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Abstract
This paper pays attention to the synchronization control methodology for stochastic memris-
tive system. On the framework of Lyapunov functional, stability theory and free-weighting
matrices technique, some brand-new solvability criteria are established to ensure the expo-
nential synchronization goal of the target model. Considering the introduce of some
free-weighting matrices, the obtained synchronization verdict will be much more applicable.
Finally, the living example is included to show the effectiveness of the presented methodol-
ogy.

Keywords Exponential synchronization · Memristive neural networks · Stochastic terms ·
Robust technique

1 Introduction

Memristor, which was first raised in 1971 [1], this device was proposed based on a nonlin-
ear relationship between charge q and magnetic flux ϕ. Shortly after, this new device was
employed in a system, and thus caused a great response in theworld [2]. However, considering
the particularity of this circuit element, it takes a long time since it is first proposed to physical
implementation, i.e., a device that contains memristive character was available until 2008,
this mileage breakthrough awakened more and more attention being paid to memristors [3].
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Recent researches have showcased unprecedented worldwide interests of memristor, as
shown by S. Williams and its coworkers, the solid-state memristor can be used to realize
crossbar latches, whichwill be substituted transistors in the future computers. The basis of the
above meaningful application lies in the nonvolatile nature of memristor, i.e., the amount of
the chargewhich passed though the device determines its resistance. This discovery promised
applications in the next-generation memory technology, especially in the next generation
computers, which can ensure the computer starting up instantly with no need for the “booting
time”.

Neural networks, which can be seen as a powerful tool in dealing with practical problems
[4–10], and these interesting results have attracted more and more researchers’ attention
[11–25]. Among which, fixed-time synchronization of memristive system was considered in
[9], and [11] explored the finite-time synchronization of coupled models, furthermore, draw
support from the passivity theory, the relevant control criterion were addressed in [25].

However, as a practical matter, the effects caused by external interference are inevitable,
i.e., a small fluctuations (such as temperature, humidity, air pressure, air flow, electric field,
magnetic field, etc) in the environment may destroy the stability of a system, besides, the
friction, lubrication, force, elastic deformation and other fluctuations within the system may
also a very important factor of instability for the control system. Thus this contributed another
motivation of this paper.

It is worth mentioning that, there are very few results show solicitude for the dynamic
analysis ofmemristive system [26–32].Amongwhich, the dissipativity findings for stochastic
memristive model were addressed in [26], besides, [27] and [32] interested in the memristive
model with markovian jump, while, most of the existing results employed the differential
inclusion theory and Filippov solution. However, the special characteristics of memristive
model may lead to the parameters not compatible for different initial values. To overcome
this shortcomings, a new robust algorithm was proposed, in this way, the target model can
be treated as a class of system with uncertain parameters, and this constituted another main
elements of this brief.

According to the above analysis, this paper deliberated the ES of stochastic memristive
model. The verdicts of this brief can be abstracted as: (i) The effect brought by the stochastic
disturbance is considered; (ii) Considering the specificity of memristor, the target network
was translated into an uncertain parameter model, thus, the derived findings can also be
employed to deliberate this kinds of issues.

Notations: The ∗ means the term that induced by a symmetry matrix. (�,F,P) is the
probability space,� is the sample space,F is theσ -algebra of subsets of the sample space, and
P is the probability measure onF ,E refers to the expectation operator with some probability
measure P . Set ai j = max{a�

i j , a
��
i j }, ai j = min{a�

i j , a
��
i j } , a+

i j = 1
2 (ai j + ai j ), a

−
i j =

1
2 (ai j−ai j ), bi j = max{b�

i j , b
��
i j }, bi j = min{b�

i j , b
��
i j } , b+

i j = 1
2 (bi j+bi j ), b

−
i j = 1

2 (bi j−bi j ).

2 Model Description and Preliminaries

The target stochastic memristive model which will be deliberated is given in the following
form:

dx(t) =
[

− Hx(t) + A(t) f (x(t)) + B(t) f (x(t − δ(t))
]
dt

+
[
H1x(t) + H2x(t − δ(t)) + H3 f (x(t)) + H4 f (x(t − δ(t))

]
dω(t),

(1)
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where x(t) signifies the neuron states, H = diag(h1, h2, · · · , hn) > 0, H1, H2, H3 and H4

are connection matrices, A(t) = (ai j (t))n×n , B(t) = (bi j (t))n×n are the connection weight
matrices, the neuron activation functions f (x(t)) means the neuron at time t , ω(t) is a one-
dimensional Brownian motion on (�,F,P) that subjected by E{dω(t)} = 0, E{dω(t)2} =
dt . δ(t) restricted by

0 < δ(t) ≤ τ, δ̇(t) ≤ μ,

where μ > 0 is a scalar, and

ai j (xi (t)) =
{
a�
i j , |xi (t)| ≤ �i ,

a��
i j , |xi (t)| > �i ,

bi j (xi (t)) =
{
b�
i j , |xi (t)| ≤ �i ,

b��
i j , |xi (t)| > �i ,

(2)

a�
i j , a

��
i j , b

�
i j , b

��
i j are scalars.

Lemma 2.1 For real matrices A ∈ R
n×n, Ā ∈ R

n×n, A(t) ∈ [A, Ā], then there exist possess
matrices G, H and F(t), satisfies:

A(t) = 1

2
(A + Ā) + GF(t)H ,

and
FT (t)F(t) ≤ I .

Proof Let A = (ai j )n×n , Ā = (āi j )n×n , and A(t) = (ai j (t))n×n , considering the fact that

A(t) ∈ [A, Ā], then, one has
ai j ≤ ai j (t) ≤ āi j .

Let ψ(x) = a+
i j+a−

i j
2 + a+

i j−a−
i j

2 x , which implies that ψ(−1) = a−
i j , and ψ(1) = a+

i j . Then,
associate with the Intermediate Value Theorem, one can read that there possess Fi j (t) ∈
[−1, 1], such that:

ψ(Fi j (t)) = ai j (t),

i.e.,

ai j (t) = a+
i j + a−

i j

2
+ a+

i j − a−
i j

2
Fi j (t).

LetG = [G1,G2, · · · ,Gn],H = [H1, H2, · · · , Hn], F(t) = diag{F11(t), · · · , F1n(t), · · · ,

Fn1(t), · · · , Fnn(t)}, where
Gi = diag{a1−λ

i1 , a1−λ
i2 , · · · , a1−λ

in },

Hi =
⎛
⎝

0i−1,n

aλ
i1, a

λ
i2, · · · , aλ

in
0n−i,n

⎞
⎠ ,

and λ ∈ [0, 1]. Obviously, FT (t)F(t) ≤ I , and A(t) = 1
2 (A + Ā) + GF(t)H .

Thus, system (1) can be moulded as:

dx(t) =
[

− Hx(t) +
(
A+ + Ma
1(t)Na

)
f (x(t))

+
(
B+ + Mb
2(t)Nb

)
f (x(t − δ(t))

]
dt

+
[
H1x(t) + H2x(t − δ(t)) + H3 f (x(t)) + H4 f (x(t − δ(t))

]
dω(t),

(3)
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where

Ma =
(√

a−
11ζ1, · · · ,

√
a−
1nζ1, · · · ,

√
a−
n1ζn, · · · ,

√
a−
nnζn

)
n×n2

Na =
(√

a−
11ζ1, · · · ,

√
a−
1nζn, · · · ,

√
a−
n1ζ1, · · · ,

√
a−
nnζn

)T

n2×n
,

Mb =
(√

b−
11ζ1, · · · ,

√
b−
1nζ1, · · · ,

√
b−
n1ζn, · · · ,

√
b−
nnζn

)
n×n2

Nb =
(√

b−
11ζ1, · · · ,

√
b−
1nζn, · · · ,

√
b−
n1ζ1, · · · ,

√
b−
nnζn

)T

n2×n
,

where ζi ∈ R
n be the column vector with the i th element to be 1 and others to be 0, besides,


T
i (t)
i (t) ≤ I , i = 1, 2.
To reach the synchronization goal, the response system is shaped as:

dy(t) =
[

− Hy(t) + A(t) f (y(t)) + B(t) f (y(t − δ(t)) + u(t)
]
dt

+
[
H1y(t) + H2y(t − δ(t)) + H3 f (y(t)) + H4 f (y(t − δ(t))

]
dω(t),

(4)

where u(t) is the controller to reach synchronization control goal. Then, repeat the above
analysis, one can easily read that the response system (4) can be future modified as:

dy(t) =
[

− Hy(t) +
(
A+ + Ma
3(t)Na

)
f (y(t))

+
(
B+ + Mb
4(t)Nb

)
f (y(t − δ(t)) + u(t)

]
dt

+
[
H1y(t) + H2y(t − δ(t)) + H3 f (y(t)) + H4 f (y(t − δ(t))

]
dω(t),

(5)

where 
T
k (t)
k(t) ≤ I , k = 3, 4.

Denote the error expression as:

θ(t) = y(t) − x(t),

then, the detailed description of the error system can be illustrated as:

dθ(t) =
[

− Hθ(t) +
(
A+ + Ma
3(t)Na

)
g(θ(t))

+
(
B+ + Mb
4(t)Nb

)
g(θ(t − δ(t)) + u(t)

+
(
Ma
3(t)Na − Ma
1(t)Na

)
f (x(t))

+
(
Mb
4(t)Nb − Mb
2(t)Nb

)
f (x(t − δ(t)))

]
dt

+
[
H1θ(t) + H2θ(t − δ(t)) + H3g(θ(t)) + H4g(θ(t − δ(t))

]
dω(t),

(6)

where g(θ(·)) = f (y(·)) − f (x(·)), the initial condition of (6) is given by:

θ(s) = ϕ(s), s ∈ [−τ, 0]. (7)
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Before moving on, the following two new state variables for the error memristive neural
network (6) are presented:

ψ(t) = −Hθ(t) +
(
A+ + Ma
3(t)Na

)
g(θ(t))

+
(
B+ + Mb
4(t)Nb

)
g(θ(t − δ(t)) + u(t)

+
(
Ma
3(t)Na − Ma
1(t)Na

)
f (x(t))

+
(
Mb
4(t)Nb − Mb
2(t)Nb

)
f (x(t − δ(t))),

φ(t) = H1θ(t) + H2θ(t − δ(t)) + H3g(θ(t)) + H4g(θ(t − δ(t)),

then, the error model (6) can be modified as:

dθ(t) = ψ(t)dt + φ(t)dω(t). (8)

(A1): For x1, x2 ∈ R, x1 �= x2, the neural function fi (·) satisfies:

β−
i ≤ fi (x1) − fi (x2)

x1 − x2
≤ β+

i , | fi (·)| ≤ Fi .

where β−
i , β+

i , Fi > 0 are scalars. ��
Definition 2.1 The trivial solution of (6) is exponentially stable in the mean square, if there
possess constants γ > 0, � > 0, such that

E{‖θ(t)‖2} ≤ γ e−�t sup
s∈[−τ,0]

E{‖ϕ(s)‖2}

is true.

Lemma 2.2 ([33]) For matrices U, H , and symmetric matrix R,

R + UFH + (UFH)T < 0

is true if and only if
R + εUUT + ε−1HTH < 0

holds, where ε > 0, FTF < I .

Lemma 2.3 ([33]) Given matrices �1,�2,�3 where �1 = �T
1 , 0 < �2 = �T

2 , then

�1 + �T
3 �−1

2 �3 < 0,

if and only if
(

�1 �T
3

�3 −�2

)
< 0 or

(−�2 �3

�T
3 �1

)
< 0.

3 Main Conclusions

The following limes specialized on the ES control of the memristive model with stochastic
terms, to reach this goal, the following control strategy is necessary:

u(t) = −kθ(t) − �sign(θ(t)), (9)

where � = diag{r1, r2, · · · , rn}.
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Theorem 3.1 Under (A1), the trivial solution of the (6) is ES in mean square, if there
exist positive definite matrices P, Q, diagonal matrices M1 > 0, M2 > 0, matrix
N = (N1, N2, N3, N4, N5)

T , and constants ς1 > 0, ς2 > 0, such that:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15 PMa PMb

∗ �22 �23 �24 �25 0 0
∗ ∗ �33 �34 �35 0 0
∗ ∗ ∗ �44 �45 0 0
∗ ∗ ∗ ∗ �55 0 0
∗ ∗ ∗ ∗ ∗ −ς1 I 0
∗ ∗ ∗ ∗ ∗ ∗ −ς2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (10)

where

�11 = −2PH − 2R + Q − β1M1β2 + N1H1 + HT
1 NT

1 , �12 = N1H2 + HT
1 NT

2 ,

�13 = −N1 + HT
1 NT

3 , �14 = PA+ + 1

2
M1(β1 + β2) + N1H3 + HT

1 NT
4 ,

�15 = PB+ + N1H4 + HT
1 NT

5 , �22 = −(1 − μ)Q − β1M2β2 + N2H2 + HT
2 NT

2 ,

�23 = −N2 + HT
2 NT

3 , �24 = N2H3 + HT
2 NT

4 ,

�25 = 1

2
M2(β1 + β2) + N2H4 + HT

2 NT
5 , �33 = P − N3 − NT

3 , �34 = N3H3 − NT
4 ,

�35 = N3H4 − NT
5 , �44 = −M1 + N4H3 + HT

3 NT
4 + ς1N

T
a Na,

�45 = N4H4 + HT
3 NT

5 , �55 = −M2 + N5H4 + HT
4 NT

5 + ς2N
T
b Nb,

N =
(
NT
1 , NT

2 , NT
3 , NT

4 , NT
5

)T
,

ηT (t) =
(
θT (t), θT (t − δ(t)), φ(t), gT (θ(t)), gT (θ(t − δ(t)))

)
,

β1 = diag
(
β−
1 , β−

2 , · · · , β−
n

)
, β2 = diag

(
β+
1 , β+

2 , · · · , β+
n

)
.

The parameters in (9) are subjected to the following restriction:

ri ≥
n∑
j=1

(
|āi j − ai j | + |b̄i j − bi j |

)
Fj , (11)

and the control gain can be checked by k = P−1R.

Proof Consider the following Lyapunov functional:

V (t) = θT (t)Pθ(t) +
∫ t

t−δ(t)
θT (s)Qθ(s)ds. (12)

Then, by means of Itô’s differential formula, one has:

dV (t) = LV (t)dt + 2θT (t)Pφ(t)dω(t), (13)
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where

LV (t) ≤ 2θT (t)Pψ(t) + φT (t)Pφ(t) + θT (t)Qθ(t) − (1 − μ)θT (t − δ(t))Qθ(t − δ(t))

= 2θT (t)P
[

− Hθ(t) +
(
A+ + Ma
3(t)Na

)
g(θ(t))

+
(
B+ + Mb
4(t)Nb

)
g(θ(t − δ(t))

+
(
Ma
3(t)Na − Ma
1(t)Na

)
f (x(t))

+
(
Mb
4(t)Nb − Mb
2(t)Nb

)
f (x(t − δ(t)))

− kθ(t) − �sign(θ(t))
]

+ φT (t)Pφ(t) + θT (t)Qθ(t)

− (1 − μ)θT (t − δ(t))Qθ(t − δ(t)),
(14)

considering that:

2θT (t)P
[(

Ma
3(t)Na − Ma
1(t)Na

)
f (x(t))

+
(
Mb
4(t)Nb − Mb
2(t)Nb

)
f (x(t − δ(t))) − �sign(θ(t))

]

≤ 2
n∑

i=1

|θi (t)|pi
[ n∑

j=1

(
|āi j − ai j | + |b̄i j − bi j |

)
Fj − ri

]

= 0,

(15)

thus, a more compact estimation of (14) can be described as:

LV (t) ≤ 2θT (t)P
[

− (H + k)θ(t) +
(
A+ + Ma
3(t)Na

)
g(θ(t))

+
(
B+ + Mb
4(t)Nb

)

× g(θ(t − δ(t))
]

+ φT (t)Pφ(t) + θT (t)Qθ(t)

− (1 − μ)θT (t − δ(t))Qθ(t − δ(t)).

(16)

Moreover, for matrix N , the following line is true:

2ηT (t)N
(
H1θ(t) + H2θ(t − δ(t)) + H3g(θ(t)) + H4g(θ(t − δ(t)) − φ(t)

)
= 0, (17)

Draw support from (A1) and diagonal matrices M1 > 0,M2 > 0, one has:

θT (t)β1M1β2θ(t) − θT (t)M1(β1 + β2)g(θ(t)) + gT (θ(t))M1g(θ(t)) ≤ 0,

θT (t − δ(t))β1M2β2θ(t − δ(t)) − θT (t − δ(t))M2(β1 + β2)g(θ(t − δ(t)))

+ gT (θ(t − δ(t)))M2g(θ(t − δ(t))) ≤ 0.

(18)

Then, adding (16)–(18) to (13), yields:

dV (t) ≤ ηT (t)�̃η(t) + 2θT (t)Pφ(t)dω(t), (19)
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where

�̃ =

⎡
⎢⎢⎢⎢⎣

�11 �12 �13 �̃14 �̃15
∗ �22 �23 �24 �25
∗ ∗ �33 �34 �35

∗ ∗ ∗ �̃44 �45

∗ ∗ ∗ ∗ �̃55

⎤
⎥⎥⎥⎥⎦

,

with

�̃14 = PA+ + PMa
3(t)Na + 1

2
M1(β1 + β2) + N1H3 + HT

1 NT
4 ,

�̃15 = PB+ + PMb
4(t)Nb + N1H4 + HT
1 NT

5 ,

�̃44 = −M1 + N4H3 + HT
3 NT

4 ,

�̃55 = −M2 + N5H4 + HT
4 NT

5 ,

then, taking consideration of �̃14, �̃15, �̃ can be further regulated as:

�̃ =

⎡
⎢⎢⎢⎢⎣

�11 �12 �13 �14 �15
∗ �22 �23 �24 �25
∗ ∗ �33 �34 �35

∗ ∗ ∗ �̃44 �45

∗ ∗ ∗ ∗ �̃55

⎤
⎥⎥⎥⎥⎦

+

⎛
⎜⎜⎜⎜⎝

0
0
0
NT
a
0

⎞
⎟⎟⎟⎟⎠


T
3 (t)

⎛
⎜⎜⎜⎜⎝

MT
a P
0
0
0
0

⎞
⎟⎟⎟⎟⎠

T

+ (·) +

⎛
⎜⎜⎜⎜⎝

0
0
0
0
NT
b

⎞
⎟⎟⎟⎟⎠


T
4 (t)

⎛
⎜⎜⎜⎜⎝

MT
b P
0
0
0
0

⎞
⎟⎟⎟⎟⎠

T

+ (·),

(20)

consulting from the Lemmas 2.2 and 2.3, one can read that for any constants ς1 > 0, ς2 > 0,
� in (10) can ensure

�̃ < 0,

thus, the results derived in (19) yields:

dV (t) ≤ −λmin(−�)(‖θ(t)‖2 + ‖θ(t − δ(t))‖2) + 2θT (t)Pφ(t)dω(t). (21)

Moreover, based on the expression of V (t), one can conclude that there possess two scalars
ρ1 > 0, ρ2 > 0, such that:

V (t) ≤ ρ1‖θ(t)‖2 + ρ2

∫ t

t−τ

‖θ(s)‖2ds, (22)

where ρ1 = λmax(P), ρ2 = λmax(Q).
One knows that there must be a constant β > 0, such that:

β(ρ1 + τρ2e
βτ ) ≤ λmin(−�), (23)
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therefore,

d(eβt V (t)) = βeβt V (t) + eβt dV (t)

≤ eβt
(
βρ1‖θ(t)‖2 + βρ2

∫ t

t−τ

‖θ(s)‖2ds

− λmin(−�)‖θ(t)‖2 − λmin(−�)‖θ(t − δ(t))‖2
)
dt

+ 2eβtθT (t)Pφ(t)dω,

(24)

Thus, integrating both sides of (24) from 0 to T > 0, and operating the mathematical
expectation gives:

E(eβT V (T )) ≤ V (0) + βρ1E
( ∫ T

0
eβt‖θ(t)‖2dt

)
+ βρ2E

( ∫ T

0

∫ t

t−τ

eβt‖θ(s)‖2dsdt
)

− λmin(−�)E
( ∫ T

0
eβt‖θ(t)‖2dt

)

− λmin(−�)E
( ∫ T

0
eβt‖θ(t − δ(t))‖2dt

)
,

(25)

while,
∫ T

0

∫ t

t−τ

eβt‖θ(s)‖2dsdt ≤
∫ T

−τ

( ∫ (s+τ)∧T

s∨0
eβt dt

)
‖θ(s)‖2ds

≤
∫ T

−τ

τeβ(α+τ)‖θ(s)‖2ds

≤ τeβτ

∫ T

0
eβt‖θ(t)‖2dt + τeβτ

∫ 0

−τ

‖θ(s)‖2ds

≤ τeβτ

∫ T

0
eβt‖θ(t)‖2dt + τ 2eβτ sup

−τ≤s≤0
‖ϕ(s)‖2,

V (0) ≤
(
ρ1 + τρ2

)
sup

−τ≤s≤0
E(‖ϕ(s)‖2),

(26)

thus, considering the restriction expressed in (26), (25) can be future developed as:

E(eβT V (T )) ≤
(
βρ1 − λmin(−�) + βρ2τe

βτ
)
E

( ∫ T

0
eβt‖θ(t)‖2dt

)

+
(
ρ1 + τρ2 + βρ2τ

2eβτ
)

sup
−τ≤s≤0

E(‖ϕ(s)‖2)

− λmin(−�)E
( ∫ T

0
eβt‖θ(t − δ(t))‖2dt

)

≤
(
ρ1 + τρ2 + βρ2τ

2eβτ
)

sup
−τ≤s≤0

E(‖ϕ(s)‖2),

(27)

as a result, one can see that:

λmin(P)E(eβT ‖θ(t)‖2) ≤ E(eβT V (T )) ≤
(
ρ1 + τρ2 + βρ2τ

2eβτ
)

sup
−τ≤s≤0

E(‖ϕ(s)‖2),
(28)
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i.e.,

E(‖θ(t)‖2) ≤ ρ1 + τρ2 + βρ2τ
2eβτ

λmin(P)
e−βt sup

−τ≤s≤0
E(‖ϕ(s)‖2), (29)

Thus, based on Definition 2.1, one can read that the error system is ES in mean square.
The proof is thus completed. ��

If the stochastic terms are removed from (1), then it will be degenerated into a memristive
model shaped as:

ẋ(t) = −Hx(t) + A(t) f (x(t)) + B(t) f (x(t − δ(t)), (30)

then, repeat the above analysis gives:

ẋ(t) = −Hx(t)+
(
A+ +Ma
1(t)Na

)
f (x(t))+

(
B+ +Mb
2(t)Nb

)
f (x(t−δ(t)). (31)

To reach the ES goal, the response model can be described by:

ẏ(t) = −Hy(t) + A(t) f (y(t)) + B(t) f (y(t − δ(t)) + u(t), (32)

equivalently to:

ẏ(t) = −Hy(t)+
(
A+ +Ma
3(t)Na

)
f (y(t))+

(
B+ +Mb
4(t)Nb

)
f (y(t−δ(t))+u(t),

(33)
then, argued as the above procedures, the error signal can be modified as:

θ̇ (t) = −Hθ(t) +
(
A+ + Ma
3(t)Na

)
g(θ(t))

+
(
B+ + Mb
4(t)Nb

)
g(θ(t − δ(t)) + u(t)

+
(
Ma
3(t)Na − Ma
1(t)Na

)
f (x(t))

+
(
Mb
4(t)Nb − Mb
2(t)Nb

)
f (x(t − δ(t))),

(34)

where u(t) has the same expression as defined in (9).

Corollary 3.1 Under (A1), if there possess positive definite matrices P, Q, diagonal matrices
M1 > 0, M2 > 0, and constants ς1 > 0, ς2 > 0, such that:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 0 PA+ + 1
2M1(β1 + β2) PB+ PMa PMb

∗ �22 0 �24 0 0
∗ ∗ �33 0 0 0
∗ ∗ ∗ �44 0 0
∗ ∗ ∗ ∗ −ς1 I 0
∗ ∗ ∗ ∗ ∗ −ς2 I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (35)

where

�11 = −2PH − 2R + Q − β1M1β2, �22 = −(1 − μ)Q − β1M2β2,

�24 = 1

2
M2(β1 + β2), �33 = −M1 + ς1N

T
a Na,

�44 = −M2 + ς2N
T
b Nb,

χT (t) =
(
θT (t), θT (t − δ(t)), gT (θ(t)), gT (θ(t − δ(t)))

)
.
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then, the trivial solution of (34) is ES. Besides, the parameters in (9) are subjected to:

ri ≥
n∑
j=1

(
|āi j − ai j | + |b̄i j − bi j |

)
Fj , (36)

and k = P−1R.

Proof By taking φ(t) = 0, N = 0 in Theorem 3.1, the conclusion can be easily derived. ��
Remark 3.1 [34] pay attention to the anti-synchronization control of stochastic memristive
neural networks, while form the derived main conclusions, one can see that the control algo-
rithm is associated with dimension n of the target model, which is unreasonable considering
the memristive model is a very large scale system. In [31], a stochastic memristive system is
considered, while the model discussed in this paper is independent of the delayed terms, as a
result the derived conclusions are also ignored the effect driven by delays. Besides, [26,35]
concentrated on the discrete-time stochastic memristive neural networks, what should be
pointed is that the above analysis results are derived based on the differential inclusion the-
ory, while in this note, by a Lemma, the parameters in the memristive system is translated
into a model with uncertain terms.

4 Numerical Examples

One example and some simulation diagrams are furnished to illustrate the validity of the
proposed findings.

Example 1 A stochastic memristive model is considered in this paper, in which, the param-
eters are given by:

H =
⎛
⎝
3 0 0
0 1 0
0 0 2

⎞
⎠ , A(t) =

⎛
⎝
a11(x1(t)) a12(x1(t)) a13(x1(t))
a21(x2(t)) a22(x2(t)) a23(x2(t))
a31(x3(t)) a32(x3(t)) a33(x3(t))

⎞
⎠ ,

B(t) =
⎛
⎝
b11(x1(t)) b12(x1(t)) b13(x1(t))
b21(x2(t)) b22(x2(t)) b23(x2(t))
b31(x3(t)) b32(x3(t)) b33(x3(t))

⎞
⎠ , Hi =

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ , i = 1, 2, 3, 4,

where

a11(x1(t)) =
{− 1.3, |x1(t)| ≤ 1,

− 1.6, |x1(t)| > 1,
a12(x1(t)) =

{
0.3, |x1(t)| ≤ 1,
− 0.15, |x1(t)| > 1,

a13(x1(t)) =
{
0.2, |x1(t)| ≤ 1,
0.1, |x1(t)| > 1,

a21(x2(t)) =
{
0.4, |x2(t)| ≤ 1,
0.52, |x2(t)| > 1,

a22(x2(t)) =
{− 1.2, |x2(t)| ≤ 1,

− 0.9, |x2(t)| > 1,
a23(x2(t)) =

{
0.4, |x2(t)| ≤ 1,
0.2, |x2(t)| > 1,

a31(x3(t)) =
{
0.1, |x3(t)| ≤ 1,
0.15, |x3(t)| > 1,

a32(x3(t)) =
{
0.1, |x3(t)| ≤ 1,
0.2, |x3(t)| > 1,

a33(x3(t)) =
{− 2, |x3(t)| ≤ 1,

− 1.6, |x3(t)| > 1,
b11(x1(t)) =

{− 0.3, |x1(t)| ≤ 1,
− 0.4, |x1(t)| > 1,

b12(x1(t)) =
{− 0.2, |x1(t)| ≤ 1,

− 0.3, |x1(t)| > 1,
b13(x1(t)) =

{
0.3, |x1(t)| ≤ 1,
0.35, |x1(t)| > 1,
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b21(x2(t)) =
{
0.4, |x2(t)| ≤ 1,
0.5, |x2(t)| > 1,

b22(x2(t)) =
{
0.5, |x2(t)| ≤ 1,
0.4, |x2(t)| > 1.

b23(x2(t)) =
{
0.2, |x2(t)| ≤ 1,
0.16, |x2(t)| > 1,

b31(x3(t)) =
{
0.2, |x3(t)| ≤ 1,
0.12, |x3(t)| > 1.

b32(x3(t)) =
{− 0.22, |x3(t)| ≤ 1,

− 0.3, |x3(t)| > 1,
b33(x3(t)) =

{− 1.6, |x3(t)| ≤ 1,
− 1.2, |x3(t)| > 1.

Thus, the above lines implies:

Ma =
⎛
⎝

√
0.15

√
0.225

√
0.05 0 0 0 0 0 0

0 0 0
√
0.06

√
0.15

√
0.1 0 0 0

0 0 0 0 0 0
√
0.025

√
0.05

√
0.2

⎞
⎠ ,

Ha =
⎛
⎝

√
0.15 0 0

√
0.06 0 0

√
0.025 0 0

0
√
0.225 0 0

√
0.15 0 0

√
0.05 0

0 0
√
0.05 0 0

√
0.1 0 0

√
0.2

⎞
⎠

T

,

Mb =
⎛
⎝

√
0.05

√
0.05

√
0.025 0 0 0 0 0 0

0 0 0
√
0.05

√
0.05

√
0.02 0 0 0

0 0 0 0 0 0
√
0.04

√
0.04

√
0.2

⎞
⎠ ,

Hb =
⎛
⎝

√
0.05 0 0

√
0.05 0 0

√
0.04 0 0

0
√
0.05 0 0

√
0.05 0 0

√
0.04 0

0 0
√
0.025 0 0

√
0.02 0 0

√
0.2

⎞
⎠

T

,

Now we will evaluate the synchronization performance of the target model. the delays is
given by δ(t) = 0.2 + 0.1 sin(t), a straightforward calculation gives τ = 3 and μ = 0.1.
Let f (s) = tanh(s) + 3, then, according to assumption (A1), one has β−

j = 2, β+
j = 4

and Fj = 4. According to the above parameters, through a simple calculation, the control
parameter in (9) can be illustrated as:

r1 ≥
3∑
j=1

(
|ā1 j − a1 j | + |b̄1 j − b1 j |

)
Fj = 4.4,

r2 ≥
3∑
j=1

(
|ā2 j − a2 j | + |b̄2 j − b2 j |

)
Fj = 3.44,

r3 ≥
3∑
j=1

(
|ā3 j − a3 j | + |b̄3 j − b3 j |

)
Fj = 4.44.

For numerical simulations, choosing r1 = 4.5, r2 = 3.5, r3 = 4.5.
Moreover, by solving (10), parts of the feasible solutions are emerged as:

P =
⎛
⎝
0.4352 0.0082 0.0295
0.0082 0.5470 0.0387
0.0295 0.0387 0.4223

⎞
⎠ , Q =

⎛
⎝

3.1968 − 0.1283 0.0536
− 0.1283 3.2082 0.0191
0.0536 0.0191 3.2023

⎞
⎠ ,

R =
⎛
⎝

1.7505 0.3122 − 0.0029
0.3122 2.9008 − 0.0054

− 0.0029 − 0.0054 2.8540

⎞
⎠ ,
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Fig. 1 Chaotic behavior of the drive system
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Fig. 2 Chaotic behavior of the response system without the controller

thus, k can be calculated as:

k = P−1R =
⎛
⎝

4.0346 0.6539 − 0.4604
0.5341 5.3318 − 0.4869

− 0.3375 − 0.5475 6.8345

⎞
⎠ ,

According to the derived control gains, the simulation figures can be seen in Figs. 1, 2,
3, 4, 5 and 6. The dynamic behavior of the drive-response systems are given in Figs. 3, 4, 5,
and 6 describes the time responses of synchronization error system θi (t), which trends to be
zero concerning to t . Thus, the obtained control gains ensure the error system converges to
zero exponentially.
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Fig. 3 Time-domain behavior of the state variables x1(t), y1(t)
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Fig. 4 Time-domain behavior of the state variables x2(t), y2(t)

5 Conclusion

This paper introduced the ES control methodology for a class of stochastic memristive neural
networks. On the framework of Lyapunov–Krasovskii functional, the stochastic stability the-

123



Exponential Synchronization of Stochastic Memristive Neural… 473

0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

10

t

x 3
(t)
,y
3(
t)

Fig. 5 Time-domain behavior of the state variables x3(t), y3(t)
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Fig. 6 State responses of θ(t)

ory and free-weighting matrices method, some brand-new solvability criteria are established
to achieve ES goal of the target memristive systems. Considering the special characteristics
of memristive system, a new robust control algorithm was proposed, in this way, the target
model can be treated as a system with uncertain parameters. Finally, the derived findings are
confirmed by a simulation example.
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