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Abstract
Epilepsy is classified as a chronic neurological disorder of the brain and affects approximately
2% of the world population. This disorder leads to a reduction in people’s productivity and
imposes restrictions on their daily lives. Studies of epilepsy often rely on electroencephalo-
gram (EEG) signals to provide information on the behavior of the brain during seizures.
Recently, a map from a time series to a network has been proposed and that is based on the
concept of transition probabilities; the series results in a so-called “quantile graph” (QG).
Here, this map, which is also called the QG method, is applied for the automatic detection
of normal, pre-ictal (preceding a seizure), and ictal (occurring during a seizure) conditions
from recorded EEG signals. Our main goal is to illustrate how the differences in dynamics
in the EEG signals are reflected in the topology of the corresponding QGs. Based on vari-
ous network metrics, namely, the clustering coefficient, the shortest path length, the mean
jump length, the modularity and the betweenness centrality, our results show that the QG
method is able to detect differences in dynamical properties of brain electrical activity from
different extracranial and intracranial recording regions and from different physiological and
pathological brain states.
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1 Introduction

Epilepsy is classified as a neurological disorder and is characterized by the presence of
recurring seizures that cause momentarily lapses of consciousness. Nearly 50 million people
worldwide have epilepsy [38]. Approximately 90% of these people live in developing coun-
tries, and approximately three-fourths of them do not have access to the necessary treatment.
Sudden and abrupt seizures can have significant impacts on the daily lives of sufferers. Thus,
detecting and predicting epileptic seizures would help these people live normal lives.

Electroencephalography (EEG) is an electrophysiological monitoring method for record-
ing electrical activity of the brain. Although it is one of the most common techniques for
assessing epilepsy, it is also used to diagnose diseases such as schizophrenia, Alzheimer’s
disease and sleep disorders [1,37,39]. Visual inspection of EEG data has not yet led to the
detection of all characteristic changes that precede seizure onsets since it is difficult to sep-
arate seizures from artifacts that have similar time-frequency patterns [5,6,20]. Therefore,
automatic detection of such activity is of great importance.

In recent years, several methods have been proposed for seizure detection that are based
on fast Fourier transform (FFT) [2,25,34], wavelet transform (WT) [18,23,26], eigenvector
methods (EMs) [40–42], time frequency distributions (TFDs) [28,35] and the auto-regressive
method (ARM) [16,44]. FFT is faster than all other available methods in real-time applica-
tions. However, it appears to be the least efficient approach because of its inability to examine
nonstationary signals. Moreover, it cannot be employed for the analysis of short EEG signals
and suffers from large noise sensitivity [3]. WT was introduced as a solution for analyzing
irregular data patterns. However, which wavelet family is the most suitable for analysis of
non-stationary EEG signals is still being debated among researchers [19]. The most impor-
tant application for EM is to evaluate frequencies and powers of signals from noise corrupted
signals. The advantage of EM is that it produces high-resolution frequency spectra evenwhen
the signal-to-noise ratio is low. However, this method may produce spurious zeros, thereby
leading to poor statistical accuracy [3]. The TFD method offers the possibility of analyzing
relatively long continuous segments of EEG data even when the dynamics of the signal is
rapidly changing. However, high resolution in both time and frequency is necessary, which
wakes this method not preferable for use in many cases [3]. Finally, spectral analysis based
on ARM is particularly advantageous when short data segments are analyzed. Since ARM
suffers from low speed, it is not always applicable in real-time analysis [3]. Considering the
shortcomings that are described above, there is considerable research being performed on
the development of novel methods for the analysis of EEG time series.

The study of complex networks has become the focus of widespread attention in interdis-
ciplinary research over the past decades. One of the reasons behind the growing popularity
of complex networks is that almost any discrete structure can be suitably represented as
special cases of graphs, whose features may be characterized, analyzed and, eventually,
related to its respective dynamics [14]. Examples include the Internet, the World Wide Web,
social networks of connections between individuals, neural networks, metabolic networks,
food webs, distribution networks such as blood vessels, and networks of citations between
papers [4,30,31]. Therefore, several investigations into complex networks involve the repre-
sentation of the structure of interest as a network, followed by the analysis of the topological
features of the obtained representation in terms of a set of informative measures, such as the
clustering coefficient, the shortest path length, the mean jump length, the modularity, and the
betweenness centrality.
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Application of Quantile Graphs to the Automated Analysis of EEG Signals 7

Recently, we have proposed an approach formapping a time series into a complex network
representation that is based on the concept of transition probabilities and results in a so-
called “quantile graph” (QG) [13]. Previous works have shown that time series with different
dynamics are mapped into complex networks with different structures. For example, we
have found associations between periodic time series and regular networks, random time
series and random networks, and pseudo-periodic time series and small-world networks [13].
Moreover, we have shown that the bifurcation cascades of two well-known unimodal maps—
the Logistic and Quadratic Maps—are mapped through the QGmethod into networks whose
topological characteristics mimic the main features of their period-doubling route to chaos
as a forcing parameter varies continuously [11]. We also showed that the QG method is able
to detect differences in the data structures of physiological signals of healthy and unhealthy
subjects [9,12,13]. Finally, we recently showed that the QGmethod enables the quantification
of features such as long-range correlations or anti-correlations and can be used to estimate
the Hurst exponent of fractional motions and noises [10].

Here, we use the QG method in the problem of differentiating normal, pre-ictal, and ictal
conditions from recorded EEG signals. This method does not require assumptions about
stationarity, length of the signal, or noise level [10,13]. It is a numerically simple method and
has only one free parameter, namely, Q, which represents the number of quantiles/nodes and
is typically much smaller than T . The number of quantiles Q defines the partitioning level of
the amplitude range of the original time series and its selection involves a trade-off between
information loss and computational burden [10]. The QGmethod provides a unique approach
to compressing T points of EEG time series into a list of at most Q2 values of the Markov
transition matrixWk. Additional storage savings occur whenWk is sufficiently sparse that it
is more efficient to store a weighted edge list [13]. The remainder of this paper is organized
as follows: after this introduction, Sect. 2 describes the QGmethod for mapping a time series
into a network. Network measures for the characterization, analysis and discrimination of
complex networks are presented in Sect. 3. Section 4 describes the data set that is used in this
study. The results are presented and discussed in Sect. 5, and the conclusions are presented
in Sect. 6.

2 Methods

Let M be a map from a time series X ∈ T to a network g ∈ G, with X = {x(t)|t ∈
N, x(t) ∈ R} and g = {N ,A} being a set of nodes (or vertices) N and arcs (or edges) A.
M assumes a simple discretization of X that is not sensitive to the distribution of its values.
The Q quantiles of a time series, which are defined by the cutting points that divide X into
Q − 1 equally sized intervals, are identified by ranking X and splitting this ranking through
the Q − 1 intervals [43]. Each quantile is given by

qi = x((T ∗ i)/Q) (1)

for i = 1, 2, . . . , Q. Once the Q quantiles have been identified, each value in X is mapped
to its corresponding qi for i = 1, 2, . . . , Q. After that,M assigns each quantile qi to a node
ni ∈ N in the corresponding network. Two nodes ni and n j are connected in the networkwith
a weighted arc (ni , n j , w

k
i j ) ∈ A whenever two values x(t) and x(t + k) belong to quantiles

qi and q j , respectively, with t = 1, 2, . . . , T and the time differences k = 1, . . . , kmax < T .
Each weight wk

i j in the weighted directed adjacency matrix, which is denoted as Ak, is equal
to the number of times a value in quantile qi at time t is followed by a point in quantile q j
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8 A. S. L. O. Campanharo et al.

Fig. 1 Illustration of the QG method for a uniform white noise X with T = 20 time
points, Q = 4 quantiles and k = 1. Using Eq. (1), the quantile intervals are given by
[x(1), x(6)[, [x(6), x(11)[, [x(11), x(16)[ and [x(16), x(20)] for the ordered data. Since each value in
X is mapped to its corresponding qi for i = 1, 2, 3, 4, the arc weights are given by (1, 3, 1),
(1, 4, 3), (2, 1, 3), (2, 2, 1), (2, 3, 1), (3, 2, 2), (3, 3, 1), (3, 4, 2), (4, 1, 1), (4, 2, 2) and (4, 3, 2)

at time t + k. Therefore, repeated transitions through the same arc increase the value of the
corresponding weight. With proper normalization, the weighted directed adjacency matrix
Ak becomes a Markov transition matrixWk, with

∑Q
j wk

i j = 1 [10].
Previous works have shown that the QG method is weakly dependent on the choice of Q,

which is the only free parameter of the QG method [10,13]. That is, given a time series with
T points our map is able to produce networks with similar topologies, regardless of the value
of Q. The selection of Q involves a trade-off between information loss and computational
burden. For the simplest, binary case, Q = 2 and the time series is mapped into a two-
node network, which captures only the coarsest patterns of the original signal. Higher values
of Q are able to discriminate more details but require longer time series for the transition
probabilities to properly converge. In the limit, when Q equals the number of distinct values
in the time series, there is no information loss if the number of data points is large enough
for the statistics to converge. In this work, the number of quantiles has been defined as
Q ≈ 2T 1/3 [27].

Figure 1 shows an illustration of the QG method for k = 1. A uniform white noise X
with T = 20 time points is split into Q = 4 quantiles (colored shading). Using Eq. (1), the
quantile intervals are given by [x(1), x(6)[, [x(6), x(11)[, [x(11), x(16)[ and [x(16), x(20)]
for the ordered data. The quantiles are mapped into a network with N = 4 nodes and each
quantile is assigned to a node ni ∈ N in the corresponding network g. Then, the nodes ni and
n j are connected in the network with a weighted arc (ni , n j , w

1
i j ) ∈ A. The arc weights are

given by (1, 3, 1), (1, 4, 3), (2, 1, 3), (2, 2, 1), (2, 3, 1), (3, 2, 2),(3, 3, 1),(3, 4, 2),(4, 1, 1),
(4, 2, 2) and (4, 3, 2). Repeated transitions between quantiles result in arcs in the network
with larger weights (represented in the corresponding network by thicker lines) and therefore
higher values in the corresponding transition matrix.
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Application of Quantile Graphs to the Automated Analysis of EEG Signals 9

3 NetworkMeasures

The characterization, analysis and discrimination of complex networks rely on the use of
measures that are capable of expressing their most relevant topological features. Based on
the values of Ak, we describe the network measures that are used in Sect. 5: the clustering
coefficient (C), the shortest path length (L), the mean jump length (Δ), the modularity (Mo),
and the betweenness centrality (B).

3.1 Clustering Coefficient

The tendency of a network to form tightly connected neighborhoods can be measured by the
clustering coefficient. For a weighted directed adjacency matrix and a node ni ,Ci is defined
as the ratio between all weighted directed triangles that are formed by node ni (ti ) and the
total number of possible triangles that ni could form (Ti ) [15]. Therefore,

Ci = ti
Ti

=
[
Ak

[1/3] + (
Ak

T
)[1/3]]3

i i

2
[
dtoti

(
dtoti − 1

) − 2d↔
i

] , (2)

where Ak
[1/3] = {(ak)1/3i j } is the matrix that is obtained from Ak by taking the 3rd root of

each entry, dtoti is the total degree of node ni , and d↔
i is the number of bilateral edges between

node ni and its neighbors. Therefore, the global clustering coefficient C , which represents
the overall level of clustering in the network, is the average of the local clustering coefficients
of all the nodes.

3.2 Shortest Path Length

The average shortest path length, which is a measure of the efficiency of information flow
on a network, is defined as the average number of steps along the shortest paths for all
possible pairs of network nodes [31]. The average shortest path length is defined as follows.
Let dist(n1, n2) denote the shortest distance between n1 and n2(n1, n2 ∈ N ). Assume that
dist(n1, n2) = 0 if n1 = n2 or n2 cannot be reached from n1, has_path(n1, n2) = 0 if
n1 = n2 or if there is no path from n1 to n2, and has_path(n1, n2) = ((ak)12) if there is a
path from n1 and n2. Then, L is given by

L =
∑N

i, j dist(ni , n j )
∑N

i, j has_path(ni , n j )
, (3)

where N denotes the number of nodes in G,
∑N

i, j dist(ni , n j ) is the all-pairs shortest path

length of G, and
∑N

i, j has_path(ni , n j ) is the number of paths in G. Therefore, the value of L
is given by the average of the shortest path lengths between all pairs of nodes in the network.

3.3 Mean Jump Length

With Wk it is possible to perform a random walk on the quantile graph g and compute the
mean jump length Δ(k), which is defined as follows:
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10 A. S. L. O. Campanharo et al.

Δ(k) = 1

S

∑

s=1

δs,k(i, j), (4)

where s = S are the jumps of length δs,k(i, j) = |i − j |, with i, j = 1, . . . , Q being
the node indices, as defined by Wk . Previous work has provided an approach that is less
time-consuming for the calculation of the mean jump length Δ(k) [9], which is given by:

Δ(k) = 1

Q
tr

(
PWT

k

)
, (5)

whereWT
k is the transpose ofWk . P is a Q × Q matrix with elements pi, j = |i − j |, and tr

is the trace operation.

3.4 Modularity

One issue that has received a considerable amount of attention is the detection and charac-
terization of community structure in networks, which refers to the appearance of densely
connected groups of nodes with sparser connections between groups [32]. Given a network,
its partition P is a grouping of nodes into modules, with each node belonging to a single
module. Let P be the ensemble of all partitions of a network into modules and assign to each
partition P ∈ P the modularity:

M(P) =
m∑

i=1

[
ei
E

−
(

di
2E

)2
]

, (6)

where E is the total number of edges in the network, ei is the number of edges within module
i, di is the sum of the degrees of all the nodes inside module i , and the sum in Eq. (6) is
calculated over all m modules in partition P [21]. The objective of a module identification
algorithm is to find a partition with the largest modularity. In this work, simulated annealing
was used to determine the modules of a network by direct maximization of M [36].

3.5 Betweenness Centrality

It is possible to quantify the importance of a node in terms of its betweenness centrality [17],
which is defined as:

Bnu =
∑

i j

σ(ni , nu, nj)

σ (ni , n j )
, (7)

where σ(ni , nu, n j ) is the number of shortest paths between nodes ni and n j that pass through
node nu, σ (ni , n j ) is the total number of shortest paths between ni and n j , and the sum is
calculated over all pairs ni , n j of distinct nodes [14]. The value of B is given by the average
of the local betweenness centralities of all the nodes.

4 Data

In this study, we use an artifact-free EEG database that has been provided by the University
of Bonn and made available online by Andrzejak [8]. This database has been widely used for
EEG feature extraction and classification in the literature [5,7,29]. The database contains five
hundred 23.6-s-long short signals and includes five sets (denoted as A, B, C, D and E) that
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Fig. 2 Exemplary EEG signals from each of the five sets. From top to bottom: set A (healthy volunteer
with eyes open), B (healthy volunteer with eyes closed), C (epileptic volunteer, opposite zone), D (epileptic
volunteer, epileptogenic zone) and E (epileptic volunteer, seizure activity)

each contain 100 single-channel EEG segments. The data were digitized at 173.61 samples/s
using 12-bit resolution. Sets A and B consist of surface EEG recordings of healthy, awake
volunteers with eyes open and closed, respectively. Sets C and D correspond to intracranial
EEG signals from epileptic patients who were recorded during seizure-free intervals in the
epileptogenic zone (D) and from the hippocampal formation of the opposite hemisphere of
the brain (C). Set E contains seizure activity that was selected from sites that were exhibiting
ictal activity. Exemplary EEG’s are depicted in Fig. 2.

EEG time series recordings of healthy subjects during the relaxed state and with eyes
closed (Fig. 2B) show a predominant physiological rhythm, namely, the “alpha rhythm”, in
a frequency range of 8–13 Hz. In contrast, broader frequency characteristics are obtained for
subjects with eyes open (Fig. 2A). The EEG that was recorded from within the epileptogenic
zone (Fig. 2D) during a seizure-free interval is often characterized by intermittent occur-
rences of interictal epileptiform activities. Investigation of these steep, sometimes-rhythmic
high-amplitude patterns in EEG recordings contributes to the localization of the epileptogenic
zone. Fewer and less-pronounced interictal epileptiform activities can be found at record-
ing sites that are distant from the epileptogenic zone (Fig. 2C). Finally, the EEG that was
recorded during epileptic seizures (Fig. 2E), which are termed ictal activity, is characterized
by high amplitudes and quasiperiodicity, which result from the synchronous activity of large
assemblies of neurons [22].

5 Results

We apply the QG method to the problems of differentiating (a) epileptic from normal data,
(b) EEG changes that precede a seizure and (c) EEG changes during a seizure. Since all time
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12 A. S. L. O. Campanharo et al.
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Fig. 3 C(k) versus k, which was computed using Eq. (2), Q = 30, T = 4, 096 and k = 1, 2, . . . , 100 for
sets A (healthy, eyes open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic
zone) and E (seizure). In all cases, the curves for healthy (A and B) and epileptic (C and D) patients form two
distinct clusters with maximum separation at approximately k = 3
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Fig. 4 L(k) versus k, which was computed using Eq. (3), Q = 30, T = 4, 096 and k = 1, 2, . . . , 100 for
sets A (healthy, eyes open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic
zone) and E (seizure). In all cases, the curves for healthy (A and B) and epileptic (C and D) patients form two
distinct clusters with maximum separation at approximately k = 7

series are of equal length (T = 4096), we used Q = 2(4096)1/3 ≈ 30 and k = 1, 2, . . . , 100
in all computations. Thus, we mapped 500 signals into 50,000 quantile graphs (or 50,000Ak
matrices), and therefore, we obtained 50,000 Wk matrices with Q2 = 900 elements each.
After that, for each set and for a specified k, we calculated the median over all Ak matrices
and obtained the weighted directed adjacency matrix of medians and the Markov transition
matrix of medians.

For all sets, we computed C(k), L(k),Δ(k), Mo(k) and B(k) versus k using Eqs. (2), (3),
(5), (6) and (7), respectively (Figs. 3, 4, 5, 6, 7). Observe in all cases that the curves for
healthy (A and B) and epileptic (C and D) patients form two distinct clusters with maximum
separation at approximately k = 3 for C(k) (Fig. 3), k = 7 for L(k) (Fig. 4), k = 4 for Δ(k)
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Fig. 5 Δ(k) versus k, which was computed using Eq. (5), Q = 30, T = 4, 096 and k = 1, 2, . . . , 100 for
sets A (healthy, eyes open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic
zone) and E (seizure). In all cases, the curves for healthy (A and B) and epileptic (C and D) patients form two
distinct clusters with maximum separation at approximately k = 4
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Fig. 6 Mo(k) versus k, which was computed using Eq. (6), Q = 30, T = 4, 096 and k = 1, 2, . . . , 100 for
sets A (healthy, eyes open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic
zone) and E (seizure). In all cases, the curves for healthy (A and B) and epileptic (C and D) patients form two
distinct clusters with maximum separation at approximately k = 2

(Fig. 5), k = 2 for Mo(k) (Fig. 6) and k = 1 for B(k) (Fig. 7). In the first three cases, for
k > 30, and in the last two cases, for k > 10, correlations between QG nodes disappear, and
all curves almost merge into one.

Figures 8, 9, 10, 11 and 12 display boxplots of C(k), L(k),Δ(k), Mo(k) and B(k) that
were computed over 100 segments for sets A, B, C, D and E, and k = 3, k = 7, k = 4, k = 2
and k = 1, respectively. As usual, the boxplots indicate, from bottom to top, the minimum,
the first quartile, the median, the third quartile, and the maximum of the data. Regardless of
the network measure that was used, the QG method enables robust discrimination between
healthy (sets A and B) and epileptic patients during a seizure interval (E) or not (sets C and
D). Moreover, in all cases there is a statistically significant difference for a 95% confidence
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14 A. S. L. O. Campanharo et al.
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Fig. 7 B(k) versus k using Eq. (7), Q = 30, T = 4, 096 and k = 1, 2, . . . , 100 for sets A (healthy, eyes
open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic zone) and E (seizure).
In all cases, the curves for healthy (A and B) and epileptic (C and D) patients form two distinct clusters with
maximum separation at approximately k = 1
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1

1.1

C
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Fig. 8 Boxplots of C(k) for k = 3, which were computed over 100 segments each, for sets A (healthy, eyes
open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic zone) and E (seizure).
As usual, the boxplots indicate, from bottom to top, the minimum, the first quartile, the median, the third
quartile, and the maximum of the data. Boxplots from patients with different health conditions have different
medians (shown as a line in the center of each box), which are 0.97, 0.99, 0.87, 0.88 and 0.93, for sets A, B,
C, D and E, respectively

interval (CI) and a p-value of less than 0.05 between the corresponding sample means,
which is more favorable between sets B and C and less favorable between sets A and D
(Table 1).Receiver operating characteristic (ROC) analysiswas performed,which is used here
to quantify how accurately our map can discriminate between patients in two groups [24,33].
Table 2 shows the areas under the ROC curves (AUCs) of the network measuresC, L,Δ, Mo

and B between patients in sets B and C and between patients in sets A and D. In all cases,
the QG method performs very well in the differentiation between individuals with different
health conditions. Overall, comparing the metrics that are used to discriminate the sets, Δ,
followed by C and Mo, displays the best results.
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Fig. 9 Boxplots of L(k) for k = 7, which were computed over 100 segments each, for sets A (healthy, eyes
open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic zone) and E (seizure).
As usual, the boxplots indicate, from bottom to top, the minimum, the first quartile, the median, the third
quartile, and the maximum of the data. Boxplots from patients with different health conditions have different
medians (shown as a line in the center of each box), which are 3.04, 3.11, 2.52, 2.59 and 2.72, for sets A, B,
C, D and E, respectively
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Fig. 10 Boxplots of Δ(k) for k = 4, which were computed over 100 segments each, for sets A (healthy, eyes
open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic zone) and E (seizure).
As usual, the boxplots indicate, from bottom to top, the minimum, the first quartile, the median, the third
quartile, and the maximum of the data. Boxplots from patients with different health conditions have different
medians (shown as a line in the center of each box), which are 7.33, 9.07, 4.27, 4.59 and 6.50, for sets A, B,
C, D and E, respectively

Figure 13 displays the Markov transition matrices of medians for k = 4 for illustrative
purposes. It is evident that time serieswith different dynamics correspond toW4with different
structures and differ in terms of how well the network topology mimics the properties of the
corresponding time series. More specifically, for healthy subjects from set B (Fig. 13b), the
weights in the correspondingW4 are more uniformly distributed along its columns and rows
compared to W4 for healthy subjects from set A (Fig. 13a). For unhealthy subjects from set
D (Fig. 13d), the higher weights in the corresponding W4 are concentrated in its peripheral
quantiles due to the rhythmic high-amplitude patterns that are found in the corresponding time
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16 A. S. L. O. Campanharo et al.
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Fig. 11 Boxplots of Mo(k) for k = 2, which were computed over 100 segments each, for sets A (healthy, eyes
open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic zone) and E (seizure).
As usual, the boxplots indicate, from bottom to top, the minimum, the first quartile, the median, the third
quartile, and the maximum of the data. Boxplots from patients with different health conditions have different
medians (shown as a line in the center of each box), which are 0.10, 0.07, 0.23, 0.22 and 0.16, for sets A, B,
C, D and E, respectively
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Fig. 12 Boxplots of B(k) for k = 1, which were computed over 100 segments each, for sets A (healthy, eyes
open), B (healthy, eyes closed), C (epileptic, opposite zone), D (epileptic, epileptogenic zone) and E (seizure).
As usual, the boxplots indicate, from bottom to top, the minimum, the first quartile, the median, the third
quartile, and the maximum of the data. Boxplots from patients with different health conditions have different
medians (shown as a line in the center of each box), which are 5.88, 5.37, 10.83, 9.19 and 6.34, for sets A, B,
C, D and E, respectively

series. Although Fig. 13c, d are similar, the fewer and less-pronounced interictal epileptiform
activities that are found in set C (compared to set D) produce aMarkov transition matrix with
heavier weights. The high-amplitude and quasiperiodic patterns that are found in set E are
depicted in a Markov transition matrix in which the heigher weights are mainly distributed
over the secondary diagonal (Fig. 13e) [9].
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(a) (b)

(c) (d)

(e)

Fig. 13 QG transition matrices for sets A (healthy, eyes open), B (healthy, eyes closed), C (epileptic, opposite
zone), D (epileptic, epileptogenic zone) and E (seizure), and k = 4. We use T = 4096 points of each time
series and construct QGs using Q = 30 by applying the map MQT . Time series with different dynamics
correspond toW4 with different structures. For healthy subjects from set B, the weights in the corresponding
W4 are more uniformly distributed along its columns and rows compared toW4 for healthy subjects from set
A. For unhealthy subjects from sets C and D, the higher weights in the corresponding W4 are concentrated
in its peripheral quantiles. In W4, the higher weights are mainly distributed over the secondary diagonal for
subjects from set E
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Table 1 Statistical comparison between the sample means of the network measures C, L, Δ, Mo and B for
the sets B (healthy, eyes closed) and C (epileptic, opposite zone) and the sets A (healthy, eyes open) and D
(epileptic, epileptogenic zone)

C L � Mo B

μB − μC 0.11 0.52 4.54 − 0.15 − 5.81

CIBC [0.11, 0.12] [0.47, 0.58] [4.30, 4.78] [− 0.16, − 0.14] [− 6.52 − 5.10]

t statistic 33.76 19.04 37.29 − 30.57 − 16.24

μA − μD 0.10 0.34 2.97 − 0.12 − 3.99

CIAD [0.09, 0.11] [0.27, 0.42] [2.67, 3.26] [− 0.13, − 0.11] [− 4.81, − 3.17]

t statistic 18.92 8.89 19.71 − 19.97 − 9.61

Table 2 Areas under the ROC curves (AUCs) of the network measures C, L, Δ, Mo and B between patients
in sets B (healthy, eyes closed) and C (epileptic, opposite zone) and between patients in sets A (healthy, eyes
open) and D (epileptic, epileptogenic zone) for k = 3, 7, 4, 2 and 1, respectively

C L � Mo B

AUCBC 1.00 0.97 1.00 1.00 0.99

AUCAD 0.99 0.82 0.99 0.99 0.87

6 Conclusions

The classification of EEG data using the concept of quantile graphs was presented in this
paper. We have shown that the QG method can not only differentiate epileptic from normal
data but also distinguish the different abnormal stages/patterns of a seizure, such as pre-ictal
(EEG changes that precede a seizure) and ictal (EEG changes during a seizure). These results
attest that the QG method is a useful tool for the analysis of nonlinear dynamics and able
to detect differences in the data structures of physiological signals of healthy and unhealthy
subjects.
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