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Abstract
In this paper, we propose a novel method called fine tuning dual streams deep network
(FTDSDN)withmulti-scale pyramid decision (MsPD) for solving heterogeneous face recog-
nition task. As an extension of classical CNNs, FTDSDN can remove highly non-linear
modality information and reserve the discriminative information using Rayleigh quotient
objective function. Furthermore, we develop a powerful joint decision strategy called MsPD
to adaptively adjust the weight of sub structure and obtain more robust classification perfor-
mance. Experimental results show our proposed method achieves better performance on the
challenging CASIA NIR-VIS 2.0 database, the heterogeneous face biometrics database, the
CUHK face sketch FERET database, and the CUHK face sketch database, which demon-
strates the effectiveness of our proposed approach.

Keywords Heterogeneous face recognition · Dual streams deep network · Multi-scale
pyramid decision · Rayleigh quotient

1 Introduction

This paper focuses on the Heterogeneous Face Recognition (HFR) [9] matching problem,
which has been widely studied in recent years. HFR task refers to matching a probe to the
gallery taken from alternate imaging modality. The major difficulties of HFR lie in the great
discrepancies between different image modalities, such as the identity related information,
modality related information, face variations (e.g., illumination, poses, and expressions), etc.

During the last decade, many methods have been proposed to alleviate the appearance
difference from heterogeneous data. Most of them can be generally categorized into four
classes: synthesis-basedmodel [19,34,37,40,48,49], coupled subspace learning [11,17,22,31,
32,36], feature representation [1,5,16,25] and deep learning methods [7,24,29,30,38,42,47].
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Synthesis-basedmethods [19,34,37,40,48,49] transform the heterogeneous face images to the
same modality, and HFR task is converted into traditional face recognition problem, which is
also called Face Hallucination (FH) and face sketch-photo synthesis techniques [37]. Song et
al. [34] propose an effective sketch denoising method, in whichMarkov Random Field based
methods can be formulated as the baseline improvements by adding smoothness constraints
to reduce noise when synthesizing sketch patches. Li et al. [19] propose a learning-based
framework synthesizing the normal face from the infrared input, which exploit the local
linearity in both image spatial domain and image manifolds. Tang et al. [40] reduce the
difference between photo and sketch by transforming a photo image into a sketch, which
applies a Bayesian classifier to distinguish the probing sketch from the synthesized pseudo-
sketches. However, the synthesis process is actually more difficult than recognition and the
performance of these methods heavily depends on the fidelity of the synthesized images [28].
Coupled subspace learning based methods [11,17,22,31,32,36] map multimodal data into a
common feature space to eliminate the large discrepancies of cross-modality image pairs. Lei
et al. [17] proposeCoupled Spectral Regression (CSR)method to coupling the cross-modality
images into a discriminative subspace. Lin et al. [22] propose Common Discriminant Feature
Extraction (CDFE) method for HFR matching, where two transforms are simultaneously
learned to transform the samples in bothmodalities respectively to the common feature space.
Sharma et al. [31] propose Partial Least Squares (PLS) to linearly map images in different
modalities to a common linear subspace in which they are highly correlated. Tian et al. [36]
adopt grassmannian Radial Basis Function (RBF) kernel to keep the relationship between
subspaces, and use Kernel Canonical Correlation Analysis (KCCA) to handle correlation
mapping between visible light (VIS) and near-infrared (NIR) domains. The main problem of
coupled subspace learning methods is the projection procedure always causes information
loss which may decrease the recognition performance [28]. Feature representation based
methods [1,5,16,25] represent cross-modal face images by taking advantage of effective
feature descriptors. Themain purpose of these approaches is to reduce the cross-modality gap
by exploring the most modality-insensitive features. Klare et al. [16] present Local Feature-
based Discriminant Analysis (LFDA) to individually represent both sketches and photos.
Based on the fact that the sketches are similar to their corresponding photos, Alex et al. [1]
propose a face descriptor called Local Difference of Gaussian Binary Pattern (LDoGBP),
which encodes the DoG representation of the image into a binary pattern. Lu et al. [25]
propose a Coupled Simultaneous Local Binary Feature Learning and Encoding (CSLBFLE)
which performs shared structured and latent feature learning to reduce the heterogenous
gap between face images of different modalities for heterogeneous face matching. Gong et
al. [5] present a common encoding feature discriminant approach to reduce the modality
gap at the feature extraction stage by converting the original face images pixel by pixel
into a common encoded representation, and then infer the person’s identity information for
enhanced recognition performance. However, most existing methods represent an image
ignoring the special spatial structure of faces, which is crucial for face recognition in reality
[28].

Recently, many CNN-based methods are proposed for HFR task. Reale et al. [29] pro-
pose to extract extra information from a pre-trained visible face network and put forth an
altered contrastive loss function to effectively train the network. Zhang et al. [47] conduct
cross-modality conversion with Conditional Generative Adversarial Nets (cGAN), and fur-
ther enhance the recognition performance by fusing multi-modal matching results. Wang et
al. [38] introduce a 2D-3D HFR approach based on Deep Canonical Correlation Analysis
(Deep CCA), which incorporates CNN into CCA, thus learning the mapping between hier-
archically learned features of different modalities. Liu et al. [24] present a deep TransfeR
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NIR-VIS heterogeneous facE recognition neTwork (TRIVET) for solving HFR problem,
which integrates the deep representation transferring and the triplet loss to get consolidated
feature representations. Saxena et al. [30] pre-train and fine-tune the CNNmodel, and explore
different metric learning strategies to reduce the discrepancies between the different modal-
ities. By naturally combining subspace learning and invariant feature extraction into CNNs,
He et al. [7] develop an invariant deep representation approach to map both NIR and VIS
images to a compact Euclidean space.Wu et al. [42] propose aCoupledDeep Learning (CDL)
approach by introducing low-rank relevance constraint and cross modal ranking into CNN.
Though existing deep learning based methods lead to better performance in HFR matching,
they have two limitations. Firstly, in most of the available CNNs [6,30], the softmax loss
function is used as the supervision signal to train the deep model. In order to enhance the dis-
criminative power of the deeply learned features, constructing a highly efficient loss function
for discriminative feature learning in CNNs is non-trivial. Secondly, the individual features
extracted by the above CNN-based methods are less discriminative and robust compared to
the fusion of multiple deep features. To overcome these limitations, in this paper, we present
Fine Tuning Dual Streams Deep Network (FTDSDN) with Multi-scale Pyramid Decision
(MsPD) for HFR. Main contributions of our work can be summarized as follows:

– A novel supervised joint decision strategy MsPD, is presented to adaptively adjust the
network weights according to the discriminating power of each sub network.

– An effective FTDSDN is developed to learn modality invariant representation, which
avoids the network overfitting problem.

– OurFTDSDNemploysRayleigh quotient as objective function,whichmaps deep features
into a discriminate feature space to decrease the intra-class variation while reserving the
inter-class variation.

– Experimental results on the multiple challenging benchmark HFR datasets verify the
effectiveness of the proposed model. In the following, we refer to Fine Tuning Dual
Streams Deep Network (FTDSDN) with Multi-scale Pyramid Decision (MsPD) as F-
MsPD.

The remainder of this paper is organized as follows. Section 2 presents the formulation of
our F-MsPDmodel. Section 3 evaluates the performance of ourmethod using two benchmark
datasets. In Sect. 4, we conclude the paper.

2 The Proposed F-MsPD Approach

This section details the proposed F-MsPD model. As shown in Fig. 1, in our model, mul-
tiple parallel sub networks (i.e., FTDSDN) are used for discriminative feature extraction.
Different from the two-stream ConvNet architecture [33], in which the spatial and tempo-
ral networks are completely independent without sharing parameters, the parameters of the
dual streams deep network are partially shared in our FTDSDN. Then a new MsPD fusion
strategy is implemented to adaptively adjust the network weights according to the discrim-
inating performance of each sub network. And different from the Trunk-Branch Ensemble
CNN model [2], which extracts complementary information from holistic face images and
patches cropped around facial components, our F-MsPD model adaptively adjust the judg-
ment weight of multiple parallel sub networks FTDSDN to make a joint decisions. Finally,
we introduce our new proposed training strategy.
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Fig. 1 Each scale pairs are processed by a corresponding sub structure FTDSDN-i (i=1, 2,…, k, k representing
the total number of scales.). And the final classification employs a newly proposed joint decision strategyMsPD

2.1 Multi-scale Pyramid Decision

In this section, MsPD, a novel fusion strategy for multiple independent unrelated sub net-
works, is presented to learn weight parameter adaptively for each FTDSDN, which largely
enhances HFR performance. In our model, for the i th scale the mth image I iNm or I iVm , we
extract a feature vector xiNm or xiVm through FTDSDN-i, where N and V respectively denote
two modalities. We denote the final classification estimate as follows:

̂Oθ = argmin
j

λ1r
1
θ j + λ2r

2
θ j + · · · + λkr

k
θ j (1)

where λi (i = 1, 2, . . . , k, k is the total number of the scale structure) is the weight of the
i th FTDSDN (denoted as FTDSDN-i). For the θ th probe, the similarity ranking of the j th
gallery is denoted as r iθ j , where i indicates the i th scale structure FTDSDN-i.

The Euclidean distance Di
θ j between the probe xiNθ and all the galleries xiV j ( j =

1, 2, . . . , c, where c is the total number of class) can be expressed as:

Di
θ j = 〈Xi

N j − Xi
V θ , X

i
N j − Xi

V θ 〉
Di

θ = [Di
θ1, D

i
θ2, . . . , D

i
θc] (2)

We sort Di
θ and obtain r iθ with corresponding element position rθ i = [rθ1i , rθ2i , . . . , rθci ],

rθ j i ∈ {1, 2, . . . , c}. rθ j i is called the similarity ranking for the probe. In order to achieve
robust fusion, we adjust each rθ j i according to the threshold δ (our experimental settings
δ = 10)

r iθ j =
{

r iθ j 1 ≤ r iθ j ≤ δ

δ + 1 r iθ j > δ
(3)

Two parameters ηi and βi together determine the weight λi of MsPD, which can be
formulated as below:

λi =
(

1 − βi
∑k

r=1 βr

)

+
(

1 − ηi
∑k

r=1 ηi

)

(4)
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Fig. 2 The DSDN consists of separate sub structure Θq and a common sub structure Ψ

The parameter ηi describes the discriminative performance of the i th scale structure
FTDSDN-i, which can be formulated as below:

ηi =
n

∑

θ=1

c
∑

j=1

ε(r iθr − r iθ j ) (5)

where r iθr is the similarity ranking of the label and ε(·) is the step function. In order to focus
on easily misclassified examples and achieve better recognition performance, we design the
parameter βi to describe the ability of FTDSDN-i in dealing with these samples, which can
be formulated as below:

βi =
n

∑

θ=1

c
∑

j=1

ε(Qθr − Qθ j )ε(r
i
θr − r iθ j ) (6)

where

Qθ j = β1r
1
θ j + β2r

2
θ j + · · · + βkr

k
θ j (7)

where Qθr is the joint probability ranking of the label. ε(Qθr − Qθ j ) adjudicates the hard,
misclassified examples, while ε(r iθr −r iθ j ) describes the ability of FTDSDN-i in dealing with
hard examples.We assign an initial value 1/k to each βi . Once we obtain weights distribution
λi , we can determine the final output of F-MsPD via Eq. (1).

2.2 Dual Streams Deep Network

Inspired by the observations that removing highly non-linear modality information and
reserving the discriminative information are useful for HFR task, we design Dual Streams
Deep Network (DSDN) for feature extraction from two modal data.

Let IVm and INm be the VIS and NIR images respectively, where m = 1, 2, . . . , n
denotes the mth sample. The DSDN feature extraction process is denoted as xqm =
Conv(Iqm,Θq , Ψ )(q ∈ N , V ), whereConv is the feature extraction function defined by the
DSDN, xqm is the extracted feature vector. The label space contains c unique classes, where
each instance is associated with a corresponding label lqm . As shown in Fig. 2, the DSDN
consists of separate sub structureΘq and a common sub structureΨ . StructureΘq eliminates
the highly nonlinear modality information in the low-level features extraction stage, while
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strucutre Ψ enhances discriminative and generalized identity information in the high-level
features extraction stage. Note that the DSDN is designed with non-linear activation func-
tion [26], e.g. tanh, sigmoid, ReLU, PReLU and etc. Structure Θq and Ψ contain multiple
convolutions, pooling layers and fully connected layers, which results in a deep architecture
of DSDN.

The traditional CNN employs softmax as the cost function, in which the deeply learned
features would contain large intra-class variations [41]. To extract discriminative features,
the Fisher criterion [3] maximize distance between the classes and the minimize distance
within the class. Inspired by Fisher criterion, in our work, we apply Rayleigh quotient [13]
objective function to map deep features into a discriminate feature space to decrease the
intra-class variation while reserving the inter-class variation, which contribute to reducing
the gap between different modal domains. The Rayleigh quotient objective function can be
expressed as follows

L(Θq , Ψ ) = min
Tr(SW )

Tr(SB)
(8)

where Tr(·) indicates the trace of the matrix, and SW and SB are the within- and between-
class matrixes. Here, SW = ∑c

r=1
∑

q∈N ,V
∑

z I(lqz = r)(xqz − mr )(xqz − mr )
T and

SB = ∑c
r=1 nr (mr −m)(mr −m)T , where z is the index of sample in each class. I(·) is the

indicator function with value of 1 or 0.mr is the mean value of the r th class with the number
of nr , and m is the mean value of all input samples with the number of n.

2.3 Network Structure

We design three different network structures F-MsPD to verify that the Rayleigh entropy
objective function and the fusion strategy MsPD can be effectively applied to various deep
network. And each F-MsPD model consists of three sub network FTDSDN-i (i=1, 2, 3).

Two of the structures F-MsPD named F-MsPD-A and F-MsPD-B are shown in Table 1.
In sub network FTDSDN-1 of F-MsPD-A model, bothΘ i

N andΘ i
V are set to 2c-s-4c-s-360f,

and Ψ is set to 80f, where lowercase letters c, s and f denote the convolution layer, mean
pooling layer and fully connected layer respectively, while the digit represents the number
of convolutional channels or neurons, and the kernel size of the convolution layer is set to
5 × 5.

The parameter setting of the designed sub network FTDSDN-i in F-MsPD-C model is
shown in Table 2, inwhich the three sub network FTDSDN-i (i=1,2,3) have the same network
structure. In sub network FTDSDN-i, Session 1–4 represent the Θ i

N and Θ i
V sub structure,

and fonts have been bolded in Table 2, while Session 5–6 represent the Ψ sub structure.
Compared to F-MsPD-A and F-MsPD-B, the F-MsPD-C model is wider and deeper, which
is applicable to more complex HFR datasets, such as CASIA NIR-VIS 2.0 [20] datasets.

2.4 Optimization and Fine-Tuning Strategy

We employ the gradient descent following the chain rule to solve the optimization problem
in DSDN. For the convolution parametersΘ i

N andΨ , we use conventional back-propagation
method to update them. The optimization process of each scale structure is performed in
batches of data. Specifically, we calculate the gradient of loss layer, i.e., the gradient of
L(Θq , Ψ ) with respect to xqm . Similar to [13,43], SW and SB can be expressed as SW =
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Table 1 Parameter setting of the designed network in F-MsPD-A and F-MsPD-B model

Model Structure Input image scale Θ i
q Ψ i

F-MsPD-A FTDSDN-1 32 × 32 2-s-4-s-360f 80f

FTDSDN-2 72 × 72 2-s-3-s-360f 100f

FTDSDN-3 100 × 100 2-s-3-s-360f 120f

F-MsPD-B FTDSDN-1 32 × 32 5-s-10-s-360f 80f

FTDSDN-2 72 × 72 5-s-10-s-360f 120f

FTDSDN-3 100 × 100 5-s-10-s-360f 160f

x AW xT and SB = x ABxT respectively, where x = [xq1, xq2, . . . , xqb]. Here, AW = I −
∑c

k=1
1
nk
ekekT and AB = (I − 1

n ee
T )− AW . According to [4], the gradient L(Θq , Ψ ) w.r.t.

xqm can be calculated as:

∂L(Θq , Ψ )

∂xqm
= (−2ABx

T (x ABx
T )−1(x AW xT )(x ABx

T )−1

+2AW xT (x ABx
T )−1)T em (9)

Based on the chain rule, we compute the gradient of Ψ (i.e., the gradient of L(Θq , Ψ )

w.r.t. Ψ ) as:

∂L(Θq , Ψ )

∂Ψ
= ∂L(Θq , Ψ )

∂x

∂x

∂Ψ
(10)

Similar to the process employed for networks Ψ , chain rule can be utilized to calculate
the gradient of Θq (i.e., the gradient of L(Θq , Ψ ) w.r.t. Θq ):

∂L(Θq , Ψ )

∂Θq
= ∂L(Θq , Ψ )

∂x

∂x

∂Ψ

∂Ψ

∂Θq
(11)

To effectively train the DSDN, we present a novel fine-tuning strategy. In the early training
epoch, we share the parameters of the separate sub structure ΘN and ΘV . And in the later
training epoch, we alternately update the parameters of the ΘN and ΘV with mini-batches.
The DSDN combines with Fine-Tuning strategy to form the FTDSDN.

2.5 Algorithm

The Algorithm of F-MsPD is summarized in Algorithm 1. We first randomly initialize the
parameters Θ i

q and Ψ i of the i th scale structure FTDSDN-i. And then we pre train and fine
tune the FTDSDN. Finally, the parameter ηi , βi and λi of MsPD are obtained.

3 Experiments

In this section, a number of experiments are carried out on two biometric applications in
support of the following two objectives:

123



1472 W. Hu, H. Hu

Table 2 Parameter setting of the
designed sub network FTDSDN-i
in F-MsPD-C model

Structure Name Type Filter Size

Section 1 Conv_1 Convolution 3 × 3 × 32

BN_1 Batch normalization

PRelu_1 PRelu

Conv_2 Convolution 3 × 3 × 32

BN_2 Batch normalization

PRelu_2 PRelu

Pool_1 Max pooling 2 × 2

Section 2 Conv_3 Convolution 3 × 3 × 64

BN_3 Batch normalization

PRelu_3 PRelu

Conv_4 Convolution 3 × 3 × 64

BN_4 Batch normalization

PRelu_4 PRelu

Pool_2 Max pooling 2 × 2

Section 3 Conv_5 Convolution 3 × 3 × 64

BN_5 Batch normalization

PRelu_5 PRelu

Conv_6 Convolution 3 × 3 × 64

BN_6 Batch normalization

PRelu_6 PRelu

Pool_3 Max pooling 2 × 2

Section 4 Conv_7 Convolution 3 × 3 × 128

BN_7 Batch normalization

PRelu_7 PRelu

Conv_8 Convolution 3 × 3 × 128

BN_8 Batch normalization

PRelu_8 PRelu

Pool_4 Max pooling 2 × 2

Section 5 Conv_9 Convolution 3 × 3 × 192

BN_9 Batch normalization

PRelu_9 PRelu

Conv_10 Convolution 3 × 3 × 192

BN_10 Batch normalization

PRelu_10 PRelu

Pool_5 Max pooling 2 × 2

Section 6 Conv_11 Convolution 3 × 3 × 256

BN_11 Batch normalization

PRelu_11 PRelu

Pool_6 Max pooling 2 × 2

Fc Fully connected 128

cost Rayleigh quotient
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Algorithm 1 Iterative Algorithm for F-MsPD

Require: IN ∈ R
d×n , IV ∈ R

d×m , lN ∈ R
n , lV ∈ R

m .IN , IV sampled at multiple scales respectively and
get:I iN ∈ R

di×n , I iV ∈ R
di×m , liN ∈ R

n , liV ∈ R
m .

Ensure:
1: Initialization Θ i

q , Ψ i , i = 1, 2, . . . , k.
2: Pre-training FTDSDN-i
3: repeat
4: update (Θ i

N , Ψi ) using Eq. (9)–(11) with fixed other networks
5: until reach the iteration number
6: Fine-tuning FTDSDN-i
7: repeat
8: update (Θ i

q , Ψi ) using Eq. (9)–(11) with fixed other networks
9: compute the loss L(Θq , Ψ ) using Eq. (3)
10: until Converges or reach the iteration number
11: Training MsPD
12: learn the parameter ηi using Eq. (5)
13: learn the parameter βi using Eq. (6)–(7)
14: learn the parameter λi using Eq. (4)

Fig. 3 Example sketch-photo image pairs in the CUFS dataset. (Odd to photo images, even for the sketch
images.). All the photo-sketch pairs are resized to three scales 32×32 (scale-1), 72×72 (scale-2) and 100×100
(scale-3)

– Investigate the various properties of the F-MsPD algorithm.
– Evaluate the F-MsPD algorithms on HFR problem by comparing performance with other

proposed state-of-the-art methods such as Invariant Deep Representation (IDR) [7].

3.1 Datasets

CUFS dataset The CUHK Face Sketch (CUFS) dataset [48] is a public domain database
which consists of the sketches and photos of 188 different persons. Each person has one
photo and one sketch composed by artist. All of these face photos are taken at frontal view
with a normal lighting condition and neutral expression. In order to form multi-scale images,
all the photo-sketch pairs are resized to three scales 32 × 32 (scale-1), 72 × 72 (scale-2)
and 100 × 100 (scale-3), and each scale image-pairs are processed by a scale structure, i.e.
FTDSDN-1, FTDSDN-2 and FTDSDN-3. In our test, 88 photo-sketch pairs are applied as
training data and the rest 100 pairs are applied as testing data. Some photo-sketch pair samples
are shown in Fig. 3.
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Fig. 4 Example sketch-photo image pairs in the CUFSF dataset. (Odd to photo images, even for the sketch
images.). All the photo-sketch pairs are resized to three scales 64 × 64 (scale-1), 128 × 128 (scale-2) and
192 × 192 (scale-3)

Fig. 5 Examples NIR and VIS images of three different subjects from the HFB face database. (Odd to VIS
images, even for the NIR images). All the NIR-VIS pairs are resized to three scales 32× 32 (scale-1), 72× 72
(scale-2) and 100 × 100 (scale-3)

Fig. 6 Examples NIR and VIS images of three different subjects from the CASIA NIR-VIS 2.0 Database.
(Odd to VIS images, even for the NIR images). All the NIR-VIS pairs are resized to three scales 64 × 64
(scale-1), 128 × 128 (scale-2) and 192 × 192 (scale-3)

CUFSF dataset The CUHK Face Sketch FERET (CUFSF) dataset [40] is composed
of 1194 individuals from FERET face database. Each person has one photo and one
sketch which is drawn with shape exaggeration. In this experiment, 700 individuals of the
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Table 3 We formed several F-MsPD versions by a combination of different techniques

Three sub network Fusion method External dataset Network structure Name

No No No FTDSDN-1 FTDSDN-1

No No No FTDSDN-2 FTDSDN-2

No No No FTDSDN-3 FTDSDN-3

Yes MsPD No F-MsPD-A F-MsPD-A

Yes MsPD No F-MsPD-B F-MsPD-B

Yes MsPD CASIA WebFace F-MsPD-A F-MsPD-A-E

Yes MsPD CASIA WebFace F-MsPD-B F-MsPD-B-E

Yes MsPD CASIA WebFace F-MsPD-C F-MsPD-C-E

CUFSF database are randomly selected for training and the rest are used as the testing
set. An average recognition rate is gained by repeating the experiment 20 random splits.
In order to form multi-scale images, all the photo-sketch pairs are resized to three scales
64 × 64 (scale-1), 128 × 128 (scale-2) and 192 × 192 (scale-3), and each scale image-
pairs are processed by a scale structure. Some photo-sketch pair samples are shown in
Fig. 4.

HFB face database HFB Face Database [21] is collected with samples only from two
views (i.e., visual image (VIS) and near infrared image (NIR)). There are totally 5097
images, including 2095 VIS and 3002 NIR from 202 persons in the database. All the NIR-
VIS pairs are resized to three scales 32 × 32 (scale-1), 72 × 72 (scale-2) and 100 × 100
(scale-3). In protocol I, the training set contains 1062 VIS and 1487 NIR images from 202
subjects, where the rest constitutes the test set. Some NIR-to-VIS pair samples are shown in
Fig. 5.

CASIA NIR-VIS 2.0 CASIA NIR-VIS 2.0 dataset [20] consists of 725 subjects in total.
There are 1–22 VIS and 5–50 NIR face images per subject. Under the View 2 protocol, the
evaluation is performed via the tenfold process and in each fold, 357 subjects are used for
training while the remaining 358 subjects for testing. In order to form multi-scale images,
all the NIR-VIS pairs are resized to three scales 64 × 64 (scale-1), 128 × 128 (scale-2) and
192 × 192 (scale-3). Some photo-sketch pair samples are shown in Fig. 6.

3.2 TrainingMethodology

In our experiments,we adopt twodifferent trainingmethodologies to train theF-MsPDmodel,
one using the external dataset, and the otherwithout using external dataset.We formed several
F-MsPD versions by a combination of different techniques (number of sub networks, fusion
method, external dataset and network structure) as shown inTable 3.Whenweuse the external
dataset, we first train each sub networks FTDSDN-i on the extra dataset CASIA WebFace
[45], which contains 10,575 subjects and 494,414 images with softmax loss function. Then
we further train each sub networks FTDSDN-i on the HFR dataset such as CASIA NIR-VIS
2.0 datasets according to different tasks with Rayleigh quotient objective function. When
we do not use the external dataset, we only train each sub networks FTDSDN-i on the HFR
dataset.
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Table 4 Recognition rate of
training samples (RRTS) for the
three scale structure (FTDSDN-1,
FTDSDN-2 and FTDSDN-3),
and its corresponding learning
parameter values (η∗

i , β
∗
i and λi ).

The learning rate of FTDSDN-1,
FTDSDN-2, FTDSDN-3 in group
(a)–(c) is set to 0.01, 0.005, and
0.001 respectively, and the
number of training iterations in
group (a)–(c) is set to 200, 100,
and 80 respectively

Group Scale structure RRTS(%) η∗
i β∗

i λi

(a) FTDSDN-3 100 1 0.97 1.97

FTDSDN-2 98.86 0.29 0.46 0.75

FTDSDN-1 98.86 0.71 0.57 1.28

(b) FTDSDN-3 100 1 0.97 1.97

FTDSDN-2 97.72 0.2 0.52 0.72

FTDSDN-1 98.86 0.8 0.52 1.32

(c) FTDSDN-3 93.18 0.04 0.11 0.15

FTDSDN-2 98.86 0.97 0.92 1.89

FTDSDN-1 100 1 0.97 1.97

3.3 Empirical Studies of the F-MsPD Properties

The following properties of F-MsPD are studied on the CUFS and HFB database: the effects
of joint decision strategy MsPD and the proposed fine-tuning strategy. These experiments
are performed on one random split of the database into training and testing samples.

3.3.1 The Effects of Multi-scale Pyramid Decision

The effects of Multi-scale Pyramid Decision: We evaluate the performance of F-MsPD
compared with FTDSDN-1, FTDSDN-2, FTDSDN-3 and the simple equal weight (SEW)
joint decision strategy (i.e. FTDSDN-SEW, the parameter λi of each sub network FTDSDN
is all set to 1) to illustrate the effectiveness of the MsPD. In Table 4, group (a)–(c) list
the recognition rate of training samples (RRTS) for FTDSDN-i adopting F-MsPD-A net-
work structure in CUFS dataset, and its corresponding parameter values η∗

i , β
∗
i and λi . The

difference between the group (a)–(c) is the learning rate and the number of iterations for
FTDSDN-i. As we can find, the parameters η∗

i , β
∗
i and λi are positively correlated with the

RRTS, which represents the performance of FTDSDN to a certain extent. This indicates
our MsPD strategy can adaptively adjust the weights according to the discriminative perfor-
mance of FTDSDN. Figure 7 show the recognition performance of FTDSDN-1, FTDSDN-2,
FTDSDN-3, FTDSDN-SEW and F-MsPD, where group (a)–(c) differ in learning rate and the
number of iterations for FTDSDN-i. From group (a)–(c) of Fig. 7, our F-MsPD outperforms
FTDSDN-SEW and achieves better recognition accuracy. Especially in group (c), in which
the performance of the three sub networks FTDSDN are quite different, and the performance
of FTDSDN-SEW is even worse than a single network FTDSDN, while our F-MsPD can still
achieves high recognition rate. Compared with FTDSDN-SEW, our joint decision strategy
F-MsPD can adaptively adjust the weight of sub structure FTDSDN-i, and thus make a more
robust decision, which shows that multiple FTDSDNwith an effective fusion strategy MsPD
aid HFR task.

To further verify the validity of the MsPD fusion method, we present the results of evalua-
tions of five variants of our method in Table 5. As can be found, the recognition performance
of F-MsPD-B and F-MsPD-A is always better than a single sub network FTDSDN-i with
rank-1 accuracy 98.6% and 100% respectively. The F-MsPD-B-E method perform better
than F-MsPD-B method in HFB dataset, with rank-1 accuracy of 99.7% and 98.6% respec-
tively, indicating that training the network with additional dataset can further improve the
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Fig. 7 Rank-1 accuracy on CUFS dataset. The learning rate of FTDSDN-1, FTDSDN-2, FTDSDN-3 in group
(a)–(c) is set to 0.01, 0.005, and 0.001 respectively, and the number of training iterations in group (a)–(c) is
set to 200, 100, and 80 respectively

Table 5 Recognition result in
CUFS and HFB database

Dataset Method Accuracy (%)

HFB FTDSDN-1 97.8

FTDSDN-2 97.9

FTDSDN-3 98.1

F-MsPD-B 98.6

F-MsPD-B-E 99.7

CUFS FTDSDN-1 99.4

FTDSDN-2 99.4

FTDSDN-3 99.5

F-MsPD-A 100

F-MsPD-A-E 100

Bold values are used to emphasize the best performance obtained by the
listed methods

recognition performance. From the results, it is clear that MsPD fusion method and external
dataset training both have a positive effect on the HFR task performance.

3.3.2 Evaluations of the Proposed Fine-Tuning Strategy

Evaluations of the proposed fine-tuning strategy: Fig. 8 shows the recognition performance of
FTDSDN-1, FTDSDN-2 and FTDSDN-3 adapting F-MsPD-A network structure with differ-
ent pre-training iterations and proper fine-tuning iterations in CUFS dataset. As can be seen
from the figure, without the pre-training step (i.e., the pre-training number is 0), FTDSDN-i
network has poor performance with accuracy only 96.5%. However, excessive pre training
(the pre-training number is superfluous)will lead the network parameters deviates the optimal
solution, and as a result the FTDSDN fail to be micro adjustment by fine-tuning procedure. It
shows that FTDSDN-3, FTDSDN-2 and FTDSDN-1 achieve optimal generalization ability
respectively in the number of iterations 80, 130 and 200 respectively, and the corresponding
accuracy increase by 2.7%, 2.8% and 2.9% respectively compared to without fine-tuning
strategy. Therefore, the pre-training and fine-tuning strategy can effectively train the whole
network and improve the recognition performance of our FTDSDN.

123



1478 W. Hu, H. Hu

Fig. 8 Pre-training iteration number and the recognition rate of testing samples in the FTDSDN-1, FTDSDN-2
and FTDSDN-3 with proper fine-tuning

3.4 Comparison with State-of-the-Art Methods

In HFR experiments, we evaluate the F-MsPD algorithms on CASIA NIR-VIS 2.0, HFB,
CUFSF and CUFS dataset, by comparing performance with other proposed state-of-the-
art methods. The parameters setting for the compared algorithms are set according to the
published papers [10,12].

CASIA NIR-VIS 2.0 dataset We compare the performance of F-MsPD-C-E with some
approaches including Common Discriminant Feature Extraction (CDFE) [22], Multi-View
Discriminant Analysis (MvDA) [14], VGG [27], SeetaFace [23], CenterLoss [41], and the
state-of-the-art methods i.e., Yi et al. [44], Tian et al. [36], Lu et al. [25], COTS+Low-
rank [18], Reale et al. [29] and IDR [7]. Table 6 shows rank-1 accuracy of different NIR-
VIS face recognition methods. The IDR method achieves the best performance in rank-1
accuracy with 95.8%, which embeds two orthogonal subspaces into the deep network to
play the role of orthogonal separation of modal information and spectral information, so as
to extract discriminatory identity feature. Compared with the F-MsPD-C-E, the traditional
HFR methods CDFE, MvDA, Tian et al. [36] and Lu et al. [25] have lower rank-1 accuracy,
whose accuracy is 27.9%, 41.6%, 82.6% and 86.9% respectively, which shows that the deep
feature extracted by F-MsPD-C-E is more discriminant than the traditional method, as deep
methods can remove the modal information and retain more identity information at the same
time. Compared with other deep learning methods such as VGG, SeetaFace, Yi et al. [44],
CenterLoss, COTS+Low-rank, and Reale et al. [29], our F-MsPD-C-E has the highest 93.5%
rank-1 accuracy, mainly because we use Rayleigh quotient loss function to effectively train
the network. In addition, our model takes full advantage of the multiple sub networks and
achieves a better classification performance using an effective fusion strategy MsPD.

HFB face database We perform comparison of F-MsPD-B-E with existing approaches
PCA [15], Canonical Correlational Analysis (CCA) [46], CDFE [22], Linear Coupled Spec-
tral Regression (LCSR) [17], Kernel Coupled Spectral Regression (KCSR) [17], Linear
Discriminative Spectral Regression (LDSR) [10], and the state-of-the-art methods including
Yi et al. [44] and Reale et al. [29] on HFB database. As shown in Table 7, the performance
of our F-MsPD-B-E model is better than the traditional method PCA, CDFE, LCSR, LDSR
et al., indicating the deep feature extracted by F-MsPD-B-E is more discriminative than the
traditional method with rank-1 accuracy 99.7%. Our F-MsPD-B-E achieves an improvement
up to 0.2% and 0.3% respectively compared to deep learning method Reale et al. [29] and
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Table 6 Recognition rates in the
CASIA NIR-VIS 2.0 dataset

Method Accuracy (%)

CDFE [22] 27.9

MvDA [14] 41.6

VGG [27] 62.1

SeetaFace [23] 68.0

Tian et al. [36] 82.6

Yi et al. [44] 86.2

Lu et al. [25] 86.9

CenterLoss [41] 87.7

COTS+ low-rank [18] 89.6

Reale et al. [29] 92.6

IDR [7] 95.8

F-MsPD-C-E 93.5

Bold values are used to emphasize the best performance obtained by the
listed methods

Table 7 Recognition result in
HFB database

Method Accuracy (%)

PCA [15] 12.1

CDFE [22] 97.21

CCA [46] 95.4

LCSR [17] 97.5

KCSR [17] 97.3

LDSR [10] 97.5

Yi et al. [44] 99.4

Reale et al. [29] 99.5

F-MsPD-B-E 99.7

Bold values are used to emphasize the best performance obtained by the
listed methods

Yi et al. [44], indicating that our carefully designed structure FTDSDN and multi-scale joint
decision strategyMsPD are both benefit for HFR task. FTDSDN structure can remove highly
non-linear modality information and reserve the discriminative information with Rayleigh
quotient objective function by exploiting the correlations from both inter- and intra-class
data, and the proposed MsPD shows fused features is better than individual features for HFR
task.

CUFSF dataset Table 8 shows the rank-1 accuracy of different sketch-photo methods
including CCA [46], Partial Least Squares (PLS) [31], CDFE [22], MvDA [14], and the
state-of-the-art methods i.e., Large Margin Coupled Feature Learning (LMCFL) [12] and
Yi et al. [44]. The traditional methods CCA, PLS, CDFE, MvDA and LMCFL performed
poorly in HFR tasks compared to the F-MsPD-C-E, with rank-1 accuracy of 38.4%, 48.1%,
50.4%, 56.2% and 80.5% respectively, indicating that those traditional methods are difficult
to extract robust features for HFR task. Yi et al. [44] performs worse than our F-MsPD-C-E,
because it extracts Gabor features as input of the Restricted Boltzmann Machines, which
may lead to loss of identity information and introduce modal information at the same time.
Our F-MsPD-C-E has the best performance at rank-1 accuracy with 99.1% compare to the
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Table 8 Recognition rates in the
CUFSF dataset for sketch-photo
face recognition

Method Accuracy (%)

CCA [46] 38.4

PLS [31] 48.1

CDFE [22] 50.4

MvDA [14] 56.2

LMCFL [12] 80.5

Yi et al. [44] 98.6

F-MsPD-C-E 99.1

Bold values are used to emphasize the best performance obtained by the
listed methods

Table 9 Recognition rates in the
CUFS dataset for sketch-photo
face recognition

Method Accuracy (%)

KCSR [17] 83.0

PLS [31] 93.6

BLM [35] 94.2

CCA [46] 94.6

LDSR [10] 95.0

SCDL [39] 95.2

PCA-STL [8] 97.4

Yi et al. [44] 100

F-MsPD-A-E 100

Bold values are used to emphasize the best performance obtained by the
listed methods

state-of-the-art methods, which shows that the F-MsPD-C-E method can effectively train the
network by using the Rayleigh quotient loss function. In addition, to make full use of the
multiple sub structure FTDSDN-i, our MsPD fusion method adaptively adjust the weight
of sub structure and obtain more robust classification performance. Therefore, our F-MsPD
method is more suitable for HFR tasks.

CUFS dataset We compare the performance of the proposed algorithms against the state-
of-the-art approaches including KCSR [17], PLS [31], Bilinear Model (BLM) [35], CCA
[46], LDSR [10], Semi-coupled Dictionary Learning (SCDL) [39], PCA+STL [8] and the
state-of-the-art methods i.e., Yi et al. [44]. As shown in Table 9, the recognition rates of
PLS and CCA are only 93.6% and 94.6% respectively, mainly because they are both linear
methods,which lack the robustness for high nonlinearity of heterogeneous face images. BLM,
LDSR, KCSR, SCDL, PCA+STL have poorer performances mainly because they cannot
extract discriminative features to fit for the untrained data well. Our F-MsPD-A-E achieves
the highest recognition performance with accuracy 100%. All of these results suggest that the
features learned by FTDSDN are not only separable but also discriminative with Rayleigh
quotient objective function, which proves that multiple FTDSDN with an effective fusion
strategy MsPD aid HFR task.

3.5 Discussions

We have performed a large number of experiments on HFR task to evaluate our proposed
algorithms. From the results presented above, the following observations are made.
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– The F-MsPD achieves the best accuracy compared with single networks FTDSDN, indi-
cating that our joint decision strategy MsPD can adaptively adjust the network weights
according to the discriminating performance of each sub network, which shows fused
features is better than individual features for HFR matching.

– FTDSDN-3, FTDSDN-2 and FTDSDN-1 network adopting fine-tuning strategy can fur-
ther improve recognition performance, and the corresponding accuracy increase by 2.7%,
2.8% and 2.9% respectively compared to without fine-tuning strategy, which shows that
fine-tuning strategy can effectively train the network.

– The designed three model F-MsPD-A-E, F-MsPD-B-E, and F-MsPD-C-E are effective
for HFR task, which shows that the Rayleigh entropy objective function and the fusion
strategy MsPD can be effectively applied to various deep network structures.

– Extensive experiments on the benchmark heterogeneous face databases indicate the
effectiveness of our proposed approach. This comparative evaluation demonstrates that
F-MsPD is a robust and effective algorithm for HFR problem.

4 Conclusion

In this paper, we have developed a novel Fine Tuning Dual Streams Deep Network with
Multi-scale Pyramid Decision for dealing with HFR problem. A novel supervised joint deci-
sion strategy MsPD, which shows fused features is better than individual features for HFR
matching, is presented to adaptively adjust the network weights according to the discrimi-
nating performance of each sub network. Different from existing methods, our FTDSDN can
exploit the correlations contained in both inter-view and intra-view data. Moreover, a novel
fine tuning strategy is defined to effectively train the whole network. Experiments on four
HFR datasets demonstrate the superior of our method over existing technique.
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