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Abstract
The goal to improve prediction accuracy and robustness of predictive models is quite impor-
tant for time series prediction (TSP). Multi-model predictions ensemble exhibits favorable
capability to enhance forecasting precision. Nevertheless, a static ensemble system does not
always function well for all the circumstances. This work proposes six novel dynamic ensem-
ble selection (DES) algorithms for TSP, including one DES algorithm based on Predictor
Accuracy over Local Region (DES-PALR), two DES algorithms based on the Consensus of
Predictors (DES-CP) and three Dynamic Validation Set determination algorithms. The first
dynamic validation set determination algorithm is designed based on the similarity between
the Predictive value of the test sample and the Objective values of the training samples. The
second one is constructed based on the similarity between the Newly constituted sample for
the test sample and All the training samples. Finally, the third one is developed based on the
similarity between the Output profile of the test sample and the Output profile of each training
sample. These proposed algorithms successfully realize dynamic ensemble selection for TSP.
Experimental results on twelve benchmark time series datasets have demonstrated that the
proposed DES algorithms greatly improve predictive performance when compared against
current state-of-the-art prediction algorithms and the static ensemble selection techniques.

Keywords Dynamic ensemble selection (DES) · DES algorithm based on Predictor
Accuracy over Local Region (DES-PALR) · Dynamic Ensemble Selection algorithm based
on the Consensus of Predictors (DES-CP) · Dynamic validation set determination
algorithm · Time series prediction (TSP)

1 Introduction

Time series can be defined as a set of sequential observations, of a variable of interest,
recorded over a predefined period of time [1]. Time series are widely used today because we
need to know the future behavior of certain relevant phenomena in order to plan, prevent,
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and so on. That is, to predict what will happen with a variable in the future from the behavior
of that variable in the past [2]. The word “prediction” comes from the Latin “prognosticum”,
whichmeans “I know in advance” [3]. Time series forecasting techniques could be condition-
ally classified into long-term time series forecasting techniques and short-term time series
forecasting ones [4].

Time series prediction (TSP) is an important and active research topic inmachine learning,
and it has indispensable importance in many practical data mining applications. In general,
time series involves a subject of research interest in various areas of knowledge engineering,
such as: agriculture (the number of pigs slaughtered, sheep population, and milk production),
health (suicide rates, fertility rates and number of cases ofmeasles), finance (stocks, loans and
exchange rates), and production (beer shipments, motor vehicle production and electricity
production), etc.

Financial time series forecasting (such as stock forecasting and crude oil price forecasting)
is one of the most popular research directions in the field of time series prediction. However,
there exist many factors that will influence a stock market, including the basic situation of
listed companies, national macroeconomic policies, market supply and the technical indica-
tors of shares [5]. Investors are facing with a great challenge that they do not know how to
precisely forecast price fluctuation in financial markets. It is a hard task to predict the trend
of stock market because of its high volatility and the noisy environment.

There has been an increasing interest in using Neural Networks (NNs) to model and
forecast time series over the last decades. NNs have been found to be a viable contender to
various traditional time series models [6–8]. Lapedes and Farber [9] reported the first attempt
tomodel nonlinear time serieswithNNs. Chakraborty et al. [10] conducted an empirical study
on multivariate time series forecasting with NNs. What’s more, several forecasting compe-
titions [6, 11] show that NNs could be a very useful addition to the time series forecasting
toolbox.

One of themajor developments inNNs over the last decade ismodels combining or ensem-
ble learning. An ensemble can be formed by multiple network architectures, different initial
random weights, different number of hidden nodes, or even different activation functions.
Multi-model ensemble prediction systems show convincing ability to improve the forecast
performance in different areas of computational science [12, 13]. In short, two heads are
better than one.

Multiple Predictor Systems (MPSs) are typically composed of three stages [14]: (1) Gen-
eration; (2) Selection; and (3) Integration. In the first stage, a pool of predictors is generated.
In the second stage, a single predictor (or several predictors) having better predictive predic-
tion on the validation set than the others is (are) selected into the ensemble. We refer to the
subset of predictors as Ensemble of Predictors (EoP). In the last stage, the predictions of the
selected predictors are combined by some ways for the final results [15, 16].

For the second stage, there exist two types of selective ensemble paradigms, i.e., static and
dynamic ensemble selection [17].Within the static ensemble selection paradigm, the selected
predictors of the ensemble will remain unchanged for the prediction of all the test samples
[18–20]. While the assumption of dynamic ensemble selection (DES) paradigm is that every
predictor is an expert in some specific local regions. Just the opposite to static ensemble
selection, a predictor or several predictors which specializes (specialize) in conducting pre-
diction for the new test sample will be selected into the final ensemble dynamically within
the DES paradigm. Recently, several literatures show that DES is a very effective tool for
TSP problems [21–23].

The important basis of DES is how to determine, with regard to the current test sample,
the appropriate validation samples from the training set. This topic has received consider-
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ably limited research attention so far in TSP problems. However, for classification problems,
Woods et al. [24] proposed an approach that is Dynamic Classifier Selection by Local Accu-
racy (DCS-LA), and the validation samples are chosen as the K-nearest neighbors (KNNs)
training samples to the new test one. Smits [25] proposed the measure of Modified Local
Accuracy (MLA), which is similar to DCS-LA, with the only difference being that each sam-
ple belonging to the validation set is weighted by its Euclidean distance to the test sample.
And the MLA outperforms DCS-LA with respect to minimum accuracy, maximum accuracy
and kappa value. Kuncheva [26] conducted a study that the validation set is determined by
using the clustering techniques.

Due to the fact that the above methods, which are used to select the validation data, is
prone to be limited by the quality of the region of competence defined in the training data.
Hence, the decision templates (DT) [27] technique is considered to select validation set. The
goal of DT is also to select samples that are close to the test instance. However, the similarity
is computed over decision space rather than feature space. This is performed by transforming
both the test instance and the training data into the corresponding output profiles. The output
profile of one sample is a vector that consists of the predicted values obtained by the base
predictors for that sample.

Asmentioned above, determining a proper validation set is a critical issue for the successful
implementation of DES algorithms, which has received very limited attention for the research
of TSP. Therefore, we decide to carry out some innovative research work in this area, so as
to further promote the research progress in the respect of TSP. We find through analysis
that, there are mainly three schemes to address this issue, i.e., the dynamic determination
of the validation set based upon feature space solely, decision space solely, or based on the
integration of feature and decision space. The DES algorithm based on Predictor Accuracy
over Local Region (DES-PALR) proposed in thiswork belongs to the first scheme. It performs
k-means clustering algorithm on the feature space of the training set, which generates several
clusters of the training samples. The cluster whose center is the nearest to the feature vector
of the current test sample will be selected as the validation set dynamically.

The proposed Dynamic Validation Set determination algorithm based on the similarity
between the Predictive value of the test sample and the Objective values of the training
samples (DVS-PvOv) belongs to the second scheme.While the proposedDynamicValidation
Set determination algorithm based on the similarity between the Newly constituted sample
for the test sample and All the training samples (DVS-NsAs) is part of the third scheme,
determining the validation set based on the integration of feature and decision space. The
finally proposed Dynamic Validation Set determination algorithm based on the similarity
between the Output profile of the test sample and the Output profile of each training sample
(DVS-OpOp) belongs to the second scheme.

Another important point of DES is how to dynamically choose an appropriate ensemble
constituted with some selected models. Adhikari et al. [16] proposed an ensemble selection
method that selectively combines some of the constituent forecasting models, instead of
combining all of them. And on each time series, the constituent models are successively
ranked as per their past forecasting accuracies. Then the forecasts of a group of high ranked
models are combined to produce the final predictive results. In the respects of selective
ensemble, Zhou et al. [28] proposed an approachwhich trains several individualNNs and then
employs genetic algorithm to select an optimum subset of individual networks to constitute
the final ensemble.

On the other hand, there exist some DES techniques which are based upon other criteria,
such as the degree of consensus or confidence of the ensemble decision. Dos Santos et al.
[29] proposed theMargin-based Dynamic Selection (MDS) and Ambiguity-guided Dynamic
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Selection (ADS). The criterion of MDS is the margin between the most voted class and the
second most voted class. ADS uses the ambiguity among the base classifiers of a pool of
ensembles of classifiers as the criterion for measuring its competence level. The ambiguity is
determined as the number of base classifiers of an ensemble that disagree with the ensemble
decision.

Inspired by the existing research work, we propose a Dynamic Ensemble Selection algo-
rithm based on the Consensus of Predictors (DES-CP) for TSP in this paper. DES-CP is
developed based on the extent of the ensemble consensus, similarly. And it works by con-
sidering a pool of ensembles of predictors (EoPs) rather than a pool of predictors. Several
EoPs are generated by the Genetic Algorithm based Selective ENsemble (GASEN) [28].
And according to the different approaches employed to evaluate the extent of consensus,
the proposed DES-CP algorithm is further subdivided into two algorithms: (1) for each test
sample, the consensus of each EoP is evaluated by calculating its Variance (namely, DES-CP-
Var); (2) conducting Clustering algorithm for evaluating the consensus of each EoP (namely,
DES-CP-Clustering). The ensemble, which has the highest consensus, is chosen as the final
EoP.

Our motivations behind the developments of these novel dynamic ensemble selection
algorithms for the research of TSPmainly lie in that, in the domain of TSP, instead of splitting
the original dataset into three disjunctive parts, i.e., training set, validation set and test set,
like most of the static ensemble pruning methods, dynamically determining the validation
dataset for each distinctive test sample is more reasonable. The superiority of DES over static
ensemble selection on prediction performance has been verified in the literatures.

Specifically, the motivation for the proposal of DES-PALR is that, predictive accuracy
is the most essential criterion for the implementation of DES for TSP. With the design of
DES-PALR, the local region has more similar distribution with the test sample than other
training samples. The predictors which perform better on the local region could also perform
better on the test sample, while different test sample locates different region of competence,
effectively achieving dynamic ensemble selection.

The proposal of the three novel algorithms, i.e., DVS-PvOv, DVS-NsAs and DVS-OpOp,
further facilitates the effective implementation of DES for TSP. Their common characteristic
is that, they are not limited by the quality of the local region of competence solely defined in
the feature space, which is beneficial to their predictive performances.

With the proposed DES-CP algorithm, the higher the consensus among the member pre-
dictors is, the higher the level of prediction confidence will be. By maximizing the extent of
ensemble consensus, the certainty that the ensemble will make a more accurate prediction
is improved. Its major merit is that, it does not need any information from the region of
competence, and therefore, it is not restricted by the algorithms which define the region of
competence.

In Table 1, the advantages and disadvantages of the proposed five DES algorithms are
listed, so as to provide a brief and clear comparison among these algorithms.

To our best knowledge, it is the first time that all these new dynamic ensemble selection
algorithms are proposed for the research of TSP.

There exist two other advantages of this work. Firstly, ELM is used to be the base model;
therefore our algorithms naturally inherit those salient advantages of ELM, including better
generalization capability, fast learning speed and the avoidance of localminima problem. Sec-
ondly, the GASEN algorithm is employed to generate some EoPs for the proposed DES-CP
algorithm. Comparing with the popular ensemble approach, i.e., averaging all, and the the-
oretically optimum selective ensemble approach, i.e., enumerating, GASEN has preferable
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Table 1 The advantages and disadvantages of the proposed DES algorithms

Model Advantages Disadvantages

DES-PALR Simple; relatively high speed
testing phase; good performance

Trapped by the techniques which
define the local region; influenced
by the outliers

DES-CP Higher prediction accuracy;
stronger robust; high speed
testing phase

Space-consuming; spend much time
generating the pool of ensemble of
predictors

DVS-PvOv Not restricted by the algorithms
which define the local region;
extremely fast training

Only consider the similarity between
the target value of training samples
and the predicted value of
predictor; time-consuming

DVS-NsAs Consider both the feature of
testing sample and the predicted
value of predictor; extremely
fast training

Time-consuming

DVS-OpOp Do not need the information of
the local domain; extremely fast
training

Spend much time computing the
output profiles of the training
samples; trapped by the techniques
which define the decision space

performance in generating EoPs with both strong generalization ability and small computa-
tional cost.

To verify the efficacy of the proposed six DES algorithms, we conducted experiments to
compare the predictive performance of the proposed algorithms with three static ensemble
selection algorithms and three other state-of-the-art models on twelve benchmark time series
prediction datasets. The experimental results indicate that, in most cases, our proposed DES
algorithms significantly outperform their competitors on the twelve datasets.

The remainder of the paper is organized as follows. Section 2 introduces some important
concepts of ELM, and presents some theoretical analysis on ensemble pruning for time series
forecasting tasks. Section 3 gives the novel ideas and details of the proposed DES algorithms
for TSP. Section 4 reports and discusses the experimental results. Finally, Sect. 5 concludes
this paper and suggests directions for future work.

2 Background Knowledge of ELM and Theoretical Analysis
on Ensemble Pruning for TSP

2.1 Previewwith ELM

Recently, extreme learning machine (ELM) has become an increasingly significant research
topic for machine learning and artificial intelligence, due to its unique advantages, i.e., good
generalization performance, extremely fast training speed and universal approximation abil-
ity. ELM is a valid solution for single-hidden layer feedforward neural networks (SLFNs).
SLFNs have relatively strong ability of nonlinear approximation for regression problems,
and can form separable decision regions for classifying arbitrary dimensional data.

It was Huang et al. [30] who originally developed the ELM algorithm. It possesses the
same architecture as the SLFN, as illustrated in Fig. 1. The most outstanding feature of ELM
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Fig. 1 ELM network topology

lies in the random initialization of its input weights and hidden layer biases, while its output
weights are calculated simply by performing a matrix inversion on the hidden layer output
matrix. ELM gets its name from its extremely fast learning speed, while it is also extremely
easy to implement [31].

Suppose there are N arbitrarily different samples (xi , ti ), where xi � [xi1, xi2, . . . ,
xin]T ∈ Rn and ti � [ti1, ti2, . . . , tim]T ∈ Rm , a normal SLFNs with Ñ hidden nodes and
activation function g(x) is analytically modeled by:

Ñ∑

i�1

βi g(wi · x j + b j ) � t j , j � 1, . . . , N (1)

where wi � [wi1, wi2, . . . , win]T denotes the connection weight vector between the ith
hidden node and the input nodes, [βi1, βi2, . . . , βin]T denotes the connection weight vector
between the ith hidden node and the output nodes, and bi represents the bias of the ith hidden
neuron.

Equation (1) can also be written compactly as:

Hβ � T (2)

where H(w1, . . . , wÑ , b1, . . . , bÑ , x1, . . . , xN ) �⎡

⎢⎣
g(w1 · x1 + b1) . . . g(wÑ · x1 + bÑ )

...
...

g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )

⎤

⎥⎦

N×Ñ

, β �
⎡

⎢⎣

βT
1
...

βT
Ñ

⎤

⎥⎦

Ñ×m

and T �
⎡

⎢⎣
t T1
...
t TN

⎤

⎥⎦

N×m

.

Here, wi · x j denotes the inner product of wi and xj. As named by Huang et al. [32],H is
termed the hidden layer output matrix of the neural network; the ith column of H is the ith
hidden node output in relation to inputs x1, x2, . . . , xN .
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Traditionally, to train a SLFN, we might expect to acquire specific ŵi , bi , β̂(i � 1, . . . ,
Ñ ) to minimize ‖Hβ − T‖. Specifically,

∥∥∥H (ŵ1, . . . , ŵÑ , b̂1, . . . , b̂Ñ )β̂ − T
∥∥∥ � min

wi ,bi ,β

∥∥H (w1, . . . ,wÑ , b1, . . . , bÑ )β − T
∥∥ (3)

which amounts to minimizing the cost function

E �
N∑

j�1

⎛

⎝
Ñ∑

i�1

βi g(wi · x j + bi ) − t j

⎞

⎠
2

. (4)

The gradient-decent learning algorithms are typically implemented to optimize these
parameters, which update parameter vector w iteratively according to:

wk � wk−1 − η
∂E(w)

∂w
(5)

Here η is learning rate. The most popular algorithm utilized is the BP learning algorithm.
However, BP algorithm faces a series of problems, such as the difficulty to find an appropriate
learning rate η; easy to fall into local minima; easy to overfitting; and rather time-consuming.

However, ELM resolves the above issues. It sets input weights wi and hidden neuron bias
bi at random, after which matrix H is calculated directly. Then the problem of minimizing
cost function in Eq. (3) equates acquiring a least-squares solution β̂ of the linear system
‖Hβ − T‖:

∥∥∥H (w1, . . . ,wÑ , b1, . . . , bÑ )β̂ − T
∥∥∥ � min

wi ,bi ,β

∥∥H (w1, . . . ,wÑ , b1, . . . , bÑ )β − T
∥∥ (6)

If the number Ñ of hidden nodes is equal to the number N of distinct training samples,
Ñ � N , matrix H is square and invertible when the input weight vectors wi and the hidden
biases bi are randomly chosen, and these training samples can be approximated with zero
error. However, in most cases, the number of hidden nodes is much less than the number of
distinct training samples, Ñ ,H is nonsquare matrix and there may not existwi , bi , βi (i � 1,
. . . , Ñ ) such thatHβ � T. ELM learns the output weights βwith the use of aMoore–Penrose
generalized inverse of the matrix H, denoted as H† [32]. The smallest norm least squares
solution of the above linear system is

β̂ � H†T (7)

The solution β̂ defined in Eq. (7) has the norm minimum over all the solutions of the least
squares solutions of linear system in Eq. (2). Thus, β̂ deserves the best generalization perfor-
mance across all the other least squares solutions [33].

A few apparent advantages exist in ELM: (1) the extremely fast learning speed; (2) the
obviously better generalization performance; (3) without problems like local minima and
slow rate of convergence, etc. [30].

2.2 Theoretical Analysis on Ensemble Pruning for TSP

Provided an equidistant sampled time series {αv}v�1, ..., N , one m-dimensional state space
vector xt is constructed as the form:

xt � (αt+1,αt+2, . . . ,αt+m) (8)

α′
t+m+s � f (xt ) (9)
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where s denotes the scope of prediction, m represents the time window size (TWS), and the
function f : Rm → R is called the approach function.

As only one-step-ahead prediction is focused on in this paper, s is set as one. And the TSP
problem here is considered as a special case of the function approximation problem. Suppose
an ensemble comprisingMbasemodels is used to approximate the function f : Rm → R, and
the predictions of M base models are combined through weighted averaging for developing
the final result. The weight wi (i � 1, 2, . . . , M) that satisfies both Eqs. (10) and (11) is
assigned to the i-th base model f i.

0 ≤ wi ≤ 1 (10)

M∑

i�1

wi � 1 (11)

The outcome of the ensemble is computed according to Eq. (12):

f̃ �
M∑

i�1

wi fi (12)

For convenience of discussion, here it is supposed that all the basemodels possess identical
weights, just as in Eq. (13):

wi � 1/M (i � 1, 2, . . . ,M) (13)

Then Eq. (12) becomes Eq. (14):

f̃ � 1

M

M∑

i�1

fi (14)

According to Zhou et al.’s analyses [28, 34], the reason why combining a proper subset of
the original ensemble might outperform combining the entire one is explained as follows:

Suppose xt ∈ Rm is randomly sampled on the basis of a distribution p(xt). The generaliza-
tion error of the i-th individual model and that of the entire ensemble on xt are respectively:

Ei � ( fi (xt ) − αt+m+1)
2 (15)

Ẽ �
(
f̃ (xt ) − αt+m+1

)2
(16)

The correlation between the i-th and the j-th base models is calculated as below:

Ci j �
∫

dxt p(xt )( fi (xt ) − αt+m+1)
(
f j (xt ) − αt+m+1

)
(17)

Then, it can be obtained that:

Ẽ �
M∑

i�1

M∑

j�1

Ci j
/
M2 (18)

If the k-th base model is removed from the pool of base models, the generalization error
of current ensemble will be:

Ẽ ′ �
M∑

i�1
i ��k

M∑

j�1
j ��k

Ci j
/
(M − 1)2 (19)
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Considering Eqs. (18) and (19), it can be gotten that:

Ẽ − Ẽ
′ �

2
∑M

i�1
i ��k

Cik + Ek − (2M − 1)Ẽ

(M − 1)2
(20)

In this circumstance, the generalization error of the pruned ensemble is clearly smaller
than that of the original entire ensemble, i.e., Ẽ ′ < Ẽ . Consequently, the conclusion could be
reached that, aggregating an appropriate subensemble of the original ensemble might achieve
preferable generalization performance, compared with aggregating the entire one.

3 The Proposed Several Novel Dynamic Ensemble Selection Algorithms
for TSP

According to the literature, it can be found that the predictive precision of ELM is usually
better than BP and SVM in many fields. However, the input weights and biases of ELM
are randomly assigned, which will produce much uncertainty, especially when every new
sample owns its particular property. Therefore, they should not be treated equally without
discrimination [30]. Hence, an ensemble of ELMs rather than a single ELM is used in this
work for the research of TSP, as an ensemble has better adaptability and stronger robustness
compared to a single ELM.

In this work, several novel dynamic ensemble selection algorithms are proposed specif-
ically for the research of TSP. Let P � {p1, p2, . . . , pM } be the initial pool of predictors,
where pi, i � 1, 2, . . . , M denote the base predictors belonging to the initial pool P, andM
is the size of P. The aim of dynamic ensemble selection is to find a subensemble P ′ ⊆ P
that is composed of the proper set of predictors to predict a specific test sample. Figure 2
shows an overview of a dynamic predictors selection system. The details about the proposed
algorithms are presented in the following subsections.

The research of this paper is mainly focused on the DES paradigm that allows for dynami-
cally selecting ensemble members for each forecast rather than the training of each predictor.
However, for completeness and continuity, the generation of an ELMs ensemble is introduced
briefly as follows.

Let xt � {αt+1, αt+2, . . . , αt+m} be the input values of the time series, and yt � αt+m+1 be
the target value of the time series, where m denotes the size of time window. Let g(x) denote
the activation function, such as sigmoid function in Eq. (21), sine function in Eq. (22), hard
limit transfer function in Eq. (23), triangular basis transfer function in Eq. (24), and radial
basis transfer function in Eq. (25). Let Ñ ∈ [1, 20] be the range of the number of hidden
nodes. Although when the number of hidden nodes increases, the predictive accuracy on the
training set will be improved, however, this is prone to the over-fitting problem. We found
by trial-and-error that it is appropriate to set the range of the numbers of hidden nodes as
[1, 20].

g(x) � 1

1 + e−x
(21)

g(x) � sin(x) (22)

g(x) �
{
1, i f x > 0;
0, otherwise.

(23)
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Fig. 2 Overview of a dynamic predictors selection system

g(x) �
{
1 − |x |, i f − 1 ≤ x ≤ 1;
0, otherwise.

(24)

g(x) � e−x2 (25)

One hundred ELMs are generated based on the above five kinds of activation functions, with
the number of hidden nodes varying from one to twenty. Let P � {p1, p2, . . . , pM } denote
the pool of generated ELM predictors, the proposed algorithms are introduced in detail in
the following.

3.1 DES Algorithm Based on Predictor Accuracy over the Local Region (DES-PALR)

The first algorithm proposed in this work is the DES algorithm based on Predictor Accuracy
over the Local Region (DES-PALR). Predictor accuracy is the most common criterion for
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Fig. 3 Overview of the DES-PALR algorithm

the implementation of DES [24, 35, 36]. For this criterion, a small region in the training data
surrounding the given testing instance

(
x j , y j

)
is defined. The region can be computed using

the K-NN algorithm [24, 35], or can be computed by using other clustering algorithms [26,
36]. The samples in this region constitute the validation dataset for DES. Figure 3 shows an
overview of this algorithm.

The proposed DES-PALR algorithm is shown as follows:
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The time complexities of DES-PALR algorithm in training and testing phase are
O(M + tkNn) and O(k +MlogZ ), respectively, whereM represents the size of initial pool of
predictors, t represents the number of iterations of k-means algorithm, k denotes the number
of clusters of k-means algorithm,N represents the size of training set, n denotes the dimension
of training samples, and Z represents the number of selected predictors.

Before the explanation of the proposed DES-PALR algorithm, we would like to introduce
the k-means clustering algorithm briefly [37, 38]. The k-means clustering algorithm is one
of the most widely used clustering algorithms. In k-means algorithm, the center of each
class is computed as the average of samples belonging to that cluster, which well reflects the
geometric and statistical significance of the clustering, with the computational complexity
being O(n) [37, 38]. A key problem of k-means algorithm lies in that, the number of clusters
is required to be set in advance. However, for the time series problems of great majority, it is
difficult to determine the number of clusters.

In [39], the clusters number is determined by optimizing a clustering validity function,
which is defined by the ratio of scatter between-class to scatter within-class. This method is
called the rule of variance ratio criterion (VRC):

max
tr [SB]/(K − 1)

tr [SW ]/(l − K )
, (26)

where l is the samples number, tr [SB] denotes the trace of scatter between-class matrix and
tr [SW ] denotes the trace of scatter within-class matrix. VRCwell embodies the compactness
and separability of clustering results, and is closely related to the number of clusters. There-
fore, VRC is widely used to measure the appropriateness of the number of clusters. Here,
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we take this criterion to determine Kopt (Kopt ≤ √
l), similar as in [40]. When the rule of

VRC is utilized to determine the number of clusters, it is required to check all of the possible
numbers of clusters. Therefore, a reasonable search scope to the clusters numbers is required
to be set, so as to reduce the amount of calculation. The greater l is, the greater the search
scope becomes. Moreover, whenKopt is too large, the samples number in each class becomes
very small, which will cause the decline of the model generalization ability. Therefore, in
this work by trial-and-error, Kopt is set to values between 2 and 4, i.e., 2 ≤ Kopt ≤ 4.

When Kopt is determined, and the training set has been clustered into Kopt clusters,
ci∗ , whose center is the nearest to the current test sample

(
x j , y j

)
, will be determined.

The constituent samples in ci∗ are defined as the region of competence for this specific
test sample. Based on the region of competence, the local predictor accuracy of a base
predictor is evaluated. The predictor possessing the highest predictive accuracy is considered
the most competent one. Because the local region has more similar distribution with the
testing sample than other samples in the training datasets, therefore, the predictors which
have better performance on the local region could perform better on the testing sample than
other predictors, and will be selected into the final ensemble. What’s more, different testing
sample locates different region of competence, yielding effective realization of dynamic
ensemble selection.

The main issue with DES-PALR arises from the fact that it depends on the performance
of the technique that defines the region of competence, such as K-NN algorithm or other
clustering techniques. The algorithm is inclined to commit errors when outlier instances exist
around the testing sample. Only using the local accuracy information alone is not sufficient
to achieve results close to the Oracle. Moreover, any difference between the distribution of
validation and test datasets may negatively affect the DES-PALR algorithm performance.
Consequently, more information should be considered during dynamic ensemble selection
for its successful application on time series prediction.

3.2 A Group of Three Novel Algorithms for Dynamic Validation Set Determination
for TSP

The determination of an appropriate validation set is crucial for the performance of DES
algorithms. In this section, a group of three novel algorithms for selecting validation set
dynamically and effectively is proposed.

First of all, the training set is denoted as Tr �
{(xt , yt )|xt � {αt+1, . . . , αt+m}, yt � αt+m+1}. And the output profile of the test instance(
x j , y j

)
is denoted as ỹ j � (

ỹ j , 1, ỹ j , 2, . . . , ỹ j ,M
)
, where ỹ j , i is the predictive decision

yielded by the base predictor pi for the sample
(
x j , y j

)
.

3.2.1 The Dynamic Validation Set Determination Algorithm Based on the Similarity
Between the Predictive Value of the Test Sample and the Objective Values
of the Training Samples (DVS-PvOv)

In this algorithm, specifically, the dynamic validation set is determined based on the similarity
between the predictive value of the test sample and the objective values of the training
samples.We term this algorithmasDVS-PvOv, for short.All the training samples (xt∗.i , yt∗.i )
(1 ≤ i ≤ M) satisfying Eq. (27) are selected into the validation set.

t∗ � argmin
1≤t≤N

∣∣yt .i − ỹ j ,i
∣∣, 1 ≤ i ≤ M (27)
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The algorithm can be described as follows:

The time complexities of DVS-PvOv algorithm in its training and testing phase are O(M)
and O(M + MN + MlogZ ), respectively, where M represents the size of initial pool of
predictors, N represents the size of training set, and Z represents the number of selected
predictors.

3.2.2 The Dynamic Validation Set Determination Algorithm Based on the Similarity
Between the Newly Constituted Sample for the Test Sample and All the Training
Samples (DVS-NsAs)

This algorithm determines the validation set not only based on the predictive value, but also
based on the input values of the testing sample. A completely new sample

(
x j , ỹ j , i

)
is

constituted by ỹ j , i and the input vector xj of the testing sample
(
x j , y j

)
. In this algorithm,

in particular, the dynamic validation set is determined based on the similarity between the
newly constituted sample

(
x j , ỹ j , i

)
for the test sample and all the training samples. There-

fore, we term this algorithm as DVS-NsAs, for short. All the training samples (xt∗.i , yt∗.i )
(1 ≤ i ≤ M) satisfying Eq. (28) are selected into the validation set.

t∗ � argmin
1≤t≤N

√(
xt .i − x j , yt .i − ỹ j ,i

)(
xt .i − x j , yt .i − ỹ j ,i

)T , 1 ≤ i ≤ M (28)
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The DVS-NsAs algorithm is showed as follows:

The time complexity of DVS-NsAs algorithm is O(M) in its training phase and O(M +
MN +MlogZ ) in its testing phase, whereM represents the size of initial pool of predictors,
N represents the size of training set, and Z represents the number of selected predictors.

The peculiarity of theDVS-NsAs algorithm lies in: it establishes a relationship between the
predictive value of every predictor and the input vector of the testing sample. The DVS-NsAs
algorithm selects validation samples, not only depend on the characteristic of current test
sample but also take the special field in which each predictor is proficient into consideration.
Hence, the predictors that possess the better performance thanothers on the selected validation
samples could have higher predictive accuracy.

3.2.3 The Dynamic Validation Set Determination Algorithm Based on the Similarity
Between the Output Profile of the Test Sample and the Output Profile of Each
Training Sample (DVS-OpOp)

This algorithm dynamically determines the validation set based on the similarity between the
output profile of the specific test sample and the output profile of each training sample, which
is abbreviated as DVS-OpOp. In this algorithm, the set of output profiles of all the training
samples are computed, which is denoted as Y � {

ỹt
}N
t�1, where ỹt � (

ỹt , 1, ỹt , 2, . . . , ỹt ,M
)
.
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The similarity is evaluated based on the Euclidean distance between the two corresponding
output profiles, computed as below:

dist(t , j) �
√(

ỹt − ỹ j
)(
ỹt − ỹ j

)T , 1 ≤ t ≤ N (29)

All the training samples are ranked according to the Euclidean distances between their
output profiles with the output profile of the specific test sample, and an appropriate number
of top-ranking training samples are selected into the validation set.

The algorithm is showed in detail as follows:

The time complexities of DVS-OpOp algorithm in the training and testing phase areO(M)
and O(M +MN +NlogM +MlogZ ), respectively, whereM represents the size of initial pool
of predictors, N represents the size of training set, and Z represents the number of selected
predictors.

The aim of the proposed DVS-OpOp is also to select samples that are close to the test
sample. However, the similarity is computed over the decision space through the concept of
decision templates rather than feature space.

The proposed three new algorithms, i.e., DVS-PvOv, DVS-NsAs and DVS-OpOp, give
impetus to the effective realization of DES for TSP further. Their common advantage lies in
that, they are not limited by the quality of the local region of competence defined solely in
the feature space.
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3.3 Dynamic Ensemble Selection Based on Consensus of Predictors (DES-CP)

The fifth DES algorithm put forward by us is the DES-CP algorithm. It is designed based on
the extent of consensus of the predictors, and it works by considering a pool of ensembles of
predictors (EoPs) rather than a pool of predictors.

Firstly, a population of ensembles of predictors should be generated, i.e., P∗ �{
P ′
1, P

′
2, . . . , P ′

n

}
, where n is the number of the ensembles of predictors, and P ′

m ⊆ P ,
m � 1, . . . , n. The method employed to generate P∗ can be an optimization algorithm, such
as genetic algorithm or greedy search methods [41, 42]. Then, for each test sample

(
x j , y j

)
,

P ′
con , which has the highest consensus, is chosen as the final ensemble of predictors. In DES-

CP, the extent of consensus among the base predictors of an ensemble is regarded as its level
of competence. Figure 4 shows an overview of the DES-CP algorithm.

The difficulty of the DES-CP algorithm lies in how to generate the appropriate P∗ �{
P ′
1, P

′
2, . . . , P ′

n

}
and make sure the quality of each P

′
m . In the following, Zhou et al.’s

analyses are presented [28].
Assume that each individual predictor has been assigned an optimum weight that exhibits

its importance in the ensemble. Then the predictors whose weights are bigger than a pre-set
threshold λ are selected to constitute the final ensemble. And λ is set to 1/M. The weight of
the i-th predictor is denoted as wi, which should satisfy both Eqs. (10) and (11). A weights
vector is built as w � (w1, w2, . . . , wM ). Since the best weights should minimize the
generalization error of the new ensemble, considering Eq. (18), the best weights vector wopt
is expressed as:

wopt � argmin

⎛

⎝
M∑

i�1

M∑

j�1

wiw jCi j

⎞

⎠ (30)

wopt , k , i.e. the k-th (k�1, 2, … , M) component of wopt , can be solved by lagrange
multiplier. wopt , k satisfies:

∂
(∑M

i�1
∑M

j�1 wiw jCi j − 2λ
(∑M

i�1 wi − 1
))

∂wopt ,k
� 0 (31)

Equation (31) can be simplified as:
M∑

j�1
j ��k

wopt ,kCkj � λ (32)

Considering that wopt , k satisfies Eq. (11), we get:

wopt ,k �
∑M

j�1 C
−1
k j∑M

i�1
∑M

j�1 C
−1
i j

(33)

Though Eq. (33) is enough to solve wopt in theory, it rarely works well in real-world
applications. Neither does it work well in this work, because many ELMmodels have homo-
geneous performance in most tasks, which makes the correlation matrix

(
Ci j

)
M×M of the

ensemble become irreversible or ill-conditioned. In such circumstances, Eq. (33) cannot be
solved directly.

Since Eq. (30) can be viewed as an optimization problem, considering the success that
has been obtained by genetic algorithms in optimization area [43], the Genetic Algorithm
based Selective ENsemble (GASEN) algorithm proposed by Zhou et al. [28] is utilized in this
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Fig. 4 Overview of the DES-CP algorithm

work. GASEN is used for finding out the subsets of P, which employs the standard genetic
algorithm (GA) to evolve the optimum weight vector wopt [43]. Next, the base ELMs, whose
corresponding optimum weights are bigger than λ, are chosen to constitute P

′
m . We denote

the validation set as V , the estimated value of the correlation between the i-th ELM and j-th
ELM is computed as:

CV
i j �

∑
xt∈V ( fi (xt ) − yt )

(
f j (xt ) − yt

)

|V | (34)
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The estimated generalization error of the ELMs ensemble corresponding to the base
weights vector w in the evolving population is:

EV
w �

M∑

i�1

M∑

j�1

wiw jC
V
i j � wT CVw (35)

Equation (35) shows the goodness of w. The smaller the EV
w is, the better quality the w

possesses. So the standard GA uses f (w) � 1/EV
w as the fitness function. And the evolved

optimum w is required to be normalized, so that its components can be compared with λ. A
simple normalization scheme is used here:

wopt .i � wi

/
M∑

i�1

wi (36)

What’s more, GASEN has randomness of itself and initializes w randomly for every run,
so it will generate a different pruning ensemble P

′
m for each time. The difference mainly lies

in that the number of the selected base models is different. And even though the numbers are
the same, it cannot be guaranteed that the selected base models remain completely same.

The GASEN algorithm is performed n times to generate P∗ � {
P ′
1, P

′
2, . . . , P ′

n

}
. When a

new test sample is to be predicted, the consensus of each ensemble of predictors is calculated,
and then the ensemble of predictors which possesses the highest consensus is chosen as the
final ensemble.

In regard to the problem of how to evaluate the consensus of an ensemble, two
methods are designed. Let P ′

m � (
p′
m.1, p

′
m.2, . . . , p′

m.s

)
denote the m-th ensemble

of selected predictors, and s denotes the size of the m-th ensemble P
′
m . P ′

m

(
x j

) �(
p′
m.1

(
x j

)
, p′

m.2

(
x j

)
, . . . , p′

m.s

(
x j

))
denote the predicted values of all the predictor in the

m-th ensemble. One method of evaluating the consensus of the m-th ensemble is to calculate
the variance of the predicted values made by its constituent predictors. The algorithm devel-
oped in this way is termed Dynamic Ensemble Selection based on Consensus of Predictors
evaluated with predictions Variance (DES-CP-Var), which is calculated as below:

var
(
P

′
m

(
x j

)) �
∑s

i�1

(
p

′
m.i

(
x j

) −
∑s

a�1 p
′
m.a(x j)
s

)

s
(37)

The smaller the variance is, the higher the consensus will be.
Another method which called Dynamic Ensemble Selection based on Consensus of Pre-

dictors evaluated with Clustering (DES-CP-Clustering) is also proposed as another specific
implementation for the DES-CP algorithm. In this method, k-means clustering is performed
on P

′
m

(
x j

)
, and all the predicted values are divided into k clusters. And the criterion is

originally designed as the margin between the size of the cluster (s1) containing the most
predicted values and the size of cluster (s2) containing the second most predicted values,
i.e., the margin is calculated as Γ � |s1 − s2|, originally. However, GASEN is used here for
the generation of P∗. The size of each generated ensemble is uncertain, which should also
be taken into account. Therefore, the margin is calculated as Γ � |s1−s2|

s . And under this
definition, the bigger the value of Γ becomes, the higher the consensus is.
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The entire algorithm is displayed as follows:

O(ngM2(r + 1
2r + r f ) and O(

∑n
i�1

∣∣P ′
i

∣∣) are the time complexities of DES-CP algorithm
in its training and testing phase, respectively, where n denotes the size of P∗,M represents the
size of initial pool of predictors, N represents the size of training set, Z denotes the number
of selected predictors, g is the number of generations, r represents the size of population,
and f denotes the length of chromosome.

The standpoint is that the higher the consensus among the constituent predictors is, the
higher the level of confidence in the decision will be. Consequently, bymaximizing the extent
of consensus of an ensemble, the degree of certainty that it will make a better prediction is
increased.

The main advantage of this technique stems from the fact that it does not require infor-
mation from the region of competence. Therefore, it does not suffer from the limitation of
the algorithm which defines the region of competence.

4 Empirical Analysis and Evaluation

4.1 Experimental Data and Data Pre-processing

A total of twelve benchmark datasets from Time Series Data Library [44] are conducted in
comparative experiments. DES-PALR, DVS-PvOv, DVS-NsAs, DVS-OpOp, DES-CP-Var
and DES-CP-Clustering models are implemented on Dow-Jones Industrial Average (DJI),
St. Louis Fed Financial Stress index (STLFSI), Odonovan, Montgome, M3-U.S (MUS),
Wolf River at New London (WRNL), Clearwater River at Kamiah (CRK), Mean monthly
Flow in piper’s hole River (MFR), Exchange rate of Australian dollar: $A for 1US dollar
(EAFUS), Annual Copper Prices (ACP), Mean Annual Nile Flow (MANF), U.K. Deaths
from Bronchitis, Emphysema and Asthma (UKDBEA). The concrete scale of each dataset
is shown respective in Table 2.

Since the attributes of sample sets have different ranges, it is necessary to adjust the
value domain of each attribute into the range between 0 and 1. This ensures that the input
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Table 2 Key features of the datasets conducted in our experiments

Dataset Metrics Time granularity Category

DJI 4270 fact values Date Finance

STLFSI 1026 fact values Week Finance

Odonovan 70 fact values Time Chemistry

Montgome 100 fact values Time Chemistry

MUS 398 fact values Month Finance

WRNL 564 fact values Month Hydrology

CRK 600 fact values Month Hydrology

MFR 348 fact values Month Hydrology

EAFUS 314 fact values Month Finance

ACP 197 fact values Year Micro-Economic

MANF 99 fact values Year Hydrology

UKDBEA 72 fact values Month Health

attributes with larger value do not overwhelm the smaller value inputs, and then helps to
reduce prediction errors. The normalization method is presented as follows:

Each of the series value xt is normalized by the linear interpolation as in Eq. (38):

xnewt � xt − xmin

xmax − xmin
(38)

where xnewt �normalized value; xt=value to be normalized; xmin �minimum value of the
series to be normalized; xmax �maximum value of the series to be normalized.

4.2 Experimental Methodology

4.2.1 Performance Measurements

A performance measurement is necessary to appropriately evaluate the predictive perfor-
mance of the pruned ensemble obtained by using different ensemble pruning techniques.
The performance measurements are defined on the basis of prediction errors, which are com-
puted as the difference between the real value of the series and the predicted value, just as
below:

et � (targett − output t ) (39)

where targett denotes the desired output of the prediction model at time t, and outputt denotes
the output of the ensemble at time t. Based on the prediction errors, two performance mea-
surements employed to evaluate the predictive performance of the pruned ensembles are
described below.

RootMean Square Error (RMSE) Root mean square error (RMSE) [45] is the most common
metric used to analyze ensembles performance, and it is defined by the equation:

RMSE � 1

N

√√√√
N∑

t�1

(et )2 (40)
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where N denotes the number of data values of the testing time series. Obviously, the lower
the value of RMSE, the better the prediction result will be. Although RMSE is quite common
as a performance measurement, it does not provide complete and convincing evidence about
the accuracy obtained by the predictive model. Therefore, another metric of Mean Absolute
Error is also used to evaluate the performance of the proposed algorithms.

Mean Absolute Error (MAE) In statistics, mean absolute error (MAE) [46] is a quantity used
to measure how close forecasts or predictions are to the eventual outcomes. MAE is defined
as:

MAE � 1

N

N∑

t�1

|et | (41)

Clearly, the lower the value of MAE, the closer is the desired result from the predicted one.

4.2.2 Experimental Setup

First of all, 100well-trained ELMs are constructed by changing the type of activation function
and the number of hidden neurons, where the former is represented by Eqs. (21–25), and the
latter is in the range of [1, 20]. These well-trained ELMs are utilized to form the initial pool
of basic models.

Every dataset is spilt into two distinctive parts, i.e., a training set and a testing set, with 70%
and 30% of the initial dataset, respectively. With respect to the time window size (TWS),
considering the size of the datasets and by trial-and-error, the feasible value is set to 5.
Considering the randomness of the input weights and biases, which will lead to instability
of ELM, the proposed algorithms are run repeatedly for 20 times. The final performance
measurements are obtained by averaging the performances of these 20 rounds.

In our experiments, the proposed algorithms are comparedwith StaticAveragingAll (AA),
Static Ensemble Selective (SES), GASEN, ELM, Hierarchical Extreme Learning Machine
(H-ELM), BP, Deep representations via Extreme Learning Machine (DrELM), Algebraic
Prediction External Smoothing (APES) [4], Algebraic Prediction Internal Smoothing (APIS)
[4], and Algebraic Prediction Mixed Smoothing (APMS) [4].

4.3 Experimental Results

In this section, the experimental results of RMSE and MAE obtained by the proposed six
algorithms, static ensemble selection methods and some other state-of-the-art methods on
the twelve benchmark time series datasets are listed out in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11,
12 and 13.

Tables 3, 4, 5 and 6 give the detailed RMSE performance and the ranking results based on
RMSE on the twelve time series. From the results, it is obviously shown that, the proposed
DES algorithms achieve higher ranks than other state-of-the-art algorithms, i.e., GASEN,
AA, SES, ELM, H-ELM, BP and DrELM. At the same time, the algorithms that obtain the
best performance on each time series are all the proposed DES algorithms. According to the
average ranking results shown in column 3 of Table 11 that, DES-CP-Clustering achieves
the best average ranking on the twelve time series based on RMSE, while ELM and BP get
the worst ones.

Tables 7, 8, 9 and 10 show the detailed MAE performance and the ranking results based
on MAE on the twelve time series. It can be observed from Tables 7, 8, 9 and 10 that, only
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Table 3 RMSE and rankings based on RMSE on DJI, STLFSI and Odonovan time series

RMSE DJI Ranks STLFSI Ranks Odonovan Ranks

Dynamic ensemble selection

DES-PALR 0.0129 2 0.0142 6 0.2579 9

DVS-PvOv 0.0154 7 0.0123 3 0.2500 7

DVS-NsAs 0.0161 9 0.0122 2 0.2351 4

DVS-OpOp 0.0128 1 0.0234 7 0.2513 8

DES-CP-Var 0.0131 3 0.0115 1 0.2364 5

DES-CP-
Clustering

0.0133 4 0.0130 5 0.2266 1

Static ensemble selection

GASEN 0.0144 5 0.0367 9 0.2283 2

AA 0.1028 11 0.0445 10 0.2350 3

SES 0.0184 10 0.0125 4 0.2461 6

The state-of-the-art methods

ELM 0.2960 13 0.2515 12 0.5991 11

H-ELM 0.0157 8 4.9508 13 1.6485 13

BP 0.2957 12 0.1700 11 0.6401 12

DrELM 0.0147 6 0.0267 8 0.2943 10

Remark The boldface indicates the algorithm which performs the best on each time series

Table 4 RMSE and rankings based on RMSE on Montgome, MUS and WRNL time series

RMSE Montgome Ranks MUS Ranks WRNL Ranks

Dynamic ensemble selection

DES-PALR 0.1811 1 0.1367 5 0.1123 1

DVS-PvOv 0.1965 8 0.1246 4 0.1340 10

DVS-NsAs 0.1885 4 0.1556 6 0.1258 8

DVS-OpOp 0.1882 3 0.2213 8 0.1235 4

DES-CP-Var 0.1917 6 0.0326 1 0.1242 6

DES-CP-
Clustering

0.1902 5 0.0391 3 0.1233 3

Static ensemble selection

GASEN 0.1997 10 0.2550 11 0.1190 2

AA 0.1932 7 0.1643 7 0.1269 9

SES 0.1968 9 0.0329 2 0.1248 7

The state-of-the-art methods

ELM 0.5395 12 0.8494 12 0.1843 12

H-ELM 1.3634 13 1.6632 13 0.1475 11

BP 0.4779 11 0.2473 10 0.1844 13

DrELM 0.1864 2 0.2290 9 0.1235 4

Remark The boldface indicates the algorithm which performs the best on each time series
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Table 5 RMSE and rankings based on RMSE on CRK, MFR and EAFUS time series

RMSE CRK Ranks MFR Ranks EAFUS Ranks

Dynamic ensemble selection

DES-PALR 0.1129 5 0.1567 3 0.0300 3

DVS-PvOv 0.1305 9 0.1566 2 0.0253 1

DVS-NsAs 0.1276 8 0.1670 9 0.0321 4

DVS-OpOp 0.1020 2 0.1564 1 0.0283 2

DES-CP-Var 0.1156 6 0.1589 5 0.0434 9

DES-CP-
Clustering

0.1072 1 0.1589 5 0.0328 5

Static ensemble selection

GASEN 0.1095 4 0.1649 8 0.0367 8

AA 0.1366 10 0.1599 7 0.0332 6

SES 0.1085 3 0.1690 10 0.0338 7

The state-of-the-art methods

ELM 0.2415 12 0.3117 12 0.1813 12

H-ELM 0.1174 7 0.2078 11 0.0456 10

BP 0.3254 13 0.3117 12 0.1814 13

DrELM 0.1989 11 0.1587 4 0.0470 11

Remark The boldface indicates the algorithm which performs the best on each time series

Table 6 RMSE and rankings based on RMSE on ACP, MANF and UKDBEA time series

RMSE ACP Ranks MANF Ranks UKDBEA Ranks

Dynamic ensemble selection

DES-PALR 0.0663 7 0.1452 8 0.0758 1

DVS-PvOv 0.0711 10 0.1332 3 0.0898 5

DVS-NsAs 0.0709 9 0.1519 9 0.0763 3

DVS-OpOp 0.0662 6 0.1415 7 0.0761 2

DES-CP-Var 0.0626 1 0.1308 2 0.0942 6

DES-CP-
Clustering

0.0627 3 0.1297 1 0.0954 7

Static ensemble selection

GASEN 0.0654 5 0.1382 5 0.0869 4

AA 0.0632 4 0.1388 6 0.0989 8

SES 0.0626 1 0.1335 4 0.1079 9

The state-of-the-art methods

ELM 0.4126 12 0.5064 12 0.2356 11

H-ELM 0.0721 11 0.5421 13 0.4606 13

BP 0.4231 13 0.4448 11 0.2390 12

DrELM 0.0666 8 0.2335 10 0.1869 10

Remark The boldface indicates the algorithm which performs the best on each time series
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Table 7 MAE and rankings based on MAE on DJI, STLFSI and Odonovan time series

MAE DJI Ranks STLFSI Ranks Odonovan Ranks

Dynamic ensemble selection

DES-PALR 0.0093 1 0.0116 6 0.2020 9

DVS-PvOv 0.0109 6 0.0094 3 0.1966 6

DVS-NsAs 0.0126 8 0.0089 1 0.1816 1

DVS-OpOp 0.0093 1 0.0179 8 0.1975 8

DES-CP-Var 0.0096 3 0.0092 2 0.1911 5

DES-CP-
Clustering

0.0098 4 0.0106 5 0.1822 2

Static ensemble selection

GASEN 0.0144 9 0.0284 9 0.1850 3

AA 0.0978 11 0.0396 10 0.1860 4

SES 0.0156 10 0.0098 4 0.1962 7

The state-of-the-art methods

ELM 0.2687 13 0.1628 12 0.2679 10

H-ELM 0.0114 7 1.1837 13 1.1834 13

BP 0.2685 12 0.1284 11 0.6187 12

DrELM 0.0103 5 0.0127 7 0.2624 11

Remark The boldface indicates the algorithm which performs the best on each time series

Table 8 MAE and rankings based on MAE on Montgome, MUS and WRNL time series

MAE Montgome Ranks MUS Ranks WRNL Ranks

Dynamic ensemble selection

DES-PALR 0.1563 4 0.0987 5 0.0756 1

DVS-PvOv 0.1670 9 0.0941 4 0.1033 11

DVS-NsAs 0.1561 3 0.1237 6 0.0832 3

DVS-OpOp 0.1602 7 0.1746 8 0.0840 5

DES-CP-Var 0.1546 2 0.0237 1 0.0849 8

DES-CP-
Clustering

0.1519 1 0.0312 3 0.0845 7

Static ensemble selection

GASEN 0.1613 8 0.2271 10 0.0780 2

AA 0.1569 5 0.1499 7 0.0906 9

SES 0.1979 10 0.0293 2 0.0842 6

The state-of-the-art methods

ELM 0.4912 12 0.7201 12 0.1217 12

H-ELM 0.7695 13 1.2291 13 0.0966 10

BP 0.4286 11 0.1952 9 0.1218 13

DrELM 0.1576 6 0.2273 11 0.0836 4

Remark The boldface indicates the algorithm which performs the best on each time series
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Table 9 MAE and rankings based on MAE on CRK, MFR and EAFUS time series

MAE CRK Ranks MFR Ranks EAFUS Ranks

Dynamic ensemble selection

DES-PALR 0.0731 6 0.1218 2 0.0245 5

DVS-PvOv 0.0854 9 0.1240 3 0.0201 2

DVS-NsAs 0.0735 7 0.1275 7 0.0253 6

DVS-OpOp 0.0634 3 0.1217 1 0.0228 4

DES-CP-Var 0.0715 5 0.1253 4 0.0390 11

DES-CP-
Clustering

0.0529 1 0.1257 5 0.0273 8

Static ensemble selection

GASEN 0.0618 2 0.1300 9 0.0295 9

AA 0.0858 10 0.1284 8 0.0270 7

SES 0.0698 4 0.1362 10 0.0179 1

The state-of-the-art methods

ELM 0.1513 11 0.2575 12 0.1734 12

H-ELM 0.0776 8 0.1519 11 0.0201 2

BP 0.1988 13 0.2575 12 0.1735 13

DrELM 0.1649 12 0.1267 6 0.0370 10

Remark The boldface indicates the algorithm which performs the best on each time series

Table 10 MAE and rankings based on MAE on ACP, MANF and UKDBEA time series

MAE ACP Ranks MANF Ranks UKDBEA Ranks

Dynamic ensemble selection

DES-PALR 0.0509 6 0.1144 6 0.0571 2

DVS-PvOv 0.0566 8 0.1109 3 0.0698 5

DVS-NsAs 0.0569 9 0.1198 9 0.0541 1

DVS-OpOp 0.0503 5 0.1141 5 0.0586 3

DES-CP-Var 0.0485 1 0.1029 2 0.0803 6

DES-CP-
Clustering

0.0491 3 0.1018 1 0.0809 7

Static ensemble selection

GASEN 0.0502 10 0.1190 7 0.0661 4

AA 0.0496 4 0.1125 4 0.0860 8

SES 0.0486 2 0.1194 8 0.0929 9

The state-of-the-art methods

ELM 0.4038 12 0.4892 13 0.1891 11

H-ELM 0.0564 7 0.4064 11 0.2936 13

BP 0.4127 13 0.4306 12 0.1902 12

DrELM 0.0621 11 0.2105 10 0.1661 10

Remark The boldface indicates the algorithm which performs the best on each time series
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Table 11 The average ranking of the proposed DES algorithms and the comparative methods on the twelve
time series based on RMSE, MAE, and overall

Models RMSE-ranks MAE-ranks Overall-ranks

Dynamic ensemble selection

DES-PALR 4.2500 4.4167 4.3333

DVS-PvOv 5.7500 5.7500 5.7500

DVS-NsAs 6.2500 5.0833 5.6667

DVS-OpOp 4.2500 4.8333 4.5417

DES-CP-Var 4.2500 4.1667 4.2083

DES-CP-Clustering 3.5833 3.9167 3.7500

Static ensemble selection

GASEN 6.0833 6.8333 6.4583

AA 7.3333 7.0833 7.2083

SES 6 6.0833 6.0417

The state-of-the-art methods

ELM 11.9167 11.8333 11.8750

H-ELM 11.3333 10.0833 10.7083

BP 11.9167 11.9167 11.9167

DrELM 7.7500 8.5833 8.1667

Remark The boldface indicates the algorithm which achieves the highest ranking

Table 12 The detailed RMSE
performance of APES, APIS and
APMS on the first four time series

RMSE DJI STLFI Odonovan Montgome

APES 0.2934 0.5538 0.8938 0.4471

APIS 0.0507 0.0349 0.1933 0.2112

APMS 0.0485 0.0295 0.2097 0.2309

Table 13 The detailed MAE
performance of APES, APIS and
APMS on the first four time series

MAE DJI STLFI Odonovan Montgome

APES 0.1371 0.2171 0.5859 0.3521

APIS 0.0411 0.0229 0.1758 0.1801

APMS 0.0378 0.0199 0.1917 0.1987

on EAFUS time series, SES achieves the best MAE performance. Except for that, on other
eleven time series datasets, the algorithms which achieve the best MAE performance are
all the proposed DES methods. Table 11 lists out the average ranking of the proposed DES
algorithms and the comparativemethods on the twelve time series based onMAE. It is clearly
shown in column 4 of Table 11 that, the top six are all the proposed six DES algorithms,
while BP is the last one.

Column 5 of Table 11 also gives the average comprehensive ranking of the proposed DES
algorithms and the comparative methods on the twelve time series based on both RMSE and
MAE. The results demonstrate that: (1) the performances of the proposed DES algorithms
are obviously better than that of the static ensemble selection methods, especially for DES-
CP-Clustering and DES-CP-Var algorithms; (2) ensembles of predictors outperform single
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models; (3) the two deep neural networks, i.e., H-ELM and DrELM, achieve better perfor-
mance than the single hidden layer neural networks; (4) ELM is slightly better than BP on
the twelve time series datasets.

It can be concluded from Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 that DES-CP-Var and DES-
CP-Clustering achieve more excellent performance than other proposed algorithms on most
of the twelve time series datasets, and they obtain the highest overall rankings (3.75 and 4.21)
within the six DES algorithms. The reason might be that, DES-CP-Clustering and DES-CP-
Var algorithms are designed based on the extent of consensus of the predictors, and they work
by considering apool ofEoPsgeneratedbyGASEN, rather than apool of predictors.However,
the disadvantage of these two proposed algorithms is time-consuming. Therefore, whether to
choose DES-CP-Clustering or DES-CP-Var depends on the training time demanded by the
specific systems. If real time response is required, DES-PALR algorithm is recommended,
owing to its low time-complexity and good performance.

It can also be concluded from Table 11 that, if the criterion of performance measurement
is RMSE, DVS-OpOp algorithm is a good choice (the second best). The reason is that, it
costs less time than DES-CP-Clustering and DES-CP-Var algorithms. Meanwhile it is not
trapped by the techniques which define the local region. Although the proposed DVS-PvOv
and DVS-NsAs algorithms do not achieve better performance than the other DES algorithms
proposed by us on the twelve time series datasets, they still obtain higher accuracy than the
compared methods. As stated by the principle of “No Free Lunch”, no algorithm performs
better than any other ones on all the problems. For example, DVS-PvOv algorithm achieves
the best RMSE performance on EAFUS time series dataset, while DVS-NsAs algorithm
achieves the most superior MAE performance on UKDBEA, STLFSI and Odonovan time
series datasets.

Tables 12 and 13 give the detailed RMSE and MAE performance of APES, APIS and
APMS on the first four time series datasets, respectively. It can be concluded that, APIS
achieves the best RMSE and MAE performance on the Odonovan time series only, outper-
forming the proposed six DES algorithms. At the same time, APES and APMS do not obtain
good performance compared with the proposed DES algorithms.

Next, to ascertain whether the proposed DES algorithms are significantly better than
GASEN,SES,AA,ELM,H-ELM,BPandDrELMin a statistic sense, t-tests are implemented
to the rankings of all the algorithms obtained on the twelve time series datasets. However, if
the rankings of algorithms are not normally distributed, t test may lead to error conclusions.
Therefore, we conduct normality tests firstly, with the results shown in Table 14. The built-
in function JBTEST of MATLAB is employed to implement normality tests, where the
significance level ALPHAwas set to 0.01. The values reported in Table 14 are the test statistic
JBTEST returned by function JBTEST, where H�0 indicates that the null hypothesus cannot
be rejected at the 1% significance level, and H�1 indicates that the null hypothesis can be
rejected at the 1% level. Null hypothesis is that ranking is normally distributed.

It is clearly shown in Table 14 that, the rankings of almost all algorithms obey normal
distribution, with only one exception, i.e., H-ELM.

Then, t-tests are conducted to compare the rankings of the proposed DES algorithms with
those of the GASEN, SES, AA, and other state-of-the-art algorithms, with the significance
level ALPHA set to 0.05 and TAIL set to left. The results are listed in Table 15. The null
hypothesis H�0 indicates that there is no significant difference betweenModel A andModel
B. The null hypothesis H�1 indicates that Model A is significantly better than Model B at
the 5% significance level (t value≤−1.7139).

As shown in Table 15, for 36 of the 42 t tests (85.7%), the proposed DES algorithms
achieve significant improvements on the rankings of the comparative approaches at 5% sig-
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Fig. 5 Dow Jones Industrial Average (prediction values)

Fig. 6 St. Louis Fed Financial Stress Index (prediction values)

nificance level. These results clearly show that DES-CP-Clustering, and DES-CP-Var are
significantly better than the state-of-the-art algorithms. At the same time, the proposed DES
algorithms are all significantly better than ELM, H-ELM, BP and DrELM at the 5% sig-
nificance level. Although it can be obviously concluded from Table 11 that, the average
comprehensive of rankings of DES-PLAR, DVS-OpOp, DVS-NsAs and DVS-PvOv are
superior to all the comparative algorithms, the performances of the four are not siginificantly
better than the comparative algorithms at the 5% significance level, except for ELM, H-ELM,
BP andDrELM in Table 15. This phenomenon is easy to understand. Since the seven compar-
ative algorithms are all state-of-the-art algorithms in the literature, the phenomenon that the
difference between DES-PLAR, DVS-OpOp, DVS-NaAs, DVS-PvOv and the comparative
algorithms especially GASEN and SES are not significant is natural.

Finally, Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 display the prediction values of
one of the proposed DES algorithms which performs the best, i.e., DES-CP-Clustering, and
GASEN on the twelve benchmark time series datasets, respectively. The prediction errors
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Fig. 7 Odonovan (prediction values)

Fig. 8 Montgome (prediction values)

Fig. 9 M3-U.S (prediction values)
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Fig. 10 Wolf River at New London (prediction values)

Fig. 11 Clearwater River at Kamiah (prediction values)

Fig. 12 Mean monthly Flow in piper’s hole River (prediction values)
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Fig. 13 Exchange rate of Australian dollar: $A for 1 US dollar (prediction values)

Fig. 14 Annual Copper Prices (prediction values)

Fig. 15 Mean Annual Nile Flow (prediction values)
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Fig. 16 U.K. Deaths from Bronchitis, Emphysem and Asthma (prediction values)

Fig. 17 Dow Jones Industrial Average (prediction errors)

Fig. 18 St. Louis Fed Financial Stress Index (prediction errors)
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Fig. 19 Odonovan (prediction errors)

Fig. 20 Montgome (prediction errors)

obtained by DES-CP-Clustering and GASEN are displayed in Figs. 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27 and 28.

From the above comparisons, it can be concluded that DES-CP-Clustering, one represen-
tative of the proposed DES algorithms, has better generalization performance than GASEN
on the twelve benchmark time series prediction problems. In addition, a conclusion can be
reached that the more training samples provided to the proposed models, the better perfor-
mance can the models obtain. Therefore, in order to achieve better performance, adequate
training samples are indispensable.

5 Conclusions and FutureWorks

Among the two types of selective ensemble paradigms, i.e., static and dynamic ensemble
selection, the latter one has shown to be a very effective scheme for TSP problems. In this
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Fig. 21 M3-U.S (prediction errors)

Fig. 22 Wolf River at New London (prediction errors)

Fig. 23 Clearwater River at Kamiah (prediction errors)
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Fig. 24 Mean monthly Flow in piper’s hole River (prediction errors)

Fig. 25 Exchange rate of Australian dollar: $A for 1 US dollar (prediction errors)

Fig. 26 Annual Copper Prices (prediction errors)
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Fig. 27 Mean Annual Nile Flow (prediction errors)

Fig. 28 U.K. Deaths from Bronchitis, Emphysem and Asthma (prediction errors)

paper, several new DES algorithms are designed for enhancing the ensemble generalization
performance.

With the proposed DES-PALR algorithm, the predictors performing better on the local
region could also perform better on the test sample, while different test sample locates
different region of competence, thereby successfully realizing dynamic ensemble selection.

The strength of the proposed group of DVS-PvOv, DVS-NsAs andDVS-OpOp algorithms
mainly lies in that, they are not limited by the quality of the local region of competence solely
defined in the feature space, which greatly boost their predictive performances.

The major advantage of DES-CP is that, it does not need any information from the region
of competence, and therefore, it is not restricted by the algorithms which define the region
of competence.

The innovation of this work manifests in that, to our best knowledge, it is the first time
that all these new DES algorithms are developed for the research of TSP.

Experimental results on twelve benchmark time series datasets verify that the proposed
six DES algorithms achieve significantly higher predictive performance than the comparative
state-of-the-art methods, including GASEN, ELM, H-ELM, BP and DrELM.
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Future works on this topic will involve: (a) finding the ensemble of predictors that are
complementary and diverse for solving TSP problems; (b) trying some different performance
measurements so as to better assess prediction performance of models.
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