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Abstract
This article deals with the finite time stabilization (FTSB) and fixed time stabilization
(FXTSB) problems for a high-order class of bidirectional associative memories neural net-
works (NNs) with time varying delay. Compared with the previous studies, some new kinds
of controllers are designed to stabilize in finite time and fixed time the considered NNs.
Based on finite time and fixed time stability theory, we derive new sufficient conditions
which ensure the FTSB and the FXTSB. Meanwhile, the gains of the controllers proposed
could be constructed by solving linear matrix inequalities. Then, the settling time for the
FXTSB is estimated and a high-precision of these time is obtained. Finally, two numerical
examples with graphical illustrations are given to appear the effectiveness of our theoretical
main results.

Keywords BAM neural networks · Finite time stabilization · Fixed time · Delay-dependent
controller · LMI · Settling-time

1 Introduction

In this article, we discuss the finite time stabilization and the fixed time stabilization for
a high-order class of BAM delayed NNs. To investigate the FTSB and the FXTSB of the
above-mentioned problem, we consider the following:
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)

+
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)

+
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k

(
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(
μi (t − σ(t))
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in which μi (.) and ν j (.) stand for the neuron state, C = diag (c1, . . . , cn) and D =
diag (d1, . . . , dn) with ci > 0 and d j > 0 stand respectively for the rate of the reset of
the i th and j th unit in the resting state and disconnected of external inputs of network;

A1 =
(
a1i j

)

n×n
, A2 =

(
a2j i

)

n×n
, B1 =

(
b1i j

)

n×n
, B2 =

(
b2j i

)

n×n
and Ti = [Ti jk]n×n ,

Oj = [Ojik]n×n stand for the interconnection weight matrices of the neurons and the

second-order synaptic weights matrices. f1 =
(
f (1)
1 , . . . , f (1)

n

)T
, f2 =

(
f (2)
1 , . . . , f (2)

n

)T
,

g1 =
(
g(1)
1 , . . . , g(1)

n

)T
, and g2 =

(
g(2)
1 , . . . , g(2)

n

)T
stand for the neuron activation func-

tions. 0 < τ(.) ≤ τ̄ and 0 < σ(.) ≤ σ̄ stand for the transmission delays. The initial condition
{

μi (s) = φi (s), s ∈ [−τ̄ , 0],
ν j (s) = ψ j (s), s ∈ [−σ̄ , 0].

where φi (.) ∈ C ([−τ̄ , 0],Rn) and ψ j (.) ∈ C ([−σ̄ , 0],Rn).
It is well known that the lower-order class of NNs is expected to produce the poorest

quality of solution with a great complexity as measured by the order of the network [7].
Also, the high-order class of NNs offers faster convergence rate, higher fault tolerance and
greater storage capacity [63] which explains the use of this class in many applications such
as robotic manipulator, the resolution of optimization problems and other fields [6,8–10,13,
27,33,35,44].

In practice, the time delay often occurs in the implementation of NNs [5,9,14,26,32,36,
45,46] and causes a high complexity in the dynamic behaviours of network. Also it can
destabilize the system and create some oscillation and bifurcation in NNs which explain
the intensity of research around the effect of the delays in the dynamic behaviours of NNs
[4,11,17,22,25,29,31,62].

In 1988, Kosto was introduced the class of bidierctionnel associative memories (BAM)
neural networks [21]. Due to its range in many areas such that pattern recognition and
combinatorial optimization this class of NNs it becomes one of the most important class
of delayed NNs. Recently, many authors has been extensively studied the class of BAM
neural networks. In fact, the results around the Lyapunov stability of this class are obtained
in [51–53]. In [68,75], the periodic solutions of this class of NNs is investigated bases on
the coincidence degree theorem. Moreover, the exponential dichotomy and the fixed point
theorems are used for the study of the almost periodic solution [37,74] and reference therein.

Contrary to the asymptotic convergence that can implies a large time (infinite) for obtaining
the desired precision, the FTS ensure that the physical process achieves the convergence in a
specific time. Thanks to this proprieties, this concept shows nice features such as robustness
to uncertainties [19].

From the practical standpoint such as robotics, the challenge in system theory is the
design of suitable controllers able to bring a system back to a desired position as quickly
as possible. For example, if the finite time synchronization does not guarantee and only the
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exponential synchronization is considered, the coupling protocol should exist for ever [38].
Otherwise, for chaotic oscillator, a small error can produce a high difference between nodes.
In addition, FTS can lead to better NNs performances in the disturbance rejection [38]. To
summarize, the study of FTS is of major interest both in theoretical analysis and real-life
applications.

Recently, the FTS problems of NNs has been widely investigated [2,39–41,57,60,61,64–
67]. However, despite the design of many finite time controllers for different kinds of NNs,
there is no general controller able to guarantee the FTSB of a lower order and a high-order
class of delayed BAMNNs because it is delicate to design a Lyapunov–Krasovskii functional
(LKF) satisfying the derivative condition of the FTS of delayed systems [49].

Despite the contribution that provides the FTS, the time function indicating when the
trajectories reach the equilibrium point, variously known as the settling-time depends on
the initial conditions of the dynamical systems. On the one hand, the variation of the initial
values has a great effect on the estimation of the settling time. On the other hand, in practice,
the knowledge in advance of the initial conditions is very difficult [20]. In this context, the
concept of fixed time stability occurs naturally where Polyakov was the first to introduce
these notation in [55] by imposing the boundedness of the settling time to FTS systems.
In practice, the fixed time stability is encountered in control problems such power systems
[50], fixed-time observer [47]. In the existing literature, the research around the FXTS has
just started and there are few results on the FXTS concept. One of the most important
results on this concept is the extension of the results of Polyakov given in [55] to the non-
autonomous class of differential equations [56]. Hence, it is urgent establish some new criteria
on FXTS.

Motivated by the above discussion, this article deals with the FTSB and FXTSB problems
for a lower order and high-order class of delayed BAM NNs. The main aim of this paper is
to design a control low able to stabilize in finite time and fixed time the high-order delayed
BAM NNs and to obtain a time convergent more accurate and with a high-precision.

The rest of this article is organized as follows. The FTSB and FXTSB of high-order
BAM NNs is discussed in Sect. 3 where some sufficient general conditions are included in
the control low and two kinds of controller are designed which include a delayed feedback
control and a free-delay controller. Then, two numerical examples with graphical illustration
are given to appear the effectiveness of our main results in Sect. 4. Finally, some concluding
remarks are drawn in Sect. 5.

2 Preliminaries

Throughout this article, the following notations are used.

• C([a, b], R
n) denotes the space formed by the continuous functions φ : [a, b] → R

n

equipped with uniform norm as follows: ‖φ‖ = supa≤s≤b ‖φ(s)‖;
• 〈., .〉 stands for the inner product of Euclidean space.
• For any vector x = (x1, . . . , xn)T ∈ R

n , we define Sign(x) = (sign(x1),
. . . , sign(xn))T ;

• a function ν : R+ → R+ is radially unbounded if ν(x) → +∞, as ‖x‖ → +∞;
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We also introduce the following assumptions:

• (H1): There exist positive constants L
fk
i , Lgk

j , k = 1, 2. such that
∣
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∣
∣
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∣
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j (y)
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∣
∣

|x − y| ≤ L f2
j ;

∣
∣
∣g
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∣
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∣
∣g

(2)
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j (y)
∣
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∣

|x − y| ≤ Lg2
j .

for all x, y ∈ R and 1 ≤ i, j ≤ n.
• (H2): For all 1 ≤ i ≤ n,

f (1)
i (0) = g(1)

i (0) = f (2)
i (0) = g(2)

i (0) = 0

and
∣
∣
∣ f

(1)
i (x)

∣
∣
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i ,

∣
∣
∣ f

(2)
i (x)

∣
∣
∣ < F2

i ,

∣
∣
∣g

(1)
i (x)

∣
∣
∣ < G1

i ,

∣
∣
∣g

(2)
i (x)

∣
∣
∣ < G2

i .

• (H3): For any positive definite matrix P , P B̄i , i = 1, 2 are n × n diagonal positive
definite matrix where B̄1 = (B1 + Γ T T ∗), B̄2 = (B2 + ΘT O∗).

2.1 Model Description

Let μ∗ = (μ∗
1, . . . , μ∗

n)
T and ν∗ = (ν∗

1 , . . . , ν∗
n )

T be an equilibrium point of System
(1), by a simple transformation x(t) = μ(t) − μ∗ and y(t) = ν(t) − ν∗, we can shift the
equilibrium point (μ∗, ν∗)T to the origin and system (1) can be turned into the (x − y) form
(see [43])
{
ẋ(t) = −C x(t) + A1 F1 (y(t)) + B1 G1 (y(t − τ(t))) + Γ T T ∗ G1 (y(t − τ(t)))

ẏ(t) = − D y(t) + A2 F2 (x(t)) + B2 G2 (x(t − σ(t))) + ΘT O∗ G2 (x(t − σ(t)))

(2)

where

F1(y) = f1(y + ν∗) − f1(ν
∗), F2(x) = f2(x + μ∗) − f2(μ

∗);
G1(y) = g1(y + ν∗) − g1(ν

∗), G2(x) = g2(x + μ∗) − g2(μ
∗).

ξi =
{ Ti jk

Ti jk+Tik j
fk (xk(t − τ(t)) + Tik j

Ti jk+Tik j
fk(x∗

k ) if Ti jk + Tik j 
= 0

0 if Ti jk + Tik j 
= 0

ζi =
{ Oi jk

Oi jk+Oik j
fk (xk(t − τ(t)) + Oik j

Oi jk+Oik j
fk(x∗

k ) if Oi jk + Oik j 
= 0

0 if Oi jk + Oik j 
= 0

Ti = [Ti jk]n×n, T ∗ = [T1 + T T
1 , . . . , Tn + T T

n ]T , ξi j = [ξi j1, . . . , ξi jn]T ;
ξi = [ξ Ti1, . . . , ξ Tin]T , Γ = [ξ1, . . . , ξn]T ;
Oi = [Oi jk]n×n, O∗ = [O1 + OT

1 , . . . , On + OT
n ]T , ζi j = [ζi j1, . . . , ζi jn]T ;

ζi = [ζ T
i1, . . . , ζ T

in]T , Θ = [ζ1, . . . , ζn]T .

We will use System (2) for the proof of the main results of our article.
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2.2 Definitions and Lemmas

Now, we recall some useful lemmas and definitions in what follows.

Lemma 1 ([15]) For a positive definite matrix Q ∈ R
n×n and any vectors x, y ∈ R

n and
ε > 0, the following inequality holds:

2xT y ≤ ε−1xT Q−1x + εyT Qy.

Lemma 2 ([18]) If a1, . . . , an, r1, r2 ∈ R with 0 < r1 < r2, then the following inequality
holds

[
n∑

i=1

|ai |r2
] 1

r2

≤
[

n∑

i=1

|ai |r1
] 1

r1

,

[
1

n

n∑

i=1

|ai |r2
] 1

r2

≥
[
1

n

n∑

i=1

|ai |r1
] 1

r1

,

Lemma 3 ([64]) If bi ≥, i = 1, . . . , n and δ > 1 then the following inequality holds

n∑

i=1

bδ
i ≥ n1−δ

[
n∑

i=1

bi

]δ

.

Let Ω1 and Ω2 be two open subsets of C ([−τ̄ , 0]) and C ([−σ̄ , 0]) respectively such
that 0 ∈ Ω1 ∩ Ω2.

Now, we introduce the notion of finite time stability and fixed time stability.

Definition 1 ([48]): The zero equilibrium point of System (1) is finite time stable (FT S) if:

(i) The equilibrium of System (1) is Lyapunov stable;
(ii) For any state φ(.) ∈ Ω1, and ψ(.) ∈ Ω2, there exists 0 ≤ T (φ, ψ) < +∞ such that

every solution of System (1) satisfies x(t, φ) = y(t, ψ) = 0 for all t ≥ T (φ, ψ).

The functional:

T0(φ, ψ) = inf {T (φ, ψ) ≥ 0 : x(t, φ) = y(t, ψ) = 0, ∀t ≥ T (φ, ψ)}

is called the settling time of System (1).

Lemma 4 ([48]) Consider the non autonomous System

ẋ(t) = f (t, x(t)) (3)

with uniqueness of solutions in forward time. If there exist two functions ν and r of classK
and a continuous functional V : Ω → R+ such that

(i) ν (‖φ(0‖) ≤ V (φ);
(ii) D+V (φ) ≤ −r (V (φ)) with

ε∫

0

dz

r(z)
< ∞, ∀ε > 0, φ ∈ Ω.
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then, System (3) is FTS with a settling time satisfying the inequality

T0(φ) ≤
V (φ)∫

0

dz

r(z)
.

In particular, if r(V ) = λV ρ where λ > 0, ρ ∈ (0, 1), then the settling time satisfies the
inequality

T0(φ) ≤
V (φ)∫

0

dz

r(z)
= V 1−ρ(0, φ)

λ(1 − ρ)
. (4)

Definition 2 ([55]) The origin of System (1) is said to be fixed time stable if it is FTS and
the settling time function T0(φ) is bounded for any φ ∈ R

n , i.e., there exists Tmax > 0 such
that T (φ) ≤ Tmax for all φ ∈ R

n .

Lemma 5 ([55]) If there exist a continuous, positive definite and radially unbounded func-
tional V : Ω → R+ such that any solution z(.) of System (1) satisfies

V̇ (z(t)) ≤ − (aV δ(z(t)) + bV θ (z(t))
)k

(5)

with a, b, δ, θ, k > 0 and δk > 1, θk < 1, then the origin of System (1) is fixed time stable,
and the settling time T (φ) is estimated by

T (φ) ≤ T 1
max � 1

ak(δk − 1)
+ 1

bk(1 − θk)
.

Lemma 6 ([55]) If there exist a continuous, positive definite and radially unbounded func-
tional V : Ω → R+ such that any solution z(.) of System (1) satisfies

V̇ (z(t)) ≤ − (aV δ(z(t)) + b
)k

(6)

with a, b, δ, k > 0 and δk > 1, then the origin of System (1) is fixed time stable, and the
settling time T (φ) is estimated by

T (φ) ≤ T 2
max � 1

bk

(
b

a

) 1
δ
(

1 + 1

δk − 1

)

.

3 Main Results

In this section, firstly some sufficient general conditions for the FTSB of the target NNs are
established and some new kinds of finite time controller are designed, besides, the problem
of fixed time stabilization is solved and a high-precision of the settling time is obtained.

Now, we consider the following state feedback control:
{
u1(z) = û1(z) + ǔ1(z);
u2(z) = û2(z) + ǔ2(z)

(7)

where

z(t) = (x(t), y(t))T , ûi (z) = (ûi1(z), . . . , ûin (z)
)T

, ǔi (z) = (ǔi1(z), . . . , ǔin (z)
)T

,

i = 1, 2.
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3.1 Finite Time Stabilization

In the following Theorem, for the first time, sufficient general conditions on the state feedback
control are designed to ensure the FTSB of System (1).

Theorem 1 Under assumptions (H1) − (H2), if there exist symmetric positive matrices
P, Q j > 0, j = 1, . . . 4 and constants εi > 0, 0 < δi < 1, i = 1, 2, , 0 ≤ μ < 1
such that

− 2PC + ε−1
1 PAQ−1

1 AT P + ε2L
f2T Q3L

f2 − Q2 < 0 (8)

− 2PD + ε−1
2 PA2Q

−1
3 AT

2 P + ε1L
f1T Q1L

f1 − Q4 < 0 (9)
〈
P
(
B1 + Γ T T ∗) | f1 (y(t − τ(t))) |, |x(t)|

〉
+ xT (t)Pû1(x(t)) ≤ −1

2
xT (t)Q2x(t).

(10)
〈
P
(
B2 + ΘT O∗) | f2 (x(t − σ(t))) |, |y(t)|

〉
+ yT (t)Pû2(y(t)) ≤ −1

2
yT (t)Q4y(t).

(11)

xT (t)Pǔ1(t) ≤ −δ1

2

n∑

i=1

|xi (t)|μ+1. (12)

yT (t)Pǔ2(t) ≤ −δ2

2

n∑

i=1

|yi (t)|μ+1. (13)

then the controller (7) stabilize in finite time System (2) with

T0(φ, ψ) ≤ 4λmax(P) (‖φ‖ + ‖ψ‖)1−μ

δ(1 − μ)
.

where δ = min{δ1, δ2}.
Proof Let the following Lyapunov function:

V (t) = xT (t)Px(t) + yT (t)Py(t). (14)

Taking the derivative of (14) along the solutions of System (1), we have

V̇ (t) = 2xT (t)Pẋ(t) + 2yT (t)P ẏ(t)

≤ − xT (t)(PC + CP)x(t) + 2〈PA| f1(y(t))|, |x(t)|〉
+ 2〈P(B1 + Γ T T ∗)|g1(y(t − τ(t)|, |x(t)|〉 + 2xT (t)P(u1(t))

− yT (t)(PD + DP)y(t) + 2〈PA2| f2(x(t))|, |y(t)|〉
+ 2〈P(B2 + ΘT O∗)|g2(x(t − σ(t)|, |y(t)|〉 + 2yT (t)P(u2(t)) (15)

From Lemma 1, the following inequality holds:

2〈PA1| f1(y(t))|, |x(t)|〉 ≤ ε−1
1 xT (t)PA1Q

−1
1 AT

1 Px(t)

+ ε1 f1(y(t))
T Q1 f1(y(t))

≤ ε−1
1 xT (t)PA1Q

−1
1 AT

1 Px(t)

+ ε1y(t)
T L f1T Q1L

f1 y(t) (16)
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and

2〈PA2| f2(x(t))|, |y(t)|〉 ≤ ε−1
2 yT (t)PA2Q

−1
3 AT

2 Py(t)

+ ε2x(t)
T L f2T Q3L

f2 x(t) (17)

Combining with (8)–(13), and (15)–(17) we deduce that

V̇ (t) ≤ xT (t)[−2PC + ε−1
1 PAQ−1

1 AT P + ε2L
f2T Q3L

f2 − Q2]x(t)
+ yT (t)[−2PD + ε−1

2 PA2Q
−1
3 AT

2 P + ε1L
f1T Q1L

f1 − Q4]y(t)
+ 2xT (t)Pǔ1(t) + 2yT (t)Pǔ2(t)

≤ − δ1

n∑

i=1

|xi (t)|μ+1 − δ2

n∑

i=1

|yi (t)|μ+1 (18)

Since 0 < μ < 1, from Lemmas 2 and 3, we get the following inequalities:

[
n∑

i=1

|xi (t)|2 +
n∑

i=1

|yi (t)|2
] 1

2

≤
⎡

⎣

(
n∑

i=1

|xi (t)| +
n∑

i=1

|yi (t)|
)2
⎤

⎦

1
2

≤
⎡

⎣

(
n∑

i=1

|xi (t)| +
n∑

i=1

|yi (t)|
)μ+1

⎤

⎦

1
μ+1

≤ 2μ

[
n∑

i=1

|xi (t)|μ+1 +
n∑

i=1

|yi (t)|μ+1

] 1
μ+1

(19)

and consequently V̇ (t) ≤ −r
(
V (t)

)
where

r(s) = δ

2λmax (P)
μ+1
2

s
μ+1
2 .

Since
ε∫

0

ds

r(s)
= 4ε

1−μ
2

δλ
− (1+μ)

2
max (P)(1 − μ)

< +∞ for all ε > 0. (20)

Based on Lemma 4, we deduce that System (1) is FTSB and the settling time satisfies

T0(φ, ψ) ≤ 4λmax(P) (‖φ‖ + ‖ψ‖)1−μ

δ(1 − μ)

��
Remark 1 The conditions established in Theorem 1 are in the general form and it was nec-
essary to find a correspondent form of the control which satisfied them. In other words, the
challenge is to find a correspondent FTS controller that makes these conditions easy to get
them. In our paper, under assumptions (H1 − H3), we design different kinds of controller
which renders these general conditions in the form of standard LMIs where we can easily
solve them by using MATLAB LMI toolbox.

It should be pointed out that to the best of the author’s knowledge, there have been no
results focused on the FTSB ones and the FXTSB for high-order BAMNNswith time varying
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coefficients. The approach used here can also be applied to study the FTSB for some other
models of NNs, such as BAM Cohen–Grossberg NNs.

In the following, an explicit state feedback control will be designed.

Theorem 2 Under assumptions (H1) − (H3), if there exist positive constants εi > 0, i =
1, 2, k1, ρ1 > 0, 0 ≤ μ < 1 and three symmetric positives matrices P, Q1, Q3, such that

− 2PC + ε−1
1 PAQ−1

1 AT P + ε2L
f2T Q3L

f2 − 2k1P < 0 (21)

− 2PD + ε−1
2 PA2Q

−1
3 AT

2 P + ε1L
f1T Q1L

f1 − 2ρ1P < 0. (22)

Then, System (1) is FTSB via controller (23) as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − k1x(t) − (B1 + T ∗G1)Lg1 sign(y(t))|y (t − τ(t)) |
− k2 sign(x(t))|x(t)|μ

u2(t) = − ρ1y(t) − (B2 + O∗G2)Lg2 sign (x(t)) |x (t − σ(t)) |
− ρ2 sign(y(t))|y(t)|μ.

(23)

and the settling time satisfies

T0(φ, ψ) ≤ 2λmax(P) (‖φ‖ + ‖ψ‖)1−μ

αλmin(P)(1 − μ)
(24)

with α = min{k2, ρ2}
Proof Note that

{
û1(t) = − k1x(t) − (B1 + T ∗G1)Lg1 sign (y(t)) |y (t − τ(t)) |
ǔ1(t) = − k2 sign (x(t)) |x(t)|μ

and
{
û2(t) = − ρ1y(t) − (B2 + O∗G1)Lg2 sign(x(t))|x(t − σ(t))|
ǔ2(t) = − ρ2 sign(y(t))|y(t)|μ

It then follows from (H1) that
〈
P B̄1|g1 (y(t − τ(t))) |, |x(t)|〉+ xT (t)Pû1(t) ≤ − k1x

T (t)Px(t).
〈
P B̄2|g2 (x(t − σ(t))) |, |y(t)|〉+ yT (t)Pû2(t) ≤ − ρ1y

T (t)Py(t).

and

2xT (t)Pǔ1(t) = − 2k2x
T (t)Psign(x(t))|x(t)|μ

≤ − 2k2λmin(P)

n∑

i=1

|xi (t)|μ+1

2yT (t)Pǔ2(t) = − 2ρ2y
T (t)Psign(y(t))|y(t)|μ

≤ − 2ρ2λmin(P)

n∑

i=1

|yi (t)|μ+1

Thus, by choosing δ1 = 2k2λmin(P), δ2 = 2ρ2λmin(P), Q2 = 2k1 I , and Q4 = 2ρ1 I ,
(10)–(13) holds and T0(φ, ψ) satisfies (24) which achieves the proof. ��
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Remark 2 It is possible to use more complex Lyapunov functions. However, when we use
more complex Lyapunov functions during the study of the FTS, it is necessary to consider
‖.‖1 ([12]). Unfortunately, ‖.‖1 ≥ ‖.‖2, and then the settling time established by using
the complex Lyapunov functions may be larger than that obtained based on the Lyapunov–
Krasovskii functional.

If we set P = pIn , we obtain the following Corollary where the settling time is much
simpler.

Corollary 1 If there exist constants εi > 0, i = 1, 2., 0 ≤ μ < 1, k1 > 0, ρ1, p > 0 such
that

− 2pC + ε−1
1 p2A1A

T
1 + ε2L

f2T L f2 − 2k1 p < 0 (25)

− 2pD + ε−1
2 p2A2A

T
2 + ε1L

f1T L f1 − 2ρ1P < 0. (26)

then System (1)–(23) is FTS and

T0(φ, ψ) ≤ (2‖φ‖ + ‖ψ‖)1−μ

α(1 − μ)
(27)

In the following proposition, some sufficient conditions in form of LMIs where the control
strength are constructed simultaneously are established.

Proposition 1 If there exist constants εi > 0, i = 1, 2., 0 ≤ μ < 1, k1 > 0, ρ1, p > 0
such that

Ψ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ11 pA1 ε2L f2T 0 0 0
∗ −ε1 I 0 0 0 0
∗ ∗ −ε2 I 0 0 0

∗ ∗ ∗ Ψ44 pA2 ε1L f1T

∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ −ε1 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0 (28)

with Ψ11 = −p(C + CT ) − 2k I , Ψ44 = −p(D + DT ) − 2ρ I , k1 = p−1k, ρ1 = p−1ρ.
then System (1) is FTSB via the controller (23) and the settling time satisfies (27).

Proof Let

Ξ1 =
⎛

⎝
−2pC − 2k I pA ε2L f2T

∗ −ε1 I 0
∗ ∗ −ε2 I

⎞

⎠ (29)

and

Ξ2 =
⎛

⎝
−2pD − 2ρ I pA2 ε1L f1T

∗ −ε2 I 0
∗ ∗ −ε1 I

⎞

⎠ (30)

By pre and post multiplying the inequalities (25) and (26) by diag(In,
1√
ε1
In,

1√
ε1
In) and ,

diag(In,
1√
ε2
In,

1√
ε1
In) respectively,weobtain fromShur copmlement lemma [16] thatΞ1 <

0 and Ξ2 < 0, is equivalent respectively to (25) and (26). Since Ψ = diag(Ξ1, Ξ2) < 0,
we obtain immediately the result of Corollary 1. ��
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Remark 3 Since L2 ⊂ L1, the settling-time established here may be smaller than that consid-
ered in the existing literature. In addition, compared with other approach based on the same
approach, obviously, the conditions of Corollary 1 are less conservative than that presented
in [69,70] thanks to a positive scalar p added in the Lyapunov function. On the other hand, it
should be pointed out that the LKF given in [64] is independent of a matrix P . For reducing
the conservatism of conditions, we introduce the matrix P in (14) without influencing on the
upper bound T (φ).

In the following Corollary a free-delay controller is designed to ensure the FTSB of
delayed BAM NNs.

Corollary 2 Under conditions of Theorem 2, System (1) is FTSB via free-delay controller as
follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − k1x(t) − (B1 + T ∗G1)G1 sign(y(t))

− k2 sign(x(t))|x(t)|μ
u2(t) = − ρ1y(t) − (B2 + O∗G2)G2 sign(x(t))

− ρ2 sign(y(t))|y(t)|μ.

(31)

and the settling-time satisfies (27).

Proof By applying (H2) to (10)–(11). The proof will be similar to the proof of Theorem 2.��
Remark 4 It is possible to shorten the settling-time based on the approach used in [39]

– Let the control strength r2 = max{k2, ρ2} be fixed and let

T0(μ) = 2 (‖φ‖ + ‖ψ‖)1−μ

r2(1 − μ)
, 0 ≤ μ < 1, r2 > 0; . (32)

Since

dT ∗
0

dμ
= 2 (‖φ‖ + ‖ψ‖)1−μ [(μ − 1) ln (‖φ‖ + ‖ψ‖) + 1]

r2(1 − μ)2

therefore,

• If (‖φ‖ + ‖ψ‖) < e i.e. ln (‖φ‖ + ‖ψ‖)1−μ < 1 then T ∗
0 (μ) is strictly increasing for

0 < μ < 1. Obviously, T ∗
0 (μ) achieves the minimum in μ = 0

• Similarly, if (‖φ‖ + ‖ψ‖) > e, T ∗
0 (μ) has only one critical point u∗ = 1 − 1

ln(‖φ‖+‖ψ‖)
at which achieves its minimum value 2e ln(‖φ‖+‖ψ‖)

r2

Therefore, the following switched controller can be designed for optimizing the settling-
time

u1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− k1x(t) − B1Lg1 sign (y(t)) |y (t − τ(t))|
− k2 sign (x(t)) |x(t)|μ∗

, ‖x(t)‖ > e

− k1x(t) − B1Lg1 sign (y(t)) |y (t − τ(t))|
− k2 sign (x(t)) , 0 ≤ ‖x(t)‖ < e.

(33)

u2(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ρ1y(t) − B2Lg2 sign (x(t)) |x (t − σ(t)) |
− ρ2 sign (y(t)) |y(t)|μ∗

., ‖y(t)‖ > e

− ρ1y(t) − B2Lg2 sign (x(t)) |x (t − σ(t)) |
− ρ2 sign (y(t)) |y(t)|., 0 ≤ ‖y(t)‖ < e.

(34)
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3.2 Fixed Time Stabilization

In this part, we develop some results on the FXTSB of System (1) where we design different
kinds of controller able to ensure the FXTS of the considered class of NNs. Also, the settling
time is estimated where a high precision is obtained.

Theorem 3 Under assumptions (H1) − (H2)and conditions (8)–(11), if there exist symmetric
positive matrices P, Q j > 0, j = 1, . . . 4 and positive constants εi > 0, δi < 1, i = 1, 2
0 ≤ μ < 1 such that

xT (t)Pǔ1(t) ≤ −δ1

2

[
n∑

i=1

|xi (t)|μ+1 +
n∑

i=1

|xi (t)|β+1

]

(35)

yT (t)Pǔ2(t) ≤ −δ2

2

[
n∑

i=1

|yi (t)|μ+1 +
n∑

i=1

|yi (t)|β+1

]

(36)

then the closed-loop System (2)–(7) is FXTS and the settling time satisfies

T0(φ) ≤ T 1
max = 2λmax (P)

μ+1
2

δ1(1 − μ)
+ 2λmax (P)

β+1
2

δ2n
1−β
2 (β − 1)

. (37)

Proof Calculating the derivative of (14) along the trajectories of System (1), similarly to
proof of Theorem 1 we obtain that

V̇ (t) ≤ − δ
( n∑

i=1

|xi (t)|μ+1 +
n∑

i=1

|yi (t)|μ+1 +
n∑

i=1

|xi (t)|β+1

+
n∑

i=1

|yi (t)|β+1
)

(38)

Since β > 1, from Lemmas 2 and 3, we obtain that:

[
n∑

i=1

|xi (t)|2 +
n∑

i=1

|yi (t)|2
] 1

2

≤
⎡

⎣

(
n∑

i=1

|xi (t)| +
n∑

i=1

|yi (t)|
)2
⎤

⎦

1
2

≤
⎡

⎣n
β−1
2

(
n∑

i=1

|xi (t)| +
n∑

i=1

|yi (t)|
)β+1

⎤

⎦

1
β+1

≤ 2n
β−1
2

[
n∑

i=1

|xi (t)|β+1 +
n∑

i=1

|yi (t)|β+1

] 1
β+1

(39)

Therefore from (19) and (39) we have

V̇ (t) ≤ −1

2

[
δ

λmax (P)
μ+1
2

V
μ+1
2 + δn

1−β
2

λmax (P)
β+1
2

V
β+1
2

]

(40)

Therefore, based on Lemma 5, we obtain that the closed-loop system (1)–(7) is fixed time
stable and T0(φ) satisfies (37). ��
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Remark 5 This is the first time to study the FXTSB of System (1) for the both cases: lower-
order and high-order.Moreover, in Theorem1 only the FTS is investigated and the established
settling time is not of major interest in practice when the initial conditions will be large which
is removed in Theorem 2 by establishing a settling time independent of initial conditions and
more accurate.

In the following Proposition a practical design procedure for the control strengths ρi and
ki , i = 1, 2, 3 is given based on the LMIs approach.

Proposition 2 Under assumptions (H1) − (H3), if there exist positive constants p, εi >

0, i = 1, 2, k1, ρ1 > 0, 0 ≤ μ < 1, β > 1 such that the following LMI holds

Ψ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ11 pA1 ε2L f2T 0 0 0
∗ −ε1 I 0 0 0 0
∗ ∗ −ε2 I 0 0 0

∗ ∗ ∗ Ψ44 pA2 ε1L f1T

∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ −ε1 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0 (41)

with Ψ11 = −2pC − 2k I , Ψ44 = −2pD − 2ρ I , k1 = p−1k, ρ1 = p−1ρ. Then, System
(1)–(42) is FXTS via controller (42) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − k1x(t) − (B1 + T ∗G1)Lg1 sign(y(t))|y (t − τ(t)) |
− k2 sign(x(t))|x(t)|μ − k3 sign(x(t))|x(t)|β

u2(t) = − ρ1y(t) − (B2 + O∗G2)Lg2 sign (x(t)) |x (t − σ(t)) |
− ρ2 sign(y(t))|y(t)|μ − ρ3 sign(y(t))|y(t)|β .

(42)

and the settling time satisfies

T0(φ) ≤ T 1
max = 2

k2
√
p1−μ(1 − μ)

+ 2
√
pβ−1

k3n
1−β
2 (β − 1)

. (43)

Proof By letting
{
û1(t) = − k1x(t) − (B1 + T ∗G1)Lg1 sign (y(t)) |y (t − τ(t)) |
ǔ1(t) = − k2 sign (x(t)) |x(t)|μ − k3 sign (x(t)) |x(t)|β

and
{
û2(t) = − ρ1y(t) − (B2 + O∗G1)Lg2 sign(x(t))|x(t − σ(t))|
ǔ2(t) = − ρ2 sign(y(t))|y(t)|μ − ρ3 sign(y(t))|y(t)|β

Similarly to the proof of Theorem 2, by choosing P = pIn δ1 = 2λmin(P)min{k2 p, k3 p},
δ2 = 2λmin(P)min{ρ2 p, ρ3 p}, Q2 = 2k1 I , and Q4 = 2ρ1 I , the inequalities (10)–(11)
and (35)–(36) hold. Furthermore, from Corollary 1, (8)–(9) are equivalent to condition (41).
Therefore, the conditions of Theorem 3 are satisfied which achieves the proof. ��

In the following Corollary a free-delay controller is presented which is well suitable in
practice.
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Corollary 3 Under assumptions (H1) − (H3), if there exist positive constants p, εi > 0, i =
1, 2, k1, ρ1 > 0, 0 ≤ μ < 1, β > 1 such that the following LMI holds

Ψ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ11 pA1 ε2L f2T 0 0 0
∗ −ε1 I 0 0 0 0
∗ ∗ −ε2 I 0 0 0

∗ ∗ ∗ Ψ44 pA2 ε1L f1T

∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ −ε1 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0 (44)

with Ψ11 = −2pC − 2k I , Ψ44 = −2pD − 2ρ I , k1 = p−1k, ρ1 = p−1ρ. Then, System
(1)–(42) is FXTS via free-delay controller (45) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − k1x(t) − (B1 + T ∗G1)G1 sign(y(t))

− k2 sign(x(t))|x(t)|μ − k3 sign(x(t))|x(t)|β
u2(t) = − ρ1y(t) − (B2 + O∗G2)G2 sign(x(t))

− ρ2 sign(y(t))|y(t)|μ − ρ3 sign(y(t))|y(t)|β .

(45)

and the settling time satisfies (43)

Proof By using (H2) similar arguments to the ones of Corollary 2, we obtain easily the
result. ��

In the following Theorem, some new general conditions for the fixed time stabilization
are designed where the obtained settling time is more precise than that given in Theorem 1.

Theorem 4 Under assumptions (H1) − (H2)and conditions (8)–(11), if there exist symmetric
positive matrices P, Q j > 0, j = 1, . . . 4 and positive constants λi , εi > 0, δi < 1, i =
1, 2, , 0 ≤ μ < 1 such that

xT (t)Pǔ1(t) ≤ −δ1

2

[
n∑

i=1

|xi (t)|β+1

]

− λ1 (46)

yT (t)Pǔ2(t) ≤ −δ2

2

[
n∑

i=1

|yi (t)|β+1

]

− λ2 (47)

then the closed-loop System (2)–(7) is FXTS and the settling time satisfies

T0(φ) ≤ T 2
max = (2λ)−1

[

1 + 2

β + 1

][
2λλmax (P)

β+1
2

δn
1−β
2

] 2
β+1

.

Proof Consider the same Lyapunov functional (14), similarly to the proof of Theorem 1 we
obtain that

V̇ (z(t)) ≤ − δn
1−β
2

λmax (P)
β+1
2

V
β+1
2 (z(t)) − λ. (48)

Therefore, from Lemma 6 System (1)–(7) is stable in fixed time and T0(φ) ≤ T 2
max. ��

Based on the results obtained in [20], Theorem 4 complement end extend the recent
works around the fixed time stabilization of delayed NNs by establishing a settling time
more accurate than that given in the literature. In the following Proposition, an explicitly
fixed time controller with a high-precision of a settling time is established
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Proposition 3 Under assumptions (H1) − (H3), if there exist positive constants p, εi >

0, i = 1, 2, k1, ρ1 > 0, 0 ≤ μ < 1, β > 1 such that the following LMI holds

Ψ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ11 pA1 ε2L f2T 0 0 0
∗ −ε1 I 0 0 0 0
∗ ∗ −ε2 I 0 0 0

∗ ∗ ∗ Ψ44 pA2 ε1L f1T

∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ −ε1 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0 (49)

with Ψ11 = −2pC − 2k I , Ψ44 = −2pD − 2ρ I , k1 = p−1k, ρ1 = p−1ρ. Then, System
(1)–(42) is FXTS via controller (50) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − k1x(t) − (B1 + T ∗G1)Lg1 sign(y(t))|y (t − τ(t)) |
− k3 sign(x(t))|x(t)|β − λ1 sign(x(t))

u2(t) = − ρ1y(t) − (B2 + O∗G2)Lg2 sign (x(t)) |x (t − σ(t)) |
− ρ3 sign(y(t))|y(t)|β − λ2 sign(y(t)).

(50)

where λi , i = 1, 2, k3, ρ3 are positive constants and λ = min{λ1, λ2}, α3 = min{k3, ρ3}.
and the settling time satisfies

T0(φ) ≤ T 2
max = (2λ−1)

[

1 + 2

β + 1

][
λp

β−1
2

α3n
1−β
2

] 2
β−1

. (51)

Proof Let P = pIn , the proof of proposition 3 is similar to the one of Corollary 1 so it is
omitted here. ��
Remark 6 The criterion considered in [1,2,23–25,28,73] that ensures the stability of System
(1) fails when the function τ(.) is not differentiable. The results investigated here overcome
these difficulties and extended the existing results to a class of NNs with unknown time-
varying delay. In the following Corollary, a free-delay fixed time controller is deduced for
better application

Corollary 4 Under conditions of Corollary 3 System (1)–(52) is FXTS via free-delay con-
troller (52) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − k1x(t) − (B1 + T ∗G1)G1 sign(y(t))

− k2 sign(x(t))|x(t)|μ − k3 sign(x(t))|x(t)|β
u2(t) = − ρ1y(t) − (B2 + O∗G2)G2 sign(x(t))

− ρ2 sign(y(t))|y(t)|μ − ρ3 sign(y(t))|y(t)|β .

(52)

and the settling time satisfies (51).

Proof According to Theorem 4, if we apply the fixed time controller to System (1) then we
can easily obtain the result. The details of the proof is left to the reader. ��
Remark 7 Aswe known,the same routine as the conventional delayed NNs cannot be utilized
to establish sufficient conditions for the FTSB of delayed NNs in the form of LMIs. In fact,
the constructed controller in [45,46] cannot be establish some sufficient LMIs conditions for
the the FXTSB. More precisely, with the requirement μ ∈]0, 1[, it is difficult to establish
LMIs conditions for the Fixed time stabilization of delayed NNs based on the inequality
V̇ (t) ≤ −Vμ − γ V β . In our paper, based on the Lyapunov-quadratic functional, some
FXTSB conditions in the form of LMIs are obtained for the first time.

123



830 C. Aouiti et al.

4 Application

In this section, two numerical examples are designed to appear the effectiveness of our
theoretical main results

4.1 Delay-Dependant Controller

Consider the following BAM delayed NNs

ẋ(t) = − cx(t) + a1 f1
(
y(t)

)+ b1g2
(
y(t − τ(t))

)

ẏ(t) = − dy(t) + a2 f2
(
x(t)

)+ b2g2
(
x(t − σ(t))

)
(53)

where

f j (s)) = g j ((s)) = 1

1 + exps
− 1

2
, τ (.) = σ(.) = 3, Fj = G j = 1

2
j = 1, 2.

and

d = 1.9220, a2 = b2 = 9.8501, c = 1.1631, a1 = 8.2311, b1 = 1.1860.

By using Matlab LMI toolbox [42] for solving (28), we obtain some feasible solutions

p = 0.2315, ε1 = 3.2442, k = 4.1144, k1 = 17.0515;
ρ = 3.9475, ρ1 = 17.7722, ε2 = 5.58163.

Hence, from Corollary 1, if we fix k2 = ρ2 = 2, system (53) is FTSB via controller (54) as
follows.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − 17.05 x(t) − b1 sign (y(t)) |y (t − 3) |
− 2sign(x(t))

√|x(t)|.
u2(t) = − 17.77y(t) − b2 sign(x(t))|x (t − 3) |

− 2sign(y(t))
√|y(t)|

(54)

We plot the state trajectories of System (53) with the initial condition y(s) = φ(s) = −3,
x(s) = ψ(s) = 3 for all s ∈ [−3, 0) without controller and under controller (54) in Fig. 1.

Remark 8 Many authors studied the global asymptotic stability and exponential stability of
System (1) [1,2,23,25]. From Corollary 1, we guarantee the FTSB of System (1) with the
initial condition y(s) = φ(s) = −3, x(s) = ψ(s) = 3 for all s ∈ [−3, 0) via controller (54)
with an information about the time for the system to achieve the equilibrium point given by
the settling time functional

T0(φ) ≤ (‖φ‖ + ‖ψ‖)μ
1 − μ

< 4.9890.

where μ = 0.5.
The approach used in [40] fails for System (53) because τ(.) 
= 0. However, our approach

can be stabilize in finite time the class of BAM neural networks in the presence of delay. It
should be pointed out that delayed systems havemore complex dynamic behaviours compared
with systems without delay because it is delicate to design a Lyapunov functional satisfying
the derivative condition for FTS of delayed system.
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Fig. 1 State trajectories of System (53) with initial condition (3, −3)T . a System (53)without controller. b
System (53) under controller (54)

When the initial conditionswill be large, on one hand, the established settling time is not of
major interest in practice because the knowledge in advance of the initial conditions is very
difficult. Motivated by the above-mentioned discussion, we design a fixed time controller
where the settling time is independent of initial conditions. In fact, from Corollary 2, if we
fix ki = ρi = 1, i = 2, 3, System (53) is stable in fixed time via controller (55) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − 17.05 x(t) − b1 sign (y(t)) |y (t − 3) |
− sign(x(t))

√|x(t)| − sign(x(t))|x(t)|2
u2(t) = − 17.77y(t) − b2 sign(x(t))|x (t − 3) |

− sign(x(t))
√|y(t)| − sign(x(t))|y(t)|2.

(55)

Corollary 2 guarantees the Fixed time stability of the closed-loop system (53)–(55) but also
the following inequality for the settling-time functional

T 1
max ≤ 3.2396.

when μ = 0.5 and β = 2.
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Fig. 2 State trajectories of System (53) with initial condition (6, −5)T . a System (53)with controller (55). b
System (53) under controller (56)

When we fix λ1 = λ2 = 0.28, Corollary 3 can optimize the settling time of System (53)
via controller (56) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − 17.05 x(t) − b1 sign (y(t)) |y (t − 3) |
− sign(x(t))|x(t)|2 − 0.28 sign(x(t))

u2(t) = − 17.77y(t) − b1 sign(x(t))|x (t − 3) |
− sign(y(t))|y(t)|2 − 0.28 sign(y(t))

(56)

where the settling-time functional

T 2
max ≤ 2.98

State trajectories of System (53) with initial condition (6,−5)T with controller (55) and (56)
are depicted in Fig. 2.

Remark 9 The concept of FTS invetigated in our paper is based on the classical Lyapunov
stability which is associated with an infinite time interval. However, in [7] , only a finite time
interval is considered. Dorato reported in [3] that FTB and Lyapunov stability invetigated in
our paper are two independent concepts.
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4.2 Free-Delay Controller

Now, we consider the following High-order BAM Hopfield NNs

ẋ(t) = − cx(t) + a1 f1 (y(t)) + b1g1 (y(t − τ(t)))

+ b3g
2
1 (y(t − τ(t))) (57)

ẏ(t) = − dx(t) + a2 f2 (x(t)) + b2g2 (x(t − σ(t)))

+ b4g
2
2 (y(t − σ(t))) (58)

where

d = 1.9220, a2 = b2 = b4 = 9.8501;
c = 1.1631, a1 = 8.2311, b1 = b3 = 1.1860.

and the rest of parameters similar to Sect. 4.1.
From Corollary 2, the equilibrium point of System (57) is FTSB via controller (59) as

follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − 17.05 x(t) − 0.5(b1 + 0.5b3) sign(y(t))

− 2sign(x(t))
√|x(t)|

u2(t) = − 17.77 y(t) − 0.5(b2 + 0.5b4) sign(x(t))

− 2sign(y(t))
√|y(t)|

(59)

and the settling-time satisfies T (φ, ψ) ≤ 4. when we fix k2 = ρ2 = 2. We plot the state
trajectories of System (57) without and under controller (59) in Fig. 3.

On the one hand, the following controller (60)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − 17.05x(t) − 0.5(b1 + 0.5b3) sign(y(t))

− sign(x(t))
√|x(t)| − sign(x(t))|x(t)|2

u2(t) = − 17.77 y(t) − 0.5(b2 + 0.5b4) sign(x(t))

− sign(y(t))
√|y(t)| − sign(y(t))|y(t)|2.

(60)

can be ensure the fixed time stabilization of System (57).
On the other hand, from corollary 4, the following controller (61)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1(t) = − 17.05x(t) − 0.5(b1 + 0.5b3) sign(y(t))

− sign(x(t))|x(t)|2 − 0.28 sign(x(t))

u2(t) = − 17.77y(t) − 0.5(b2 + 0.5b4) sign(x(t))

− sign(y(t))|y(t)|2 − 0.28 sign(y(t)).

(61)

can be also ensure the fixed time stability with a high-precision of the settling time such as
T 2
max ≤ 2.98.
We plot the state trajectories of System (57) with controller (60) and (61) in Fig. 4.

5 Conclusion and FutureWork

Finite time and fixed time stabilization problems for a high-order class of BAM neural
networks with time-varying delay is solved. On the one hand, some new general conditions
for the FTSB and FXTSB are established. These conditions are in the form of LMIs which
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Fig. 3 State trajectories of System (57) with initial condition (−2, −2)T . a System (57)without controller. b
System (57) under controller (59)

can be numerically checked. On the other hand, different kinds of finite time and fixed time
control algorithms which contain time delay dependent controller and free-delay controller
are designed. Moreover, for the first time, the fixed-settling time is optimized for delayed
systems and a high precision for this time is obtained. Compared with the recent work, firstly,
we extend the results given in [14,40,57,59,64,65] where only the FTSB problem is deals
and the fixed time is not considered. Secondly, our approach complement the results of [40]
where the time-delay is not taken into account and the fixed time stability is not treated.
Thirdly, our analysis offers an improvement compared with [22,24,30,34,51–54,58] where
only asymptotic stability concept of high-order BAM neural networks is investigated.

It is well known that the effect of impulses on stabilization is rather scarce, and the topic
certainly deserves to be further investigated. At present many research around the impulsive
effect on the stabilization of NNs such that the mode-dependent impulsive investigated in
[71] and some sufficient conditions are established in [72] that ensure the synchronization
of NNs with heterogeneous impulses. However, the approach used in the above mentioned
work cannot be extended to solve the problem investigated in our paper. Thus, a variety of
impulses will be a real problem to be studied in the near future work. Furthermore, in future

123



A New LMI Approach to Finite and Fixed Time Stabilization… 835

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Times (s)

x(
t) 

an
d 

y(
t)

y(t)
x(t)

0 1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

Time (s)

x(
t) 

an
d 

y(
t)

y(t)
x(t)

(a)

(b)

Fig. 4 State trajectories of System (57).aSystem (57) under controller (60)with initial condition (1.2, −1.6)T .
b System (57) under controller (61) with initial condition (4,−5)T

work, we would like to extend our results to the BAM neural networks with various kinds
of delays, such as infinite distributed delay, time-varying delay in the leakage term, neutral
class of delayed NNS. In a word, the BAM neural networks still has some open problems.
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