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Abstract
This paper is concerned with the general decay lag synchronization problem for a class of
competitive neural networks with constant delays via designing a novel nonlinear feedback
controller. Based on the useful lemma, which guarantee the general decay synchronization
of chaotic systems, some simple sufficient criteria ensuring the general decay lag synchro-
nization of addressed competitive neural networks are obtained via constructing a novel
Lyapunov–Krasovskii functional and using some inequality techniques. Finally, one numer-
ical example is provide to demonstrate the feasibility of the established theoretical results.
The results of this paper are general since the classical polynomial synchronization and
exponential synchronization can be seen the special cases of general decay synchronization.

Keywords Competitive neural network · General decay lag synchronization · Nonlinear
feedback control · Constant delay

1 Introduction

Competitive neural networks (CNNs), as the generalization of the classical Hopfield neural
networks (HNNs) and Cohen–Grossberg neural networks (CGNNs), was first introduced by
Meyer-Baese to model the dynamics of cortical cognitive maps with unsupervised synaptic
modifications. CNNs different from the traditional neural networks (NNs) with first-order
interactions due to consideration of long-term memory and short-term memory variables [1–
3]. In implementation of NNs, owing to the finite switching speed of neurons and amplifiers,
time delays are inevitable in the signal transmission among the neurons, which will affect
the stability of the neural system and may lead to some complex dynamic behaviors such
as instability, chaos, oscillation or other performance of the NNs. Therefore, the dynamic
analysis of NNs, especially CNNs with delays received much more attention [4–7].

Since it was first proposed by Pecora and Carrol to synchronize two identical systems with
two different initial values [8], synchronization has been comprehensively studied over the
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past few decades due to their potential applications in a wide variety of areas, ranging from
secure communications to pattern recognition, even to modeling the human brain’s activity
[9–13]. In the meantime, a large number of synchronization problems have been introduced
and studied, such as complete synchronization [8], lag synchronization [14–16], impulsive
synchronization [17], projective synchronization [18], function projective synchronization
[19]. Among them, lag synchronization have receivedmuchmore attention due to its amazing
applications in practice. For example, in the communication of telephone system, the voice
one hears on the receiver side at time t + δ is the voice from the transmitter side at time t.
Hence, it is reasonable to require the states of response system to synchronize the states of
drive system at a constant time lag [20]. Compared with other types of synchronization such
as complete synchronization or projective synchronization, lag synchronization means that
the drive and response systems could be synchronized with a propagation delay. Because the
lag synchronization can clearly indicate the fragile nature of neuron systems, it has attracted
the concerns of many researchers in various fields and some excellent results have been
reported in this research area [20–25].

In [20], the exponential lag synchronization for CGNNs with discrete time-delays and
distributed delays was investigated via using the intermittent control strategy. By using the
analysis method, Lyapunov functional theory and inequality technique, the lag synchroniza-
tion problem of fuzzy cellular networks (FCNs) with delays was studied in [22]. In [23],
an intermittent control scheme was used to investigate the lag synchronization for a type of
fractional-order memristive neural networks (FMNNs) with switching jumps. In [24], the
authors studied the problem of global exponential lag synchronization of a class of switched
NNs with time-varying delays. Very recently, the exponential lag synchronization for a class
of neural networkswithmixed delays including discrete and distributed delayswas concerned
by adaptive intermittent control in [25].

When studying the synchronization of chaotic systems, it is a very important topic to find
estimate of the convergent rate of synchronization [26]. However, in some special cases, the
convergence rate of the synchronization can not be shown or it is not easy to estimate. For
example, consider the differential equation ẏ(x) = − 1

2 y
3, x ≥ 0. Even though we know that

this equation is asymptotically stable, we can not able to estimate the convergent rat of the
solution of it. This motivate us to define a new type of convergence rate, such as convergence
with general decay. Recently, authors in [27] investigated the general decay synchronization
(GDS) of NNs with discontinuous activation functions by nonlinear feedback controller.
In [28], the author investigated the GDS of a class of NNs with general neuron activation
functions and time-varying delays by constructing suitable Lyapunov functional and using
useful inequality techniques. The problem of GDS for memristor-based CGNNs with mixed
time-delays and discontinuous activations was considered in [29]. However, to the best of our
knowledge, there are few or even no results on general decay lag synchronization (GDLS)
of CNNs with constant delays.

Inspired by the above discussions, the aim of the paper is to study the GDLS problem for
a class of CNNs with constant delays. By designing a type of nonlinear feedback controller,
some simple sufficient criteria ensuring theGDLSof addressedCNNs are obtained by design-
ing a novel nonlinear feedback controller and employing some inequality techniques. Finally,
one numerical example is provided to demonstrate the feasibility of the established theoreti-
cal results. The results of this paper generalize the classical polynomial synchronization and
exponential synchronization via introducing more general convergent rate.

The rest of the paper is organized as follows. In Sect. 1, some useful assumptions, def-
initions, and lemmas are introduced. In Sect. 2, a class of CNNs model is introduced, and
some relative definitions are given. In Sect. 3, we investigated the GDLS of the addressed
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competitive neural networks with constant delays via designing a novel nonlinear feedback
controller. In Sect. 4, two numerical examples and their Matlab simulations are presented.
Final section ends up with some general conclusions.

2 Preliminaries

The CNNs with delays in this paper are modeled as follows:

ST M : ẋi (t) = − ci xi (t) +
n∑

j=1

ai j f j (x j (t)) +
n∑

j=1

bi j f j (x j (t − τi j ))

+ Bi

n∑

j=1

mi j (t)h j + Ii ,

LT M : ṁi j (t) = − dimi j (t) + h j Ei fi (xi (t)), (1)

where i, j ∈ J � {1, 2, . . . , n} and n ≥ 2; xi (t) is the neuron current activity level; f j (·)
is the output of neurons; ci represents the time constant of the neuron; mi j (t) is the synaptic
efficiency; h j is the constant external stimulus; ai j , bi j represent, respectively, the connection
weight and the synaptic weight of delayed feedback between the i th and j th neurons; Bi is
the strength of the external stimulus; Ii denotes the external inputs on the i th neuron at time
t ; di > 0 and Ei denote disposable scaling constants; τi j > 0 represents constant delay of
the j th unit from the i th unit.

In the paper, without loss of generality, we assume that the input stimulus H can be
normalized with unit magnitude |H |2 = 1, where H = (h1, h2, . . . , hn)T . By setting Si =∑n

j=1 mi j (t)h j = HTmi (t), where mi = (mi1,mi2, . . . ,min)
T and summing up the LTM

over j , then the drive system (1) can be modified as follows

ST M : ẋi (t) = − ci xi (t) +
n∑

j=1

ai j f j (x j (t)) +
n∑

j=1

bi j f j (x j (t − τi j )) + Bi Si (t) + Ii ,

LT M : Ṡi (t) = − di Si (t) + Ei fi (xi (t)), (2)

For a positive integer k, let Rk be a k-dimentional vector space, then the initial values of
system (2) are given as

xi (θ) = ϕx
i (θ), θ ∈ [−τ, 0],

Si (θ) = ϕS
i (θ), θ ∈ [−τ, 0],

where τ = maxi, j∈J {τi j }, ϕx = (
ϕx
1 (θ), ϕx

2 (θ), . . . , ϕx
n (θ)

)T ∈ C([−τ, 0], Rn), ϕS =
(
ϕS
1 (θ), ϕS

2 (θ), . . ., ϕS
n (θ)

)T ∈ C([−τ, 0], Rn). Here, C([θ1, θ2], Rk) for θ1 < θ2 (θ1, θ2 ∈
R) denotes the Banach space of all continuous functions mapping from [θ1, θ2] to Rk with a
appropriate norm.

Throughout the paper, we assume that the neuron activation functions f j (v) satisfy the
following assumptions

A1: For any j ∈ J , there exist constants L j such that,

| f j (v1) − f j (v2)| ≤ L j |v1 − v2|, ∀ v1, v2 ∈ R.
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In the paper, the system (2) is assumed to be drive system, and its response system is given
by

ST M : ẏi (t) = − ci yi (t) +
n∑

j=1

ai j f j (y j (t)) +
n∑

j=1

bi j f j (y j (t − τi j ))

+ BiWi (t) + Ii + ui (t),

LT M : Ẇi (t) = − diWi (t) + Ei fi (yi (t)) + ũi (t), (3)

where ci , di , ai j , bi j , Bi , Ei are given system (2), ui (t) and ũi (t) are controllers to be
designed.

The initial values of system (3) are given by

yi (θ) = φ
y
i (θ), θ ∈ [−τ, 0],

Wi (θ) = φW
j (θ), θ ∈ [−τ, 0],

whereφy = (φ
y
1 (θ), φ

y
2 (θ), . . . , φ

y
n (θ))T ∈ C([−τ, 0], Rn),φW = (φW

1 (θ), φW
2 (θ), . . . , φW

n
(θ))T ∈ C([−τ, 0], Rn).

Let ei (t) = yi (t)− xi (t −σ) and zi (t) = Wi (t)− Si (t −σ), then the corresponding error
system between drive system (2) and response system (3) can be written as

ST M : ėi (t) = − ci ei (t) +
n∑

j=1

ai j g j (e j (t)) +
n∑

j=1

bi j g j (e j (t − τi j )) + Bi zi (t) + ui (t),

LT M : żi (t) = − di zi (t) + Ei gi (ei (t)) + ũi (t), (4)

where g j (e j (t)) = f j (y j (t)) − f j (x j (t − σ)) and g j (e j (t − τi j )) = f j (y j (t − τi j )) −
f j (x j (t − τi j − σ)).
In order to define the initial condition of error system (4), we supplement the initial

condition of xi (t) and Si (t) as following

xi (θ) = ϕ̄x
i (θ) =

{
ϕx
i (θ), −τ ≤ θ ≤ 0,

ϕx
i (−τ), −τ − σ ≤ θ ≤ −τ,

Si (θ) = ϕ̄S
i (θ) =

{
ϕS
i (θ), −τ ≤ θ ≤ 0,

ϕS
i (−τ), −τ − σ ≤ θ ≤ −τ,

then the initial condition of system (4) can be given by ei (θ) = φ
y
i (θ)− ϕ̄x

i (θ −σ), zi (θ) =
φW
i (θ) − ϕ̄S

i (θ − σ) for −τ ≤ θ ≤ 0 and i ∈ J .
Now, similar to the [28,30], we introduce the definitions of ψ-type function and GDS as

follows.

Definition 1 [28,30]. Let R+ � [0,+∞), then a function ψ : R+ → [1,+∞) is said to be
ψ-type function if it satisfies the following four conditions:

(1) It is differentiable and nondecreasing;
(2) ψ(0) = 1 and ψ(+∞) = +∞;
(3) ψ̃(t) = ψ̇(t)/ψ(t) is nonincreasing and ψ∗ = supt≥0 ψ̃(t) < +∞;
(4) For any t, s ≥ 0, ψ(t + s) ≤ ψ(t)ψ(s).

For example, the functions ψ(t) = eαt and ψ(t) = (1 + t)α for any α > 0 satisfy the
above four conditions, thus can be seen as ψ-type functions.
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Definition 2 [26,29]. The drive-response systems (2) and (3) are said to be general decay
synchronized if there exist a scalar ε > 0 such that

lim sup
t→+∞

log
(‖e(t)‖ + ‖z(t)‖)

logψ(t)
≤ −ε,

where e(t) = (e1(t), e2(t), . . . , em(t))T , z(t) = (z1(t), z2(t), . . . , zn(t))T , ε > 0 can be
seen the convergence rate as synchronization error approaches zero.

A2: There exist a function �(t) ∈ C(R, R+) and a scaler ε > 0 such that

ψ̃(t) ≤ 1, sup
t∈[0,+∞)

∫ t

0
ψε(s)�(s)ds < +∞, for any t ≥ 0, (5)

where the functions ψ(t), ψ̃(t) are defined in the Definition 1.
Following lemma plays a vital role in our later study.

Lemma 1 [31]. Suppose that assumption A2 hold, and synchronization errors e(t) and z(t)
between the drive-response systems (2) and (3) satisfied the differential equations ė(t) =
F(t, e(t), z(t)) and ż(t) = G(t, e(t), z(t)), respectively, where the functions F(t, e(t), z(t))
andG(t, e(t), z(t)) are locally bounded. If there exist a Lyapunov functional V (t, e(t), z(t)) :
R+ × Rn × Rn → R+, and positive constants λ1, λ2 such that for any (t, e(t), z(t)) ∈
R+ × Rn × Rn,

λ1
(‖e(t)‖2 + ‖z(t)‖2) ≤ V (t, e(t), z(t)), (6)

dV (t, e(t), z(t))

dt

∣∣∣∣
(4)

≤ −εV (t, e(t), z(t)) + λ2�(t), (7)

where ε and �(t) are defined in A2. Then the drive-response systems (2) and (3) will realize
GDS in the sense of Definition 2, and the convergence rate of GDS is ε.

Proof The proof of Lemma 1 is similar to Proof of Lemma 1 given in [31], so we have omitted
in here. 
�

3 Main Results

In this section, we will derive some sufficient criteria for the GDS of drive-response systems
(2) and (3). First letting ωi j be any numbers greater that zero, μi j = L j |bi j |

2 , and designing
the controllers ui (t) and ũi (t) of response system (3) as follows:

⎧
⎪⎨

⎪⎩

ui (t) = − ηi‖e(t)‖2ei (t)
(‖e(t)‖2+�(t))

, i ∈ J ,

ũi (t) = − ξi‖z(t)‖2zi (t)
(‖z(t)‖2+�(t))

, i ∈ J ,
(8)

where ηi for i ∈ J and ξi for i ∈ J are positive control gains satisfying
⎧
⎪⎨

⎪⎩

−ci −ηi + Li |Ei |
2 + |Bi |

2 + 1
2

n∑
j=1

(|ai j |L j +|a ji |Li +|bi j |L j + 2μ j i + 2τ j iω j i
)

< 0,

−di − ξi + Li |Ei |
2 + |Bi |

2 < 0.
(9)

Then by using the nonlinear feedback controller (8), the following theorem can be
obtained.
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Theorem 1 Suppose A1–A2 hold, then the response network (3) can achieve GDS with the
derive network (2) under the nonlinear feedback controller (8) if, the control gains ηi and ξi
satisfy the inequality (9).

Proof Construct the following Lyapunov–Krasovskii type functional:

V (t) =
n∑

i=1

1

2
e2i (t) +

n∑

i=1

1

2
z2i (t) +

n∑

i=1

n∑

j=1

∫ t

t−τi j

μi j e
2
j (s)ds

+
n∑

i=1

n∑

j=1

∫ 0

−τi j

∫ t

t+s
ωi j e

2
j (ς)dςds,

(10)

where μi j = L j |bi j |
2 and ωi j be any numbers greater that zero. Then, there exist positive

scalars κ > 1, γ > 1 such that

1

2

n∑

i=1

e2i (t) + 1

2

n∑

i=1

z2i (t) ≤V (t) ≤ κ

n∑

i=1

e2i (t) + γ

n∑

i=1

z2i (t)

+ κ

α

n∑

i=1

n∑

j=1

ωi j

∫ t

t−τi j

e2j (s)ds,

(11)

where α = mini∈J {αi }, β = mini∈J {βi } with

αi � ci +ηi − Li |Ei |
2

− |Bi |
2

− 1

2

n∑

j=1

(
|ai j |L j + |a ji |Li + |bi j |L j + 2μ j i +2τ j iω j i

)
>0,

βi � di + ξi − Li |Ei |
2

− |Bi |
2

> 0.

Now, calculating the time derivative of V (t), we get

V̇ (t) =
n∑

i=1

⎧
⎨

⎩ei (t)

⎡

⎣−ci ei (t) +
n∑

j=1

ai j g j (e j (t)) +
n∑

j=1

bi j g j
(
e j (t − τi j )

) + Bi zi (t)

− ηi‖e(t)‖2ei (t)(‖e(t)‖2 + �(t)
)
]

+
n∑

j=1

μi j

(
e2j (t) − e2j (t − τi j )

)

+
n∑

j=1

ωi j

(
τi j e

2
j (t) −

∫ t

t−τi j

e2j (s)ds

)⎫
⎬

⎭

+
n∑

i=1

{
zi (t)

[
−di zi (t) + Ei gi (ei (t)) − ξi‖z(t)‖2zi (t)(‖z(t)‖2 + �(t)

)
]}

.

In view of the assumption A1 and inequality 2ab ≤ a2 + b2 for any a > 0, b > 0, one has

n∑

i=1

n∑

j=1

ai j ei (t)g j (e j (t))≤
n∑

i=1

n∑

j=1

|ai j ||ei (t)||g j (e j (t))|≤
n∑

i=1

n∑

j=1

L j

2
|ai j |

(
e2i (t) + e2j (t)

)
.
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Similarly, we have

n∑

j=1

n∑

i=1

bi j ei (t)g j (e j (t − τi j )) ≤
n∑

j=1

n∑

i=1

L j

2
|bi j |

(
e2i (t) + e2j (t − τi j )

)
,

n∑

i=1

Biei (t)zi (t) ≤
n∑

i=1

|Bi |
2

(
e2i (t) + z2i (t)

)
,

n∑

i=1

Ei zi (t)gi (ei (t) ≤
n∑

i=1

Li |Ei |
2

(
z2i (t) + e2i (t)

)
.

Introducing above four inequalities to the derivative of V (t), we have

V̇ (t) ≤
n∑

i=1

⎡

⎣−ci + |Bi |
2

+ Li |Ei |
2

+ 1

2

n∑

j=1

(
|ai j |L j + |a ji |Li + |bi j |L j + 2μ j i + 2τ j iω j i

)⎤

⎦ e2i (t)

−
n∑

i=1

ηi‖e(t)‖2e2i (t)(‖e(t)‖2 + �(t)
) −

n∑

i=1

n∑

j=1

ωi j

∫ t

t−τi j

e2j (s)ds +
n∑

i=1

[
−di + Li |Ei |

2
+ |Bi |

2

]
z2i (t)

−
n∑

i=1

ηi‖z(t)‖2zi (t)(‖z(t)‖2 + �(t)
)

≤
n∑

i=1

⎡

⎣−ci −ηi + Li |Ei |
2

+ |Bi |
2

+ 1

2

n∑

j=1

(
|ai j |L j +|a ji |Li +|bi j |L j + 2μi j + 2τi jωi j

)⎤

⎦ e2i (t)

+
[ n∑

i=1

ηi e
2
i (t) −

n∑

i=1

ηi‖e(t)‖2e2i (t)(‖e(t)‖2 + �(t)
)
]

−
n∑

i=1

n∑

j=1

ωi j

∫ t

t−τi j

e2i (s)ds

+
n∑

i=1

[
−di − ξi + Li |Ei |

2
+ |Bi |

2

]
z2i (t) +

[ n∑

i=1

ξi z
2
i (t) −

n∑

i=1

ξi‖z(t)‖2z2i (t)(‖z(t)‖2 + �(t)
)
]

≤ −
n∑

i=1

αi e
2
i (t) + max

i∈J {ηi } ‖e(t)‖2�(t)(‖e(t)‖2 + �(t)
) −

n∑

i=1

n∑

j=1

ωi j

∫ t

t−τi j

e2j (s)ds

−
n∑

i=1

βi z
2
i (t) + max

i∈J {ξi } ‖z(t)‖2�(t)(‖z(t)‖2 + �(t)
) .

Also by letting η = maxi∈J {ηi } > 0, ξ = maxi∈J {ξi } > 0 and using the inequality
0 ≤ ab/(a + b) ≤ a for any a > 0, b > 0, we have

V̇ (t) ≤ −
n∑

i=1

αi e
2
i (t) + η�(t) −

n∑

i=1

βi z
2
i (t) + ξ�(t) −

n∑

i=1

n∑

j=1

ωi j

∫ t

t−τi j

e2j (s)ds. (12)

Now taking a small enough δ such that δκ ≤ α, δγ ≤ β, then from the inequalities (11)
and (12), we get

dV (t)

dt
+ δV (t) ≤ −

n∑

i=1

αi e
2
i (t) + η�(t) −

n∑

i=1

n∑

j=1

ωi j

∫ t

t−τi j

e2j (s)ds

−
n∑

j=1

β j z
2
j (t) + ξ�(t)
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+ δ

⎡

⎣κ

n∑

i=1

e2i (t) + κ

α

n∑

i=1

n∑

j=1

χi j

∫ t

t−τi j

e2i (s)ds + γ

n∑

j=1

z2j (t)

⎤

⎦

≤(δκ − α)

n∑

i=1

e2i (t) +
n∑

i=1

n∑

j=1

(
δκ

α
− 1

) ∫ t

t−τi j

μi j e
2
j (s)ds + η�(t)

+ (δγ − β)

n∑

i=1

z2i (t) + ξ�(t)

≤(η + ξ)�(t),

which means that

dV (t))

dt
+ δV (t) ≤ (η + ξ)�(t). (13)

Thus, from Lemma 1, the drive-response systems (2) and (3) achieved GDLS under the
nonlinear feedback controller (8). The convergence rate of e(t) and z(t) approaching zero is
δ. The proof is completed. 
�

When there is no delay in system (2), then it is degenerated to

ST M : ẋi (t) = − ci xi (t) +
n∑

j=1

ai j f j (x j (t)) + Bi Si (t) + Ii ,

LT M : Ṡi (t) = − di Si (t) + Ei fi (xi (t)). (14)

Accordingly, the corresponding response system becomes to the following form

ST M : ẏi (t) = − ci yi (t) +
n∑

j=1

ai j f j (y j (t)) + BiWi (t) + Ii + ui (t),

LT M : Ẇi (t) = − diWi (t) + Ei fi (yi (t)) + ũi (t), (15)

where ui (t) and ũi (t) are nonlinear controllers.
In this case, forGDSofdrive-response systems (14) and (15),wehave a following corollary

from Theorem 1.

Corollary 1 Suppose assumptions A1–A2 hold, then the response network (15) can achieve
GDS with the drive network (14) under the following nonlinear feedback controller

ui (t) = − η̄i‖e(t)‖2ei (t)(‖e(t)‖2 + �(t)
) , i ∈ J ,

ũi (t) = − ξ̄i‖z(t)‖2zi (t)(‖z(t)‖2 + �(t)
) , i ∈ J ,

(16)

where η̄i for i ∈ J and ξ̄i for i ∈ J are positive control gains satisfying
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ᾱi � ci + η̄i − Li |Ei |
2

− 1

2

n∑

j=1

(
|ai j |L j + |a ji |Li

)
> 0,

β̄i � di + ξ̄i − Li |Ei |
2

− |Bi |
2

> 0.

(17)
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Remark 1 Even though there are some previously published results on the exponential or
asymptotically lag synchronization for CNNs with or without time delays [2,6,7], there are
still no any results on GDLS for CNNs. As we mentioned earlier in the paper, GDS enable
us to estimate to convergence rate of synchronization error via defining a more general
convergence rate. In this paper, we firstly studied the GDLS of CNNs with constant delay
by introducing a novel nonlinear controller and using some inequality techniques. It it not
difficult to see that the results obtained in [2,6,7,20–22] can be seen the special cases of our
results when the general decay function chosen as ψ(t) = eαt and ψ(t) = (1 + t)α for any
α > 0. From this point, our results are more general and have better applicability.

4 Numerical Simulations

In this section, two numerical examples are presented to validate the feasibility of the estab-
lished results in the paper.

Example 1 For n = 2, consider the following delayed CNNs system

ST M : ẋi (t) = − ci xi (t) +
2∑

j=1

ai j f j (x j (t)) +
2∑

j=1

bi j f j (x j (t − τi j )) + Bi Si (t) + Ii ,

LT M : Ṡi (t) = − di Si (t) + Ei fi (xi (t)), (18)

where f1(u) = f2(u) = tanh(u). The parameters of system (18) are chosen that c1 = c2 =
0.8, d1 = 0.4, d2 = 0.3, a11 = 1, a12 = 1, a21 = − 3, a22 = − 3, b11 = − 1.5, b12 =
2, b21 = 3, b22 = 3.5, E1 = E2 = 1, B1 = B2 = 1, τi j = 1 and Ii = 0 for i = 1, 2.

The Matlab simulation of drive system (18) under the initial conditions x1(θ) =
0.2, x2(θ) = 0.6, S1(θ) = − 0.1 and S2(θ) = 0.2 for θ ∈ [− 1, 0] is shown in Fig. 1,
we can see that drive system (18) has a chaotic attractor.
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Fig. 1 The transient behavior of drive system (18)
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Fig. 2 The evaluation of synchronization errors ei
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Fig. 3 The evaluation of synchronization error zi

The corresponding response system is given by

ST M : ẏi (t) = − ci yi (t) +
2∑

j=1

ai j f j (y j (t)) +
2∑

j=1

bi j f j (y j (t − τi j )) + BiWi (t) + Ii + ui (t),

LT M : Ẇi (t) = − diWi (t) + Ei fi (yi (t)) + ũi (t), (19)

where ci , ai j , bi j , f j , τi j and Ii are the same as in system (18), and the nonlinear feedback
controller ui (t) is designed as follows

ui (t) = − ηi‖e(t)‖2ei (t)(‖e(t)‖2 + �(t)
) , i ∈ J ,

ũi (t) = − ξi‖z(t)‖2zi (t)(‖z(t)‖2 + �(t)
) , i ∈ J ,

(20)

123



General Decay Lag Synchronization for Competitive Neural… 455

0 5 10 15 20 25 30 35 40
t

-0.5

0

0.5

1

1.5

x 1
,y

1
x1
y1

0 5 10 15 20 25 30 35 40
t

-0.2

0

0.2

0.4

0.6

x 2
,y

2

x2
y2

Fig. 4 Synchronization curves of xi and yi
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Fig. 5 Synchronization curves of Si and Wi

where ei (t) = yi (t) − xi (t − σ) and zi (t) = Wi (t) − Si (t − σ) for i = 1, 2.
Choosing the time lag σ = 2, then it is not difficult to estimate that L1 = L2 = 1 and

τi j = 1. Thus, the assumptionA1 is satisfied. Letting �(t) = e−0.1t , ψ(t) = et and choosing
η1 = 7.2, η2 = 8.4, ξ1 = 0.7 and ξ2 = 0.8, then the assumption A2 and inequality (9) can
also be satisfied. Therefore, according to the Theorem 1, the drive-response systems (18) and
(19) can be achieved GDLS under the controller (20). The time evolution of synchronization
errors between drive-response systems (18) and (19) are showmen in Figs. 2 and 3, where the
initial values of response system (19) are chosen as y1(θ) = 0.460, y2(θ) = 0.310, W1(θ) =
0.281 and W2(θ) = −0.086 for θ ∈ [−1, 0]. The synchronization curves between systems
(18) and (19) are demonstrated in Figs. 4 and 5.
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5 Conclusion

In this work, we studied the GDLS problem for a type of chaotic CNNs with constant delays.
By employing useful analysis technique and introducing a Lyapunov-Krasovskii functional,
we proposed novel nonlinear feedback control strategies to guarantee the GDLS of con-
sidered drive-response systems. Finally, one numerical example and its Matlab simulations
are provide to demonstrate the feasibility of the established theoretical results. The results
of this can be seen improvement and extension of the previous synchronization studies on
CNNs since the GDLS includes the classical polynomial synchronization and exponential
synchronization as its special cases.
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