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Abstract
Performance of resident-activity-recognition systems is an important measure in the evalua-
tion of smart homes performance. An imbalanced distribution of activity classes, however,
severely degrades this performance. Traditional approaches towards realization of activity
recognition focus on the improvement of recognition algorithms rather than imbalanced-
data adjusting. Even state-of-the-art recognition algorithms have been limited to exclusively
improving activity-recognition performance. The proposed study focuses on imbalanced-data
adjusting and presents an improved Synthetic Minority Oversampling Technique (SMOTE)
algorithm to address issues concerning imbalanced activity classes. Instead of linear inter-
polation, the proposed algorithm uses the Euclidean distance of each minor activity to adjust
the distribution of activity classes, thereby generating new synthetic minority activities in the
neighborhood of remaining minority-class examples. Two public datasets were utilized in
this study to validate the improved SMOTE algorithm. Results demonstrate that the proposed
approach favorably outperforms traditional SMOTE algorithms.

Keywords Machine learning · Imbalanced data · SMOTE · Activity recognition · Smart
homes

1 Introduction

In recent years, the population of elderly people has witnessed substantial increase around
the world. Consequently, investigations concerning methods to determine means to care of
the elderly have drawn wide attention, and different policies have been adopted. In some
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countries, it is the responsibility of the government to provide for the elderly. This, in turn,
increases the financial pressure upon governments. In other countries, citizens from younger
generation look after their parents and elderly counterparts. This, however, puts the younger
generation under considerable strain. To enable the aged to live independently as well as
reduce dangers to a minimum, monitoring devices are being installed in homes. In this way,
activities concerning daily living, such as sleeping, cooking, and eating, could be effectively
recognized by analyzing data generated by monitoring devices.

Activity recognition involves prediction of resident activity via generated data. Over the
past decade, activity recognition has received increased attention from numerous research
groups using different kinds ofmonitoring devices, and source data generated by such devices
could be categorized into five types [1], three of which are generated by sensors. The first
category of sensor data is generated by body-worn sensors [2]. Residents are required to wear
monitoring devices, by means of which their activities are recorded in real time. Although
use this method protects resident privacy, the wearable devices could be considered an extra
burden. The second category of sensor data is generated by pressure sensors [3] used to
detect the position of residents seated on chairs, resting in bed, and performing sit-to-stand
and stand-to-sit transitions. Monitoring technologies, at present, can only detect a few sim-
ple activities. For example, Shen et al. [4] proposed an efficient multilayer authentication
protocol along with a secure session key generation method for wireless body area net-
works. Sun et al. [5] proposed a method based on the adaptive observation matrix to reduce
errors incurred and facilitate complete and accurate reconstruction of sensor response sig-
nals, thereby facilitating accurately and completely [5]. Zhang et al. [6] proposed optimum
cluster-based mechanisms based on a modified multi-hop layered model for load balancing
via multiple mobile sinks. The third category of sensor data is generated by ambient sen-
sors [7] placed in different rooms. Ambient sensors generally include light, temperature, and
magnetic-door sensors. When residents move or perform an activity inside a room, ambient
sensors get activated. The activity being performed by the resident is recognized based on
sensor events. Resident motion activates a sequence of ambient sensors; for example, “wash-
ing” activates ambient sensors installed in taps. In this regard, Zhang et al. [8] investigated
how mobile sensors could be efficiently relocated to achieve k-barrier coverage. Through
use of such monitoring devices, residents can avail privacy protection and are freed from
wearing additional devices. The fourth category of data involves video data generated by
cameras [9]. Yu et al. [10–12] applied multimodal technology to human pose recovery. As
observed in their research, resident activities could be recognized using video analysis and
processing techniques. Although camera-based approaches are criticized for privacy breach,
video-processing techniques have been recently introduced to anonymize and perform record-
ings only under situations wherein the user may encounter potential danger. The last category
of data refers to sonic data generated by residents or objects, examples of which include, the
sound of dish washing or falling of an object or person [13]. However, a major limitation
in the use of sonic data for activity recognition is that it may be easily interfered by stray
noise.

The proposed study focuses on activity recognition using data produced by ambient
sensors. A number of approaches have been proposed to improve the performance of activity-
recognition systems. However, most approaches proposed in this regard have associated great
importance to the development of an excellent recognition algorithm rather than adjusting the
imbalance in distribution of activity classes. For instance, Wu et al. [14] proposed a mixed-
kernel-basedweighted extreme learningmachine for inertial sensors based on human-activity
recognition with an imbalanced dataset [14]. Abidine et al. [15] performed automatic recog-
nition of activities by selecting a suitable regularization parameter C associated with the
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soft-support vector machines method. Abidine et al. [16] also employed cost-sensitive sup-
port vector machines with adaptive tuning of the cost parameter to analyze imbalanced data
[16]. In the proposed study, numerous public datasets were investigated under the presump-
tion that imbalanced data distributions are a common occurrence. Additionally, it has been
demonstrated via experiments that presence of an imbalanced distribution of activity classes
tends to degrade the performance of activity-recognition systems. Contrary to the distribution
of activity classes, this study proposes use of a sample-based algorithm, which in turn, serves
to improve the synthetic minority oversampling technique (SMOTE) algorithm to adjust
the imbalanced distribution of activity classes. Two public datasets are used to evaluate the
proposed approach. Experimental results demonstrate that use of the proposed algorithm
remarkably improves the performance of activity-recognition systems.

The remainder of this paper is organized as follows. Relevant works are presented in
Sect. 2; terminologies associated with activity recognition are defined in Sect. 3; the proposed
improved SMOTE algorithm is presented in Sect. 4; the proposed algorithm is evaluated and
corresponding results are discussed in Sect. 5; lastly, findings of this study are summarized
and future endeavors are declared in Sect. 6.

2 RelatedWork

This section presents a brief overview on approaches considered previously to address issues
concerning activity recognition and imbalanced data adjusting.

2.1 Approaches for Activity Recognition

Activity-recognition approaches can, in general, be classified into data-driven andknowledge-
driven approaches. Knowledge-driven approaches lay greater emphasis on the generation
of recognition rules by following a heuristic strategy. Such rules are usually represented
in some logical language, such as temporal logic or description logic. Post generation of
recognition rules, logical reasoning is performed to recognize individual activities. Rugnone
et al. [17] utilized temporal logic that represented rules to recognize abnormal activi-
ties. Yin et al. [18] and Chen et al. [19] represented recognition rules as ontology, and
Chen et al. [20] proposed an improved ontology-based approach. At the core of these
approaches lies an iterative process that begins from the so-called “seed” activity mod-
els, which are created via ontological engineering, deployed, and subsequently evolved
via incremental activity discovery and model updates. Kong [21] proposed a decentralized
belief-propagation-based method to facilitate multi-agent task allocation. Knowledge-driven
approaches possess superior robustness, since recognition rules can be used in differ-
ent environments. However, raw data commonly include substantial noise and uncertain
information, which are difficult to identify and adversely affect the accuracy of activity
recognition.

Data-driven approaches focus on the generation of classification models. Some of these
approaches use time-series models, such as the hidden Markov (HMM) or conditional ran-
dom fields (CRF), to recognize activities. Kasteren et al. [22, 23] employed HMM and
hierarchical HMM to realize resident-activity recognition. Tong et al. [24, 25] employed the
latent-dynamic and hidden-state CRF models to facilitate recognition of abnormal activities
as well as activities of single and multiple residents. A commonality of these approaches is
that greater emphasis is laid on the respective orders of activities and sensor events. How-
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ever, time-series models usually demonstrate poor robustness [26]. For instance, it is rather
obvious that daily orders of resident activities are seldom identical. For a given activity,
the order of sensor events often changes. Furthermore, the order of activities of a given
resident is often different from that of another. To enhance the robustness of time-series
models, researchers exploited such static classifiers for activity recognition as the Naive
Bayesian (NB), Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Random
Forest (RF) [27]. Cook et al. [28] employed NB to recognize daily activities. Yin et al.
[29] employed one-class SVM to recognize abnormal activities on a daily basis [29]. Gu
et al. [30] proposed an effective incremental support vector ordinal regression formulation
based on a sum-of-margins strategy. Hevesi et al. [31] used the kNN classifier to recognize
daily activities. Gu and Sheng [32] proposed use of a regularization-path algorithm for ν-
support-vector-based classification. Xia et al. [33] proposed an approach wherein the kNN
algorithm and locality-sensitive hash were utilized to construct a secure and efficient index.
Gu et al. [34] proposed a structural minimax probability machine for constructing a margin
classifier.

2.2 Approaches for Handling Imbalanced Data

Datasets often possess unequal class distributions. This problem is referred to as imbalanced
classification. Imbalanced distribution of data renders classifiers prone to be biased towards
the majority class and accordingly invites poor classification performance. To address this
problem up to a certain extent, a number of imbalance-adjustment strategies have been
proposed. These strategies can be classified into the sampling-based and algorithm-based
types [35].

The algorithm-based strategy focuses on improving the learning algorithmand includes the
ensemble and cost-sensitive learning techniques. In this regard, Zhou et al. [36] proposed an
ensemble-learning framework, which encloses cost-sensitive neural networks and classifiers
for handling imbalanced classes. Li et al. [37] proposed a cost-sensitive and hybrid attribute
measure—referred to as the multi-decision tree—to maximize classification performance
whilst minimizing the total misclassification cost. Cheng et al. [38] designed a balanced
classifier with imbalanced-data training based on the margin distribution theory.

Contrary to the above, the sampling-based strategy focuses on adjustment of imbalanced
data and includes randomunder-sampling (RUS), randomover-sampling (ROS), and SMOTE
algorithms [39]. RUS is an sampling technique, which diminishes the majority class. The
basic principle underlying RUS is to randomly select and delete a certain number of majority
samples whilst reducing the number of minority samples to improve the imbalance within
datasets. This method, however, is unlikely to be useful during classification of the deleted
sample, which in turn, could cause loss of essential data. Zhang et al. [40] combined the
inverse RUS and random tree techniques to implement imbalanced learning [40]. ROS and
SMOTE refer two classic over-sampling methods, which involve expansion of the minority
class. The basic idea behind ROS is to randomly copy minority samples within a dataset and
increase the number of such samples to reduce the imbalance within the said dataset. This
method, however, is just a simple copy of the minority sample, which may undergo an over-
fitting phenomenon. Zhang et al. [41] proposed a random walk over-sampling approach to
balance different class samples by creating synthetic samples using randomly walking from
the real data. Use of the SMOTE algorithm adds artificial samples to the minority class. How-
ever, SMOTE does not performing oversampling based on a simple sample copy; instead,
it generates new minority samples beyond the original dataset, thereby avoiding over-fitting
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of classifiers up to a certain extent. Sáez et al. [42] introduced an iterative ensemble-based
noise filter into SMOTE, thereby enabling it to overcome problems related to noisy and bor-
derline examples of imbalanced classification. Yu et al. [43, 44] integrated deep multimodal
technology and SMOTE to facilitate image retrieval and ranking. Wang et al. [45] designed a
back-propagating neural-network model using solar radiation as an input parameter to estab-
lish the relationship between solar radiation and air-temperature error whilst considering all
data samples [45]. Ma et al. [46] proposed an efficient detection algorithm based on structural
clustering to convert the structural similarity between vertices to network weights.

3 Terminologies

Prior to presenting the proposed approach, certain terminologies must be defined in advance.
For the sake of clarity, a segment of activity records has been described in Table 1.

Definition 1 For a given sensor s, sr=(d, h, m, sn, sv, al) denotes a sensor event, such that
if s denotes a run, d refers to the date when s was run, h denotes the corresponding hour, and
m represents the corresponding minute. Accordingly, sn denotes the name of s; sv denotes
the value of s, and al denotes an explanatory activity label.

Throughout this manuscript, sr.d, sr.h, sr.m, sr.sn, sr.sv, and sr.al are used to represent the
tuples d, h, m, sn, sv, and al, respectively, of a sensor event sr. The notation � is used to
represent a set of sensor events.

For example, the expression “2011-06-15 00:25:01.892474 LS013 7 Sleep” implies that
a sensor LS013 has been activated at 00:25:01.892474 on 2011-06-15 with a measured value
of 7, and at the said time, the concerned resident was sleeping.

Definition 2 Given two sensor events sr1 and sr2, sr1 is considered to be the precursor
of sr2 if sr1.d< sr2.d holds or (sr1.d=� sr2.d AND sr1.h< sr2.h) or (sr1.d=� sr2.d AND
sr1.h=� sr2.h AND sr1.m< sr2.m) holds. The event sr2 is considered to be the successor of
sr1 if sr1 is the precursor of sr2.

Throughout this manuscript, the expression sr1< sr2 indicates that sr1 is the precursor of
sr2.

Table 1 A stream segment of sensor events

ID Date Time Sensor Value Activity

1 2011-06-15 00:06:32.834414 M021 ON Sleep

2 2011-06-15 00:12:32.670631 BATV012 9540

3 2011-06-15 00:15:01.957718 LS013 6

4 2011-06-15 00:25:01.892474 LS013 7

5 2011-06-15 01:05:01.622637 BATV013 9460

6 2011-06-15 03:38:28.21206 M021 ON

7 2011-06-15 03:38:44.482092 MA013 ON Bed–toilet
transition

8 2011-06-15 03:38:45.133517 M018 OFF

9 2011-06-15 03:38:47.644521 MA013 OFF
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For example, the event {2011-06-15 00:25:01.892474 LS013 7 Sleep} is the precursor
of {2011-06-15 01:05:01.622637 BATV013 9460 Sleep}. Similarly, the event {2011-06-15
01:05:01.622637 BATV013 9460 Sleep} is the successor of {2011-06-15 00:25:01.892474
LS013 7 Sleep}.

Definition 3 Given two sensor events sr1 and sr2 such that sr1< sr2 holds, sr1 is considered
the direct precursor of sr2 if ¬∃ sr ∈ �, sr1< sr AND sr< sr2 holds. The event sr2 is said
to be the direct successor of sr1 if the event sr1 is the direct precursor of sr2.

Throughout this manuscript, sr1→ sr2 indicates that the event sr1 is the direct precursor
of sr2.

For example, the expression {2011-06-15 00:25:01.892474 LS013 7 Sleep} is the direct
precursor of {2011-06-15 01:05:01.622637 BATV013 9460 Sleep}. Likewise, the event
{2011-06-15 01:05:01.622637 BATV013 9460 Sleep} is the direct successor of {2011-06-15
00:25:01.892474 LS013 7 Sleep}.

Definition 4 Given an activity a and n sensor events sr0, sr1, sr2,…, srn, srn+1, the term SR
denotes the sensor sequence of a if ∀1≤ i≤n sri.al==a AND sr0 ��a AND srn+1 ��a AND
∀2≤ i≤n −1 sri→ sri+1 holds.

Definition 5 For an activity a and a sequence of ambient sensors sr1, sr2, …, srn of a,
ar=(sr1.h, srn.h, u, SNT , a) refers to an activity record. The term u denotes the approximate
duration of activity a; SNT denotes a spatial feature and can be defined as a set {(srn,
T )}, where srn ∈ {sri.sn|1≤ i≤n} denotes the name of a sensor; lastly, T= |{sri |1≤ i≤n ∧
sri.sn= srn}| denotes the frequency at which sensors named srn get activated. Terms u and
SNT could be solved for using Algorithm 1 described below.

Algorithm 1. Generate Activity Record
Input: A sequence of sensor events—sr1, sr2, …, srn.
Output: u, SNT

1. u ← (srn.d - sr1.d) × 24 × 60 + (srn.h - sr1.h) × 60 + (srn.m - sr1.m) 
2. SNT ←← ∅∅
3. for each sr in {sr1, sr2, …, srn} 
4. if (sr.sn, T) ∈ SNT, then // T denotes the number of times the sensor sr.sn is run.
5. delete(sr.sn, T) // deletes (sr.sn, T) from SNT
6. SNT ← SNT ∪∪ {(sr.sn, getT (sr.sn) + 1)} //getT(sr.sn) is employed to get tuple T of (sr.sn, T) 
7. else
8. SNT ← SNT ∪∪ {(sr.sn, 1)}
9. end if
10. return u, SNT

For the sample sequence described in Table 1, “(0, 3, 212, {(MA021, 2), (BATV012,
1), (BATV013, 1), (LS013, 2)}, Sleep)” describes an activity record of “Sleep.” The cor-
responding duration u is “212” min, because the approximate duration between the start
and end times of “Sleep” equals “212” min. Ambient sensors “MA021” and “LS013” were
each run twice while corresponding sensors “BATV012” and “BATV013” were each run
once.
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Fig. 1 Diagrams of synthetic generation using a SMOTE and b ISMOTE algorithms with k=3

4 Methodology

This section briefly describes the improved SMOTE (ISMOTE) algorithm to balance the
imbalanced distribution of activity classes. As can be observed in Fig. 1, SMOTE uses lin-
ear interpolation between two points to generate a new minority-class data sample, thereby
limiting the range of sample generation. To address this problem, the ISMOTE algorithm
generates new synthetic minority activities in the neighborhood of remaining minority-
class samples. Two specified constraints are used to control the newly synthetic samples,
thereby facilitating their generated in a robust manner. Compared to SMOTE, use of the
ISMOTE algorithm leads to improving the generalization ability of a far greater number
of classifiers. Additionally, the ISMOTE algorithm is capable of performing a more even
and reasonable distribution of positive examples after balancing. Lastly, ISMOTE can also
generate samples similar to minority samples generated by the ROS and SMOTE algo-
rithms.

The proposed ISMOTE approach can be appropriately described by algorithms 2 and 3 as
well as its schematic flowchart (Fig. 2), as described hereunder. In algorithm 2, lines 1 and 2
describe parameter initialization, whereas lines 3–8 describe the statistics associated with the
number of activity records for each activity class. Subsequently, line 10 describes calculation
of the degree of imbalance within each class (Im_D). The Euclidean distance was used to
determine activity records of k nearest neighbors (lines 11–14). Subsequently, algorithm 3
was used to generate synthetic minority-class activity records. Line 1 in algorithm 2 involves
random selection of Im_D activity records of k nearest neighbors. Subsequently, lines 2–9
in algorithm 2 correspond to generation of synthetic minority-class activity records from the
high-dimensional space. In case the newly generated synthetic minority-class activity records
do not meet the specified constraints, the proposed ISMOTE algorithm would regenerate a
new set of minority-class activity records (lines 10–12 in algorithm 2), and the above process
would be repeated. Ultimately, a balanced set of activity records would be generated through
use of the ISMOTE approach.
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Algorithm 2. ISMOTE
Input: C—set of activity classes

SNT—set of activity records
Im_D—imbalance degree
k—number of nearest neighbor

Output: S, balanced set of activity records
1. P ←← ∅ // P denotes the newly generated set of minority activity records.
2. Ms ← 0 // Ms denotes maximum number of activity records that belong to the same activity 

class.
3. for each c in C
4. if samples(c) ≥ Ms then // samples(c) denotes number of activity records of c
5. Ms ← samples(c) 
6. Mc ← c
7. end if
8. end for
9. for each c in C
10. Im_D ← round(samples(c)/{s|s is a sample of c’ and c’∈C∧∀c’’∈C, samples(c’’) ≤ samples(c’)}) - 1
11. for each s in samples(c) 
12. NN ← nearsetNeighbors(s, k) // Use the Euclidean distance to determine k nearest 

neighbors.
13. P ← P ∪ generateNewSamples(NN, s, Im_D, C) 
14. end for
15. end for
16. return u, SNT

Algorithm 3. GenerateNewSamples
Input: s—an activity record

C—set of activity classes
NN, k nearest neighbors
Im_D—imbalanced degree
A—set of involved sensors

Output: P’—newly generated activity record.
1. M ←← selectSamples(NN, Im_D) // use selectSamples(NN, Im_D) to select Im_D samples from NN

randomly.
2. for each m in M
3. newSample ←← ∅∅
4. for each a in A
5. low ←← value(s, a) - 0.5 × abs(value(m, a) - value(s, a))// abs is used to solve absolute value.
6. up ←← value(s, a) + 0.5 × abs(value(m, a) - value(s, a)) // value is used to get the value of s

about a. 
7. newValue ←← value(s, a) + random(0,1) × (up - low) 
8. newSamples ←← newSamples ∪ {(a, newValue)}
9. end for
10. If (|m - s| > |newSamples - s|) && (select1nn(newSamples, C) = s)// use select1nn(newSamples, C) 

to select nearest neighbor activity from C.
11. P’ ← {newSamples} ∪ P’
12. end if
13. end for
14. return P’
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Fig. 2 Flowchart of proposed ISMOTE approach

Table 2 Statistical information concerning datasets “HH102” and “HH104.”

Sensors Activities Activity records Measurement time

HH102 100 (7 categories) 12 951 64 days

HH104 136 (7 categories) 12 1121 61 days

5 Results and Evaluation

5.1 Datasets

To validate the proposed algorithm, two public datasets—”HH102” and “HH104”—were
considered. These datasets have been published by the Washington State University [47].
Statistical information concerning the two data sets are described in Table 2. Values listed
under column “Sensors” correspond to the number of sensors involved and their correspond-
ing categories. Similarly, values listed under column “Activities” correspond to the number
of activity classes involved while those listed under column “Activity Records” correspond
to the number of involved activity records. Lastly, values listed under “Measurement Time”
correspond to durations over which data were collected duration that data is collected.

For the “HH102,” dataset, the following identifier categories were considered.

(1) Identifiers starting with “BA” indicate sensor battery levels; for example, BATP013,
BATP019, BATV001–BATV023, and BATV102–BATV105.

(2) Identifiers with names starting with letter “D” indicate magnetic door sensors—D001,
D002, D005, and D006.
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(3) Identifiers with names starting with “L” and “LL” indicate light switches—L001–L005,
LL001, and LL005.

(4) Identifiers with names starting with “LS” indicate light sensors—LS001–LS023.
(5) Identifiers with names starting with “M” indicate infrared motion sen-

sors—M001–M022.
(6) Identifiers with names starting with “MA” indicate wide-area infrared motion sen-

sors—MA003, MA009, MA010, MA013, MA014, MA020, and MA023.
(7) Identifiers with names starting with “T” indicate temperature sensors—T101–T105.

Involved activities include “Sleep” (“S”), “Bathe” (“B”), “Dress” (“D”), “Eat_Breakfast”
(“E_B”), “Eat_Dinner” (“E_D”), “Groom” (“G”), “Take_Medicine” (“T_M”), “Toilet” (“T”),
“Wash_Breakfast_Dishes” (“W_B_D”), “Wash_Dinner_Dishes” (“W_D_D”), “Watch_TV”
(“W_T”), and “Work_At_Table” (“W_A_T”). Number of samples considered for the above
activity classes and corresponding degrees of imbalance are listed in Table 3.

Similarly, for the “HH104,” dataset, the following identifier categories were considered.

(1) Identifiers starting with “BA” indicate sensor battery levels; for exam-
ple, BATP001–BATP006, BATP101–BATP106, BATV001–BATV026, and
BATV101–BATV106.

(2) Identifiers with names starting with “D” indicate magnetic door sensors—D001–D006.
(3) Identifiers with names starting with “L” and “LL” indicate light switches—L001–L006.
(4) Identifiers with names starting with “LS” indicate light sensors—LS001–LS026.
(5) Identifiers with names starting with “M” indicate infrared motion sen-

sors—M001–M013, M016, and M020–M026.
(6) Identifiers with names starting with “MA” indicate wide-area infrared motion sen-

sors—MA014, MA015, MA017–MA019, and MA022.
(7) Identifiers with names starting with “T” indicate temperature sensors—T101–T107.

Involved activities include “Sleep_Out_Of_Bed” (“S_O_O_B”), “Evening_Meds”
(“E_M”), “Dress”(“D”), “Cook_Breakfast” (“C_B”), “Cook_Dinner” (“C_D”),
“Phone” (“P”), “Take_Medicine” (“T_M”), “Toilet” (“T”), “Wash_Breakfast_Dishes”
(“W_B_D”), “Wash_Dinner_Dishes” (“W_D_D”), “Morning_Meds” (“M_M”), and
“Work_On_Computer” (“W_O_C”). Number of samples considered for the above activity
classes and corresponding degrees of imbalance are listed in Table 4.

5.2 Results and EvaluationMetrics

In this study, the ISMOTE algorithm was compared against the SMOTE algorithm and
“Primary” through use of four classifiers—NB, SVM, C4.5, and RF. The term “Primary”
implies that individual activities are recognized through use of a classifier, which does not
include any algorithm for imbalanced-data adjustment. With regards to the SMOTE and
ISMOTE algorithms, k was assigned a value of 5. The used toolset employed was Weka
3.9, and a 3-fold cross validation was performed. Evaluation metrics considered included
accuracy, precision, and F-measure.

Average recognition accuracies concerning the HH102 and HH104 datasets are depicted
in Figs. 3 and 4. The average accuracy achieved by “Primary” was observed to be almost
equal to that achieved by SMOTE, whereas the average accuracy of ISMOTE exceeded that
those of both SMOTE and Primary when employing SVM, C4.5 and RF. In contrast, when
using NB as a classifier, the observed accuracy of ISMOTE was lower compared to that of
SMOTE and Primary. The two best accuracy values were achieved by applying the ISMOTE
algorithm when using RF as the classifier.
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Fig. 3 Average accuracies of HH102 dataset using SVM, NB, C4.5, and RF as classifier

Fig. 4 Average accuracies of HH104 dataset using SVM, NB, C4.5, and RF as classifier

Fig. 5 Recognition-accuracy trends for HH102 dataset using SVM

Trends concerning recognition accuracy for individual activities when considering the
HH102 dataset are depicted in Figs. 5, 6, 7 and 8. Corresponding trends concerning the
HH104 dataset are depicted in Figs. 9, 10, 11 and 12. For the HH102 dataset, use of the
ISMOTEalgorithmdemonstrates higher accuracies for 11, 9, 10, and 9 activities, respectively,
when compared against SOMTE and Primary with SVM, NB, C4.5, and RF being used as
classifiers. Correspondingly, for the HH104 dataset, ISMOTE achieved higher accuracies
for 10, 8, 11, and 11 activities, respectively, in comparison to SMOTE and Primary when
employing SVM, NB, C4.5, and RF as classifiers.

As depicted in Figs. 3 and 4, the average accuracy achieved by “Primary” equaled 74% and
75%, respectively, both of which correspond to the lowest accuracy of activity recognition
achieved when employing the four classifiers (SVM, NB, C4.5, RF). Additionally, NB is not
suitable for use as a classification algorithm for activity recognition in conjunction with the
ISMOTE approach for adjustment of imbalanced data. Conversely, RF can be observed to be
the most suitable classification algorithm for activity recognition when used in conjunction
with the ISMOTE approach.

In addition, as depicted in Fig. 6, as regards activity-recognition accuracy concerning the
HH102 dataset when using ISMOTE in conjunctionwith theNB classifier, 8 out of 12 activity
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Fig. 6 Recognition-accuracy trends for HH102 dataset using NB

Fig. 7 Recognition-accuracy trends for HH102 dataset using C 4.5

Fig. 8 Recognition-accuracy trends for HH102 dataset using RF

Fig. 9 Recognition-accuracy trends for HH104 dataset using SVM

recognitionswere observed to be better compared to those by Primary and SMOTE. Similarly,
for activity-recognitions accuracies concerning the HH104 dataset (Fig. 10) when using
ISMOTE in conjunctionwith theNBclassifier, 9 out of 12 activity recognitionswere observed
to be better compared to those by Primary and SMOTE. Additionally, for the HH104 dataset,
recognition accuracy of activities with fewer occurrences, such as “Sleep_Out_Of_Bed,”
“Phone,” “Take_Medicine,” and “Wash_Dinner_Dishes,” were all observed to be higher
compared to those achieved by Primary and SMOTE. This demonstrates the greater ability
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Fig. 10 Recognition-accuracy trends for HH104 dataset using NB

Fig. 11 Recognition-accuracy trends for HH104 dataset using C 4.5

Fig. 12 Recognition-accuracy trends for HH104 dataset using RF

of the proposed ISMOTE algorithm with regards to accurate recognition of not-so-frequent
activities.

Average recognition precisions of the Primary, SMOTE, and ISMOTE algorithms when
applied to the HH102 and HH104 datasets are depicted in Figs. 13 and 14, respectively. As
can be observed, the average precision achieved by Primary nearly equals that achieved by
SMOTE. For the HH102 dataset, as previously stated, the average precision achieved by
ISMOTE, in general, exceeds that achieved by SMOTE and Primary when employing SVM,
C 4.5, and RF as classifiers, whereas it nearly equals the average precision of SMOTE and
Primary when employing the NB classifier. With regard to the HH104 dataset, the average
precision achieved by ISMOTE exceeds those of SMOTE and Primary regardless of the
classifier type being used. For both datasets, the best precision was achieved by applying
ISMOTE algorithm with RF classifier.

Trends concerning precision of individual-activity recognition for the HH102 dataset are
depicted in Figs. 15, 16, 17 and 18. Corresponding trends with regards to the HH104 dataset
are depicted in Figs. 19, 20, 21 and 22. For the HH102 dataset, ISMOTE achieves higher
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Fig. 13 Average precision values for HH102 dataset using SVM, NB, C 4.5, and RF as classifiers

Fig. 14 Average precision values for HH104 dataset using SVM, NB, C 4.5, and RF as classifiers

Fig. 15 Precision of activity recognition in HH102 dataset using SVM

Fig. 16 Precision of activity recognition in HH102 dataset using NB

precisions in 7, 5, 8, and 8 activities, respectively, in comparison to SMOTE and Primary
when employing SVM, NB, C 4.5 and RF as classifiers. Correspondingly, for the HH104
dataset, ISMOTE achieves higher precisions in 9, 6, 12, and 11 activities, respectively, in
comparison to SMOTE and Primary when employing SVM, NB, C 4.5 and RF as classifiers.
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Fig. 17 Precision of activity recognition in HH102 dataset using C 4.5

Fig. 18 Precision of activity recognition in HH102 dataset using RF

Fig. 19 Precision of activity recognition in HH104 dataset using SVM

Fig. 20 Precision of activity recognition in HH104 dataset using NB

A comparison of F-measure values obtained when employing the Primary, SMOTE, and
ISMOTE algorithms when applied to the HH102 and HH104 datasets are depicted in Figs. 23
and 24, respectively. In this case, performances of the Primary and SMOTE algorithms
can be observed to be nearly identical. For both datasets, F-measure values achieved by
ISMOTE exceed those achieved by SMOTE and Primary when employing SVM, C 4.5, and
RF classifiers. However, F-measure values of ISMOTE when employing NB as classifier

123



1520 S. Guo et al.

Fig. 21 Precision of activity recognition in HH104 dataset using C 4.5

Fig. 22 Precision of activity recognition in HH104 dataset using RF

Fig. 23 F-measure values for HH102 dataset using SVM, NB, C 4.5, and RF as classifiers

Fig. 24 F-measure values for HH104 dataset using SVM, NB, C 4.5, and RF as classifiers

are lesser compared to those of SMOTE and Primary for both datasets. In both cases, best
F-measure values are achieved when employing the ISMOTE algorithm in conjunction with
RF.
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Fig. 25 Performance of RF classifier applied to HH102 dataset with different k values
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Fig. 26 Performance of RF classifier applied to HH104 dataset with different k values

In the proposed approach, the parameter k was used to control the scope of generated
synthetic activities. During experimentation, values of kwere set to 3, 5, 7, and 9, respectively,
to discuss the effect of the value range of k on results reported in the revised manuscript. As
observed from experimental results, use of RF as a classifier demonstrated attainment of the
highest average values of accuracy, precision, and F-measure in both datasets. These results
demonstrate RF as the most suitable classifier to be employed for activity recognition, in
conjunction with the proposed ISMOTE algorithm. In the proposed experiment, therefore,
the RF classifier was used to compare results obtained when using different k values. A
comparison of average percentage accuracy and F-measure values obtained for the HH102
and HH104 datasets, respectively, when employing different values of k are depicted in
Figs. 25 and 26. For theHH102 dataset, the observed highest average accuracy and F-measure
values using RF corresponded to k �5, and the same was true for the HH104 dataset, too.
However, the F-measure value is higher when we set k=5 rather than k �7. Thus, in our
experiment, we set the k=5.

There exist two main classes of imbalance learning strategies—sampling methods and
cost-sensitive techniques. In this study, use of four well-known strategies was investigated.
Three of these strategies qualify as sampling methods, namely, random under-sampling
(RUS), random over-sampling (ROS) and synthetic minority over-sampling technique
(SMOTE). The fourth strategy qualifies as a cost-sensitive technique, referred to as the
cost-matrix adjuster, wherein the cost matrix is adjusted. The above four strategies were
specifically considered because they are popular and diverse. RUS refers to an under-sampling
technique, wherein the size of the majority class is reduced. ROS and SMOTE are two clas-
sic over-sampling methods, wherein the minority class is expanded. The difference between
them is that in ROS, duplicated samples are added to the minority class, whereas in SMOTE,
artificial samples are created to be added to theminority class. Finally, the cost-matrix adjuster
(CMA) is a cost-sensitive technique.
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Fig. 27 Performance of RF classifier applied to HH102 dataset when using different imbalance learning strate-
gies
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Fig. 28 Performance of RF classifier applied to HH104 dataset when using different imbalance learning strate-
gies

As suggested by results observed in this study, use of the RF classifier demonstrates
attainment of highest average values of accuracy, precision and F-measure for both datasets
considered. RF can, therefore, be considered as the most suitable classifier type for activ-
ity recognition. Thus, RF was also employed in this study to compare activity-recognition
results obtained when using different imbalance learning strategies—RUS, ROS, SMOTE,
and CMA. A comparison of average percentage accuracy and F-measure values obtained for
the HH102 and HH104 datasets, respectively, when employing different imbalance learning
strategies are depicted in Figs. 27 and 28. As observed, for both datasets, the observed high-
est average accuracy and F-measure values using RF corresponded to use of the ISMOTE
algorithm. For the HH102 dataset, the observed accuracy of ISMOTE using RF exceeded
those of the primary, CMA, RUS, ROS, and SMOTE by 7.40%, 4.65%, 21.62%, 3.45%, and
8.91%, respectively.With regard to the HH104 dataset, corresponding values equaled 7.95%,
5.56%, 93.88%, 3.26%, and 7.95%, respectively.

5.3 Discussion

In accordance with results obtained in this study, following points must be noted.

(1) Use of the ISMOTE algorithm with RF demonstrates attainment of highest average
values of accuracy, precision, and F-measure. The observed highest average accuracy
value equaled 90% and 95% for the HH102 and HH104 datasets, respectively. Corre-
spondingly, the highest average precision value equaled 90% for HH102 and 96% for
HH104. Lastly, the highest average F-measure value equaled 90% for HH102 and 95%
for HH104.

123



Improved SMOTE Algorithm to Deal with Imbalanced Activity… 1523

Table 5 Accuracy and precision improvements achieved by applying RF to HH102 dataset

Im_D B E_B E_D T_M W_B_D W_D_D W_T W_A_T
6 8 4 10 8 3 5 5

Accuracy I-P (%) 66 21 18 45 −9 0 −8 32

Improvement I-S (%) 72 21 18 45 −9 0 −3 32

Precision I-P (%) 23 6 13 −4 −8 3 −15 31

Improvement I-S (%) 15 8 19 11 −6 3 −15 23

Table 6 Accuracy and precision improvements achieved by applying RF to HH104 dataset

Im_D S_O_O_B E_M D C_B C_D P T_M W_B_D W_D_D M_M
15 9 4 5 4 28 33 7 17 6

Accuracy I-P (%) 12 37 0 10 11 68 58 47 61 11

Improvement I-S (%) 16 43 0 9 4 68 58 47 62 11

Precision I-P (%) 0 15 2 25 15 33 59 16 53 15

Improvement I-S (%) −3 15 3 24 17 0 42 15 54 14

(2) Use of the RF classifier demonstrated attainment of the highest average values of accu-
racy, precision, and F-measure for both two datasets. RF can, therefore, be considered
as the best classifier type to be used for activity recognition.

(3) In dataset HH102, there exist 8 activity classes withmore than one degrees of imbalance.
Table 5 lists improvements in accuracy and precision values of these activity classes
obtained through use of RF. For a given activity class a, the value of “I-P” denotes the
difference between accuracy (precision) of a obtained using ISMOTE and that obtained
using Primary. Likewise, the value of “I-S” denotes the difference between accuracy
(precision) of a obtained using ISMOTE and that obtained using SMOTE. Accuracy and
precision values of 6 activity classes were observed to have been remarkably improved
in this study. Correspondingly, in dataset HH104, there existed 10 such activity classes.
Table 6 lists improvements in accuracy and precision values of these activity classes
obtained through use ofRF.Accuracies of 11 activity classes and precisions of 10 activity
classes were observed to have been remarkably improved. Observed results demonstrate
ISOMTE to be a promising algorithm for use in activity-recognition applications.

6 Conclusions

This paper presents the ISMOTE algorithm as a means of realizing adjustment of imbalanced
activity classes with regard to activity-recognition applications. The proposed algorithm was
evaluated using four classifiers on two public datasets, and results obtained in this study
demonstrate the ability of the ISMOTE algorithm to dramatically improve the performance
of activity-recognition systems.
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