds, we selected 80% of the dataset for training and
20% for testing. The percentage of instanceswithmissing sampleswas interactively increased
from 10 to 50% (in steps of 10%) of the dataset size. In each step, we used different methods
to estimate the basis function and measured the ARMSE between the obtained estimates
and the real function values computed beforehand. Since the real distribution of the data is
unknown, we estimate a GMM comprising three components.

Besides SMI and CMI, we also compare our method against the Incomplete-Case
k-Nearest-Neighbors Imputation algorithm (ICkNNI), [17] and theSingularValueThreshold-
ing (SVT) [4]. ICkNNI is a popular imputation method due to its easiness of implementation
and good performance. Unlike most of single imputation strategies, ICkNNI does not rely on
the estimation of a statistical model for the data. For ICkNNI, we used the parameters sug-
gested in [17]. SVT is a matrix factorization based imputation method that has been largely
used in several real-world problems such asmovie recommendation and image recovery [27].
All tests were performed using the SVT toolbox described in [25].

Tables 4 and 5 show the results, in terms of ARMSE, obtained for the logistic function and
the q-gaussian, respectively. The comparisons between the proposed method, SMI and CMI
lead to conclusions that are similar to the ones obtained in previous experiments. The UT-
basedmethod outperforms SMI and CMIwhen the number of missing components increases.
It is important to point out that UT was also able to outperform ICkNNI and SVT in most of
the datasets. This result is significant since ICkNNI and SVT do not rely on any assumption
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Table 3 Datasets description # Features # Samples

Cancer 194 32

MPG 392 7

CPU 209 9

Concrete compression 1030 80

Boston housing 506 13

Red wine 1599 11

White wine 4898 3

Diabetes 768 8

Monk 1 556 6

Monk 2 601 6

Monk 3 554 6

regarding the distribution of the dataset and UT used a statistical model with a fixed, and
possibly non-optimal, number of Gaussians.

Aiming at assessing the statistical significance of our results, we conducted a Friedman
statistical test [10]. The Friedman test quantifies the consistency of the results obtained by a
method when applied in several datasets. The success of each method is quantified according
to their performance rankings (for each dataset, the best performing algorithm getting the
rank of 1, the second best rank 2 and so on). In the current setting, the null hypothesis H0

states that there is no statistical difference between all models.
Following themethodology presented in [7],we verify that the null hypothesiswas rejected

with p = 5.3051e−23 for the logistic and p = 9.0224e−16 for the q-Gaussian.We obtained
a Critical Difference (CD) ofCD = 0.82251. By observing the CD and the average rankings,
we can state that our method significantly outperformed all other methods for the logistic
activation. For the q-Gaussian, our proposal showed a significant performance gain when
compared to SVT and SMI. It is worth pointing that, even though the performance gap
between UT and the other two methods (ICkNNI and CMI) was not significant, our proposal
had the best average ranking.

5.3 Application to Neural Networks with RandomWeights

In this last experiment, our goal is to verify the impact of the basis function estimates on
NNRWmodels. The proposed variants of FNNRWandQGRNNwere compared to its original
formulations trained with imputed datasets using SMI, CMI, SVT and ICkNNI. All FNNRW
and QGRNN models have 100 hidden neurons.

In this experiment, the number of missing components was iteratively increased from 10
to 50% (in steps of 10%). SMI, CMI and UT used GMMmodels comprising three Gaussian.
The parameters of each Gaussian was estimated with the ECM algorithm. We repeated the
experiments twenty times and computed the ARMSE. For all datasets, we randomly selected
80% for training and 20% for testing. Tables 6 and 7 show the results for FNNRW and
QGRNN, respectively.

The results presented in Tables 6 and 7 show that our proposal outperformed all other
methods in more than 90% of the tested cases. This experiment enforces the belief that
better estimates of basis functions may lead to NNRW with better performance, although no
theoretical guarantee could be given. Despite the performance gain, one crucial aspect that
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shall be highlighted it that our model has an automatically selected regularization term. In
Eq. (9), we can see matrix P as a regularization term that depends on the uncertainty of the
estimates. Thus, our formulation can be seen as an uncertainty robust approach.

Once again, the statistical significance of our results was tested with the Friedman test.
The null hypothesis H0 was rejected for the FNNRW with p = 2.3275e − 17 and with
p = 5.9173e − 08 for the QGRNN. The CD = 0.82251 and the average rankings showed
that the models based on our proposals significantly outperformed all other approaches.

6 Conclusion

In this paper, we presented a methodology to design NNRWs for datasets with missing
components. Our proposal presents a training procedure for NNRWs which can profit from
incomplete feature vectors without the need of a previous imputation step.

In the proposed approach, data is modeled with a GMM, and the output of the hidden
layer is estimated in terms of its expected values and variances. Such statistical measures are
used to solve a robust least-squares problem to estimate the coefficients of the output layer.

To validate our method, we perform three sets of experiments. The first two sets aim to
verify howwell ourmethod estimates basis functions that are part of a NNRW.We considered
the logistic and the q-Gaussian basis functions as case studies. Our experiments included
simulated and real datasets. The last experiment tested our proposal on two NNRW, the
QGRNN and the FNNRW, in real datasets.

The results obtained show that our proposal was able to estimate the basis function more
accurately and also result in NNRW with better performances for almost all tested cases.
It is worth noting that our method was compared to both parametric and non-parametric
approaches. A statistical analysis of the results shows that the superior performance of our
method is significant. Even though the method showed promising results, it is important to
point that its performance is strongly related to the chosen distribution estimation procedure
(in this paper, we used a GMM). Another import aspect that shall be highlighted is that the
UT consists of an approximated procedure to obtain the moments of the distribution, thus
exact algorithm shall be preferred when available (see [32,34,38] for some examples). In
future works, we intend to compare our proposal to other recent imputation methods and also
analyze the impact of our strategy in other models like RVFL and deep neural networks.

Acknowledgements The authors would like to thank the Brazilian National Council for Scientific and Tech-
nological Development (CNPq) for the financial support (Grant No. 305048/2016-3)

Appendix: Unscented Transform (UT)

Given a D-dimensional random variable X , we are interested in estimating statistical
moments of ψ , which results from an application of a non-linear function h(·) to X . These
values could be obtained via standard sampling procedures or numerical integration meth-
ods. However, such procedures can be computationally intensive and depend onmany factors
such as proper initialization, stop criteria, etc. The Unscented Transform (UT) provides a
scheme to estimate the moments of ψ using a small set of deterministically chosen samples,
referred to as sigma points (SPs), from the space of X .
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There are different possible ways to choose the SPs. A common approach is to use a
symmetric set of S = 2D + 1 SPs as described in Eqs. (32) to (34).

γ1 = E[X ] (32)

γs = γ1 +
[√

D Σ
]

s−1
∀ 1 < s ≤ D + 1 (33)

γs = γ1 −
[√

D Σ
]

s−(D+1)
∀ D + 1 < s ≤ 2D + 1 (34)

where
[√

D Σ
]
s denotes the s-th rowof thematrix square root of D Σ, which is the covariance

matrix Σ of X .
Given the SPs and a set of weights {ks}Ss=1 ⊂ R, we can approximate the moments of ψ

using a simple set of rules. For instance E[ψ] and Cov(ψ) can then be approximated using
the following equations:

δs ← h (γs) ∀ 1 ≤ s ≤ S, (35)

E[ψ] ≈
S∑

s=1

ksδs (36)

Cov(ψ) ≈
S∑

s=1

ks (δs − E[ψ]) (δs − E[ψ])T . (37)

Although there is no restriction on their sign, the weights k1, . . . , kS must respect the
convexity constraint.

S∑

s=1

ks = 1, (38)

to provide an unbiased estimate [22]. In this paper, we set k1 = k2 = · · · = kS = 1/S.
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