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Abstract
Time series is a common and well-known way for describing temporal data. However, most
of the state-of-the-art techniques for analysing time series have focused on generating a rep-
resentation for a single level of resolution. For analysing of a time series at several levels of
resolutions, one would require to compute different representations, one for each resolution
level. We introduce a multi-resolution representation for time series based on local trends
and mean values. We require the level of resolution as parameter, but it can be automati-
cally computed if we consider the maximum resolution of the time series. Our technique
represents a time series using trend-value pairs on each segment belonging to a resolution
level. To provide a useful representation for data mining tasks, we also propose dissimilarity
measures and a symbolic representation based on the SAX technique for efficient similarity
search using a multi-resolution indexing scheme. We evaluate our method for classification
and discord discovery tasks over a diversity of data domains, achieving a better performance
in terms of efficiency and effectiveness compared with some of the best-known classic tech-
niques. Indeed, for some of the experiments, the time series mining algorithms using our
multi-resolution representation were an order of magnitude faster, in terms of distance com-
putations, than the state of the art.

Keywords Time series · Multi-resolution representation · Classification · Discord discovery

1 Introduction

Time series is a useful way for representing temporal data in a wide variety of real-world
applications. Some applications of time series analysis are: economic indicators analysis,
meteorological phenomena analysis, human movement and health monitoring, signal pro-
cessing, etc. This has lead to numerous studies on data mining over time series.
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For dealing with large amounts of time series data, there is a need of developing time
series representations that are concise and indexable. This allows one to efficiently imple-
ment data mining tasks like clustering, classification, and anomaly detection. For this reason,
there are many techniques for transforming a time series into a lower resolution represen-
tation. For instance, the most common spectral decomposition technique, Discrete Fourier
Transform (DFT), is highly useful for periodic signals and feature-based systems. How-
ever, the main disadvantage of DFT over other techniques is its time complexity, that in
the best case is O(n log n). Alternatively, Piecewise Approximation techniques address the
segmentation problem with a time complexity of O(n). These techniques require only one
parameter, the number of segments or the sliding window size. Some of the better-known
indexable techniques are: Piecewise Linear Approximation (PLA) [3,12], Piecewise Aggre-
gate Approximation (PAA) [10] and Adaptive Piecewise Constant Approximation (APCA)
[2].

In addition to these numeric representation techniques, new approaches based on symbolic
representations have taken notoriety in this field. Symbolic representations are used to offer
greater legibility of interpretation, simplicity, and efficient implementation. In this group,
Symbolic Aggregate Approximation (SAX) [19] deserves special mention, as well as some
of its extensions: Differential Evolution SAX for non-normalized time series [7] and SAX
for multivariate time series [21]. Other techniques combine SAX with any additional feature
of time series, for example the trend-based techniques [6,20].

All of the aforementioned techniques generate the representation of a time series for
a single level of resolution. On the other hand, multi-resolution techniques operate the
time series representation using different levels of granularity. The building algorithm of
a multi-resolution representation has O(cn) time complexity, where c is a constant of the
resolution level. An example of this type of technique is the Discrete HaarWavelet Transform
(DWT) [26]. An advantage of the multi-resolution approach is that it provides us hierarchi-
cal access to data by means of resolution levels, for example: a multi-resolution index for
binary SAX (iSAX) [23], and an iterative clustering algorithm using Haar Wavelets [17], or
Multi-resolution PAA (MPAA) [18].

In this paper, we introduce a new multi-resolution representation based on local trends
and mean values of the time series. It becomes a parameter-free technique when we use the
maximum level of resolution which will be defined in this work. Unlike DWT and MPAA
that only takes into account the average values, our proposed multi-resolution representation
also considers the local trends on each level of resolution. We also propose a symbolic
representation derived from the numeric representation by applying SAX quantization on
the trend and value components, which allows us to provide a lower bounding function for
indexing a time series collection. Finally, we propose a multi-resolution discord discovery
for anomaly detection based on our proposed time series approximation.

Our proposed multi-resolution representation has several advantages with respect to the
state of the art. First, it adds the trend value to the representation, which improves its discrim-
inative power as shown in our experimental evaluation. Second, it provides lower-bounding
distances for each resolution level, which can be used to early prune a similarity search thus
saving distance computations. Finally, it takes advantage of a symbolic representation that
allows us to build a hash table for quickly finding buckets with similar time series, which
makes the technique efficient.

The efficacy and efficiency of our approach is experimentally evaluated in two data-
mining tasks, classification and anomaly detection, over a diversity of data domains (UCR
Time Series Archive [4,9]). We empirically show that our method outperforms conventional
methods.
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A Multi-resolution Approximation for Time Series 77

This paper is an extended version of a previous work presented at the 14th International
Work-Conference on Artificial Neural Networks (IWANN’17) [22]. The main differences
between this article and the conference paper are:

– The aim of the conference paper was improving the discord discovery task. This paper
focuses on the multi-resolution proposal as a general technique that can be used for
different time series mining tasks.

– We improved the presentation of the state-of-the-art techniques.
– We added a second data mining task, classification, for evaluating the efficiency and

effectiveness of the multi-resolution representation.
– We added several experimental evaluations using more time series collections.

1.1 Background

Piecewise Approximation Method splits the time series into segments and builds a new
time series with the representative values of each segment. This approach is widely used for
dimensional reduction of time series. For example, twowell-known piecewise approximation
techniques are PAA [11] and SAX [16]. Other relatedmethods are PiecewiseApproximations
based on Trend and Value features, that is, each segment of the time series is represented by
both the local trend and a representative value. The trend can be denoted using the derivative
estimation [8], the slope [6], or a radio-based function [5]. Figure 1 shows three recent
techniques that use this approach, which are listed below.
Piecewise Trend Approximation (PTA) [5]: Given a time series P = {p1, · · · , pn}, this algo-
rithm partitions P into m < n variable length segments and builds the new representation:

PT A(P,m, ε) = {(r1, tr1), . . . , (rm, trm )}, (1)

(a) (b)

(c)

PTA(P, 5, ε) = {(r1, tr1 ), · · · , (r4, tr4 )} TV A(P, 4) = {aU, cU, bD, aD}

1d − SAX (〈vi, si〉, 4, 4) = 〈11, 10〉

Fig. 1 Three techniques for time series representation based on trend and value: a Piecewise Trend Approxi-
mation, b Piecewise Trend-Value Approximation and (c) Extended Trend-Value Approximation
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where tri is the right endpoint and ri is the ratio between both endpoints in the ith segment.
This technique adapts the segments to the original shape of the time series, such that two
conjunctive segments represent different trends. This adaptation requires tuning the threshold
of ratios ε, indicating when two consecutive segments can be aggregated.
Piecewise Trend-Value Approximation (TVA) [6]: It is an extension of SAX by adding new
symbols that represent the slope of each segment:

T V A(P,m) = {(v̂1, ŝ1), . . . , (v̂m, ŝm)}, (2)

where v̂i ∈ {a = low, b = normal, c = high} is the SAX symbol and ŝi ∈ {U = up, D =
down, S = straight} is the slope symbol. The algorithm uses linear regression to compute
the slope. Testing was performed on a particular streaming multivariate time series to assign
a label to each multivariate segment using classification tasks.
Extended Trend-Value Approximation (1d-SAX) [20]: It is a compact binary representation
to improve the retrieval performance using the same quantity of information as SAX. Unlike
TVA, it works with alphabets of different sizes:

1d − SAX(P,m, αv, αs) = {(v̂1, ŝ1), · · · , (v̂m, ŝm)}, (3)

where v̂i is the average value symbol from an alphabet of size αv and ŝi ∈ is the slope
symbol from an alphabet of size αs . In addition, the authors propose a lookup table with
all distances between two different symbols to speed-up the approximate search on large
databases. Testing was performed on seven univariate time series collections (UCR Archive)
using classification tasks.

2 Multi-resolution Trend-Value Approximation

2.1 Motivation

Why a Trend-Based Representation? Esmael et al. claims that “using only the value approx-
imation, causes a high possibility to miss some important patterns in some time series data.
SAX does not pay enough attention to the shapes of the time subsequences and may produce
similar strings for completely different time series” [6]. Figure 2 shows an example of this
statement. Here, we use an agglomerative hierarchical clustering to group five time series in
three different classes. The time series is split into four segments. SAX only takes the mean
value while TVA considers the slope obtaining a better match between time series 2 and 3,
which belong to the same class.

TVA and 1d-SAX are similar techniques that compress each trend-value pair of the time
series by a quantization process. In this work, we extend the ability of the local trends
to various levels of resolution. While the granularity parameter (number of segments) of
the piecewise approximation like TVA and 1d-SAX produces a horizontal segmentation,
we propose a hierarchical segmentation induced by the resolution level. We will discuss
how segmentation provides greater advantages in design and optimization and use both
representations, symbolic and numeric, to evaluate our proposed method. Moreover, the
numeric representation serves us to further reduce the reconstruction error and obtain better
results in information retrieval tasks.

Our time series representation technique is called Multi-resolution Trend-Value Approx-
imation (MTVA). The technique generates trend-value pairs on each level of resolution of
the time series, and then computes the similarity between two MTVA representations using
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A Multi-resolution Approximation for Time Series 79

AVTXAS

Fig. 2 A comparison of the ability of two time series representations to cluster five members of the CBF
dataset [4] using the Euclidean distance

Table 1 Notation used in this paper

P = {p1, . . . , pn} A time series of length n (raw representation)

P = {(v1, s1), ..., (vm , sm )} Numeric MTVA representation of P

P̂ = {(v̂1, ŝ1), ..., (v̂m , ŝm )} Symbolic MTVA representation of P

pi = (vi , si ) Trend-Value pair in the ith segment of P

L ≤ �log2(n/2)� + 1 Level of resolution for P

m = 2L − 1 Total number of trend-value pairs for P

Ml = 2l−1 Number of segments in the level l ∈ {1, . . . , L}

a distance measure. In addition, we design a symbolic representation to index a time series
collection. Table 1 summarizes the notation used in this and subsequent sections.

2.2 Bottom-Up Construction Algorithm

Given the times series P = {p1, . . . , pn} and L as the level of resolution defined by the user,
the MTVA representation of P is built following the next steps:

1. We start in the last resolution level L dividing the time series into M = 2L−1 segments
of size w = n/M .

2. Let Y = {y1, . . . , yw} be a segment of P in the time segment X = {x1, . . . , xw}. We
compute the linear regression on each segment by the function lr(x) = ax + b, where:

– a =
∑w

i=1(x j−X̄)∗y j∑w
i=1(x j−X̄)2

– b = Ȳ − a ∗ X̄
– X̄ and Ȳ are the average value of X and Y , respectively.
– The trend-value pair (v, s) of the segment Y is defined by:

– v = a ∗ x1+xw

2 + b is the mean value.
– s = arctan(a) is the slope,
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MTV A(P, 3) = {(v1, s1), ..., (v7, s7)}

Fig. 3 Construction of the Multi-resolution Trend-Value Approximation

3. For the next resolution levels M = 2{L−2,L−3,...,0}, compute the trend-value pair (v, s)
for each segment as follows:

– v = vi+vi+1
2

– s = arctan
(

vi+1−vi
xi+1−xi

)
.

– vi and xi are, respectively, the mean value and the average time associated with a
segment in the upper level (see Fig. 3).

4. The MTVA representation is an array of all the trend-value pairs: MTV A(P, L) =
{(v1, s1), ..., (vm , sm)}.
Figure 3 shows theMTVArepresentation of the time series P up the third level of resolution

(L = 3). Parameter L can be automatically computed so that the spatial complexity of the
MTVA representation does not exceed the space of the original time series, that is, adjusting
the total number of segments m ≤ n/2. Alternatively, m can be defined in terms of the level
of resolution m = 2L − 1. Solving both equations, we conclude that the level of resolution
for P is:

Lmax = �log2(n/2)� + 1. (4)

2.3 Distances Measures

First, we need cost functions to measure the distance between trend-value pairs. Given two
pairs pi and q j , we define three cost functions:

– cost1(pi , q j ) = |v p
i − v

q
j | + |s pi − sqj |

– cost2(pi , q j ) = |v p
i − v

q
j |2 + |s pi − sqj |2

– costdot (pi , q j ) = (1 + |v p
i − v

q
j |) ∗ (1 + |s pi − sqj |) − 1

For using cost1 and cost2, both value-domain and slope-domain should have similar ranges
to avoid that the distance is governed by only one of them. The slope ranges are between
−π

2 and +π
2 . We therefore normalize the time series by a standard normalization procedure

(e.g., Z-distribution). The cost function costdot can also be used on time series that need to
retain their value-domain.
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A Multi-resolution Approximation for Time Series 81

Algorithm 1MDist: Multi-resolution Distance with Anticipatory Pruning
Require: (Two MTVA representation P and Q, Threshold th)
1: Lmax = the maximum common resolution of P and Q
2: d = 0
3: for l = 1 to Lmax do
4: a = 2(l−1)

5: b = 2l − 1
6: d = d + Dist(P[a · · · b], Q[a · · · b])
7: if d > th then � Apply pruning
8: Break
9: end if
10: end for
11: return d

Second, we adapt two common techniques for measuring the distance between two sets
of trend-value pairs:

– Linear Distance:

Dist(P, Q) =
M∑

i=1

cost(pi , qi ). (5)

– Dynamic Time Warping Distance: It is computed building a cumulative cost matrix
C ∈ R

M×M in the following way:

C[0, 0] = 0 C[i, 0] = ∞ C[0, j] = ∞

C[i, j] = cost(pi , q j ) + min

⎧
⎨

⎩

C[i − 1, j]
C[i, j − 1]
C[i − 1, j − 1]

⇒ Dist(P, Q) = C[M, M].
Finally, our multi-resolution distance MDist measures the dissimilarity between two

MTVA representations executing Dist on all levels of resolution:

MDist(P, Q) =
L∑

l=1

Dist(P[a . . . b], Q[a . . . b]), where a = 2l−1 and b = 2l − 1. (6)

Algorithm1 shows the pseudocodeofMDist. Its time complexity using theLinearDistance
corresponds to the sum of the time for each level of resolution:

T (L) =
L∑

l=1

Ml =
L∑

l=1

2l−1 = 2L − 1. (7)

If we compute the distance in the worst case where L is exactly log2(n/2) + 1, the time
complexity is O(n), where n is the length of the original time series. For the DTWDistance,
the time complexity is expressed as follows:

T (L) =
L∑

l=1

M2
l =

L∑

l=1

(2l−1)2 = 4L − 1

3
, (8)

where in the worst case it is O(n2). Therefore, MDist in the worst case is theoretically as
fast as the classic distances that work over raw time series.
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To reduce the number of distance computations, we design an optimization strategy that
applies a threshold th to break out of the loop when the partial distance is greater than th, thus
avoiding having to compute the rest of levels (see Algorithm 1, lines 7–9). This threshold
allows us to efficiently compute the similarity between two MTVA representations reducing
the number of calls to Dist . When the algorithm receives two inputs of different resolution, it
takes themaximum resolution level that both have in common (line 1). A practical application
of the pruning is in time series classification when we use the Nearest Neighbor Search (see
Algorithm 2, line 14). This optimization follows the spirit of the Anticipatory DTW [1],
where the authors apply a threshold into the DTW distance to filter out comparisons.

2.4 Symbolic Representation

By using discretization techniques, we transform the numeric representation into a sequence
of symbols. This symbolic representation provides us greater ease of interpretation and sim-
plicity to manage time series collections.

Definition 1 According to Lin et al., “Breakpoints are a sorted list of numbers β =
{β1, . . . , βα−1}, such that the area under a N (0, 1) Gaussian curve from βi to βi+1 = 1/α
(β0 and βα area defined as −∞ and +∞, respectively)” [16]. For example, if α = 4, the
breakpoints are {β1 = − 0.67, β2 = 0, β3 = + 0.67}.

2.4.1 Gaussian Assumption

To transform the numeric pair pi = (vi , si ) to a symbolic pair p̂i = (v̂i , ŝi ), we quantize both
values separately using breakpoints that produce equal-size areas under the Gaussian curve
N (μ, σ 2) (similar to 1d-SAX, see Fig. 1). Gaussian discretization is feasible for normalized
time series, since statistically the mean value and the slope have a Gaussian distribution
[19,20]. As in 1d-SAX, the breakpoints are determined by the curve N (0, 1) for the mean
value and N (0, σ 2

L) for the slope. In this last case, we use the variance σ 2
L in terms of the

level of resolution L because each level of resolution generates different slope distributions
(see Fig. 4), unlike the 1d-SAX that uses a slope variance in terms of the size of the segment.
Additionally, to apply the linear regression between X and Y , we recommend that both
variables have a similar range. If the time series is normalized in N (0, 1), the temporal
component X must fit in this interval size. In this work, we normalize the length of each
segment X = [1, w] → X = [−1, 1]. Thus, the variance σ 2

L is only in terms of the level of
resolution and independent of the size of the time series.

L = 2 L = 4 L = 6

−1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5

Fig. 4 Density of the slope varying the level of resolution in ECG time series
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2.4.2 Alphabet Size

The alphabet size is delimited by the number of breakpoints (Definition 1) and strongly
influences the compression ratio and the reconstruction error. To quantize the trend-value
pair, we need two alphabets with size αv and αs for the mean value and the slope respectively.
We use binary symbols where α is a power of two [23]. For example, to compress the numeric
MTVA representation up the level 3 using αv = 4 and αs = 4, we need (2 + 2) ∗ (23 − 1)
bits, which is less than 4 bytes for time series. The symbolic MTVA representation is useful
for different applications like indexing and anomaly detection.

2.5 Indexing

We propose a simple bucket index to efficiently manage MTVA time series datasets (see
Fig. 5). We use the symbolic representation to build a hash table, where each bucket P̂
envelops a set of similar MTVA time series. Moreover, we design a lower bounding function
called LB_MDist to measure the distance between the query object Q and a bucket P̂ , so
that it is lower or equal than the real distance between Q and any object P ∈ P̂ .

Before defining LB_MDist, we first need to define the lower bounding function of the
trend-value cost, which is denoted as follows:

LB_cost( p̂i , qi ) ≤ cost(pi , qi ). (9)

The symbol p̂i derives from a trend-value pair pi that is located between two breakpoints
βUi < pi ≤ βLi , independently for each pair value (see Fig. 6). Either of these equations
then computes LB_cost :

– LB_cost1( p̂i , qi ) = Δv + Δs
– LB_cost2( p̂i , qi ) = (Δv)2 + (Δs)2

– LB_costdot ( p̂i , qi ) = (1 + Δv) ∗ (1 + Δs) − 1

where

Δv = Δs =⎧
⎨

⎩

|vqi − βUi | v
q
i > βUi

|βLi − v
q
i | v

q
i < βLi

0 else,

⎧
⎨

⎩

|sqi − βUi | sqi > βUi

|βLi − sqi | sqi < βLi

0 else,
——— ———

: βLi ≤ v
p
i < βUi , : βLi ≤ s pi < βUi .

Fig. 5 Index model for the MTVA representation
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Value Slope

LB cost1(p̂i, qi) = |βLi − vq
i | + |βLi − sqi |

Fig. 6 Lower bounding trend-value cost, the blue line represents a trend-value pair stored in our database and
the green line is the query. (Color figure online)

Equation 10describes the lower bounding function for themulti-resolution linear distance:

LB_MDist(P̂, Q) =
IL∑

l=1

2l−1∑

i=2(l−1)

LB_cost( p̂i , qi ). (10)

The Indexing Level I L ≤ L is the level of resolution with which we build the hash table.
IL determines the amount of bits for the index structure.

For similarity searches, on the one hand, we can use LB_MDist to find approximated
buckets in which the objects are most similar to a query object Q. On the other hand, we can
use LB_MDist to efficiently search the nearest neighbor of Q (see Algorithm 2). We end
up with the same result as applying a linear scan over the numeric MTVA time series. This
algorithm orders the buckets in such a way that those closest to Q, in terms of LB_MDist,
are visited first (lines 2–5). Afterwards, we refine the candidates objects, applying a post-
processing search with the anticipatory pruning distance MDist (lines 12–19) that receives
as threshold the best match distance so far. The algorithm finishes immediately when the
current visited bucket has a lower bounding distance greater than the best match distance
(lines 9–11).

3 Multi-resolution Discord Discovery

Keogh et al. [14] introduced an unsupervisedmethod—called discord discovery—for finding
the most unusual subsequence (the one with the largest distance from its nearest non-self
match) in a streaming time series. The basic algorithm has a computational complexity of
O(N 2), where N is the total number of subsequences. Therefore, the main challenge of the
discord discovery techniques is to face this quadratic complexity.

In this sense, our MTVA representation together with the proposed efficient search tech-
niques and the discord discovery heuristics can be used to solve the anomaly detection on
normalized subsequences. This is called HOT MTVA. However, we observed that the index
method designed above uses only one hash table for the whole SAX space (similar to HOT
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Algorithm 2 Nearest Neighbor Search for the MTVA Index
Require: (IndexR , Query Q)
1: list = ∅
2: for P̂ ∈ R do
3: di = LB_MDist(P̂, Q)

4: list .add([P̂, di ])
5: end for
6: sorted_list = argsort(list)
7: best_so_ f ar = ∞;
8: for [P̂,min_d] ∈ sorted_list do
9: if min_d > best_so_ f ar then
10: Break
11: end if
12: objects = readBucket(P̂)

13: for P ∈ objects do
14: d = MDist(P, Q, best_so_ f ar) � Alg. 1
15: if d < best_so_ f ar then
16: best_so_ f ar = d
17: best_match_object = P;
18: end if
19: end for
20: end for
21: return (best_match_object);

Fig. 7 Multi-resolution Index Model for the MTVA representation

SAX), and this has a disadvantage: the size of the hash table grows considerably when using a
higher resolution level. This may result in a high searching cost, which could be as expensive
as applying a linear scan over the data. Therefore, we propose a multi-resolution method
which increases the level resolution when a hash-bucket is overflowed (see Fig. 7). Such an
indexing structure is the perfect fit for our MTVA representation. Moreover, it allows one to
control the level of resolution of the detected anomaly.

3.1 Building Algorithm

Let P = {p1, . . . , pn} be a time series, and letw be the size of the sliding window for extract-
ing all subsequences. Algorithm 3 describes the insertion procedure of aMTVA subsequence
Cp into the indexing structure R. Unlike HOT iSAX, we apply hierarchical quantization
(line 2) to access the hash tables (where each slot is a node) from the lowest resolution to
the maximum resolution. If a terminal node is full, we re-insert all its associated objects into
a hash table of higher level to provide additional differentiation (lines 10–16), so we create
new nodes with the next resolution level of the current node (lines 20–22). We use a size
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Algorithm 3 Insert Objects into the Multi-resolution Index
Require: (Object Cp)
1: let R be the multi-resolution index
2: str = generateSAX(Cp, this.level)
3: if R.containsKey(str) then
4: node = R.get Node(str) � get the child node associated with the key str
5: if R is internal then
6: node.insert(Cp)
7: else if node is terminal then
8: wri teObject(str ,Cp)
9: if R is full then
10: objects = readBucket(str) � retrieval all the objects associated with str
11: new_node = new I nternalNode(node.level)
12: for Ci ∈ objects do
13: new_R.insert(Ci )
14: end for
15: R.remove(str , node)
16: R.add(str , new_node)
17: end if
18: end if
19: else
20: new_node = newTerminalNode(this.level + 1) � increase the resolution level
21: R.add(str , new_node)
22: wri teObject(str ,Cp)
23: end if

threshold thmax to control the maximum number of objects in a terminal node (the so-called
bucket). It follows that the indexing level has dynamic behavior, as its incremental value
depends on the size of the dataset and the maximum level of resolution (Lmax ).

3.2 Discord Discovery Heuristics

The discordant subsequence is found by applying the optimal discord discovery procedure
[14] using the following heuristics:

Outer Loop HeuristicWe first visit all subsequences belonging to the bucket that contains
the minimum number of subsequences starting from the lowest resolution level (L = 1).
Afterwards, we visit the rest of buckets in random order. This heuristic ensures that the
subsequences that are most isolated, at each resolution level, will be visited at the beginning
of the search as potential candidates.

Inner Loop HeuristicWe then use an inner loop to search the best non-self match of each
selected candidate Cq . We first visit all subsequences contained in the bucket from which Cq

is retrieved.Afterwards,we apply the nearest non-selfmatch search algorithm (NNM-Search)
to visit the rest of the buckets. This heuristic allows us to first visit all the subsequences most
similar to Cq , increasing the probability of an early termination of the loop.

The NNM-Search algorithm (see Algorithm 4) performs a hierarchical search across the
internal nodes using a stack to maintain the nodes ordered by MINDIST (lines 10–17). This
MINDIST is a lower bounding function of theMTVAdistance, whichmeasures theminimum
distance between the query and the current node. MINDIST is calculated as:

MINDIST(P̂, Q, l, α) = α +
2l−1∑

i=2(l−1)

LB_cost( p̂i , qi ), (11)
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Algorithm 4 NNM-Search for the Multi-resolution MTVA Index
Require: (IndexR, Query Cq , Window Size w, Threshold Distance thdist )
1: stack.push([R.get NodeRoot(), 0])
2: best_dist = ∞
3: best_post = −1
4: while stack �= ∅ do � inner loop
5: [node,min_d] = stack.pop()
6: if min_d > best_dist then
7: Break � break out of inner loop
8: else if node is internal then
9: list = ∅
10: for child_node ∈ node.children do
11: if child_node was not visited then
12: d = MINDIST(child_node.str ,Cq , node.level,min_d)

13: list .add([child_node, d])
14: end if
15: end for
16: sorted_list = argsort(list)
17: stack.push(sorted_list)
18: else if node is terminal then
19: objects = readBucket(node.str)
20: for Cp ∈ objects do
21: if |p − q| ≥ w then � non-self match?
22: d = MDist(Cp,Cq , best_dist) � Alg. 1
23: if d < best_dist then
24: best_dist = d
25: best_post = p
26: end if
27: if d < thdist then
28: Break � break out of inner loop
29: end if
30: end if
31: end for
32: end if
33: end while
34: Return (best_dist, best_pos)

where l is the current resolution level and α is the accumulated distance of the previous
levels. The algorithm also applies two breaking statements to break the inner loop as early as
possible: one corresponds to MINDIST (line 6) and the other one to the best-so-far discord
distance (line 27).

4 Experimental Results

In this section, we evaluate the performance of our approach for classification and anomaly
detection in different datasets.An Intel Core i7 3.4GHzwith 8GBRAMis used for conducting
all our experiments. All algorithms are implemented in C++.

4.1 Classification

For this experimental evaluation, we use 44 univariate time series collections from the UCR
Archive (see Table 2). We first evaluate the quality of our proposed representation with other
state-of-the-art techniques for representing time series. We next compare our approach with
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two classic distances that work over the raw representation. The nearest neighbor search
(Algorithm 2) gives us the classification results.

4.1.1 Trend-Value Approximation Performance

We evaluate the performance of the numeric representations based on trends andmean values
(TVA andMTVA) with respect to the representation based only on average values (PAA). To
get the best performance, we use the best parameter tuning in each time series collection. In
this sense, PAA and TVA require tuning the total number of segments in terms of the length
of the time series m = factor ∗ n, where the best value for factor is experimentally selected
from the set {0.1, 0.15, 0.2, . . . , 0.5}. MTVA requires tuning the level of resolution L from
the set {2, 3, . . . , Lmax }. Table 3 shows the results obtained by the linear distance. Here, we
calculate the average classification error, the win-tie-lose results of the numeric TVA and
MTVA representations compared to PAA representation, and the p value (Wilcoxon signed
ranks test [25], confidence level = 0.95). We mark a tie between two classification results
when their error difference is lower than 0.001. We observe that our multi-resolution trend-
value representation performs better than the PAA and TVA representations. Moreover, our
technique required less number of segments than PAA, although we need twice the memory
space for the numeric trend-value pairs.

Furthermore, we compare our multi-resolution representation with other state-of-the-art
techniques (see Fig. 8). First, the numeric MTVA is compared with theMulti-resolution PAA
(MPAA [18]) which is similar to the Discrete Haar Wavelet Transform (DWT [11]). Second,
the symbolicMTVA is compared with other symbolic representations like SAX and 1d-SAX.
For the latter, we use the same quantity of information for generating the same compression
ratio in each dataset (Table 4). As the breakpoints depend on the slope distribution N (0, σ 2),
we empirically set the slope variance asσ 2 = 2√

m
andσ 2 = 2

L for the 1d-SAXand theMTVA
respectively, which obtained the best trade-off in most datasets. After setting the parameters,
we compute the classification error using the Euclidean distance (cost2 for the MTVA) over
eight time series collections that have at least eight levels of resolution. We observe that
MTVA reaches the smallest error sooner than MPAA. Moreover, the error obtained by both
MTVA and 1d-SAX is stabilized from level L ≥ 4. However, the error obtained by SAX
shows a monotonically decreasing trend while the size of word gets bigger, and it obtains
better performance than our method from level L ≥ 7.

An important characteristic of our multi-resolution representation is that the segments
always have the same size in each resolution level defined by L . In this way, for each time
series length, we can generate all trend-value pairs of the maximum resolution level and
store them in secondary memory. Afterwards, we just take out those that are requested by the
user. This characteristic provides us with greater flexibility for testing our index model with
different index levels without the need to recalculate the MTVA representation. In contrast,
the segments generated by the piecewise approximations (like PAA, TVA, SAX and 1d-
SAX) are of different sizes in each resolution level defined by m. Thus, they always need to
recalculate the representation when one varies the value of m.

4.1.2 MTVA Distance Performance

Table 5 shows the results obtained by our multi-resolution distance MDist , using the linear
distance and the dynamic time warping as base distance. For both cases, we calculate the
average classification error, the win-tie-lose results of the numeric MTVA approximation
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Table 2 UCR Time Series Archive: data collections used for our assessments

# of classes Dataset size Length Basic distances

Train Test ED cDTW (r )

50Words 50 450 455 270 0.369 0.242 (6)

Adiac 37 390 391 176 0.389 0.391 (3)

Beef 5 30 30 470 0.467 0.467 (0)

CBF 3 30 900 128 0.148 0.004 (11)

ChlorineConcentration 3 467 3840 166 0.350 0.350 (0)

CinC_ECG_torso 4 40 1380 1639 0.103 0.070 (1)

Coffee 2 28 28 286 0.250 0.179 (3)

Cricket_X 12 390 390 300 0.426 0.236 (7)

Cricket_Y 12 390 390 300 0.356 0.197 (17)

Cricket_Z 12 390 390 300 0.380 0.180 (7)

DiatomSizeReduction 4 16 306 345 0.065 0.065 (0)

ECG 2 100 100 96 0.120 0.120 (0)

ECGFiveDays 2 23 861 136 0.203 0.203 (0)

Face (all) 14 560 1690 131 0.286 0.192 (3)

Face (four) 4 24 88 350 0.216 0.114 (2)

FacesUCR 14 200 2050 131 0.231 0.088 (12)

Fish (readme) 7 175 175 463 0.217 0.160 (4)

Gun-Point 2 50 150 150 0.087 0.087 (0)

Haptics 5 155 308 1092 0.630 0.588 (2)

InlineSkate 7 100 550 1882 0.658 0.613 (14)

ItalyPowerDemand 2 67 1029 24 0.045 0.045 (0)

Lightning-2 2 60 61 637 0.246 0.131 (6)

Lightning-7 7 70 73 319 0.425 0.288 (5)

MALLAT 8 55 2345 1024 0.086 0.086 (0)

MedicalImages 10 381 760 99 0.316 0.253 (20)

MoteStrain 2 20 1252 84 0.121 0.134 (1)

NonInvasiveFetalECG_Thorax1 42 1800 1965 750 0.171 0.185 (1)

NonInvasiveFetalECG_Thorax2 42 1800 1965 750 0.120 0.129 (1)

OliveOil 4 30 30 570 0.133 0.167 (1)

OSU Leaf 6 200 242 427 0.483 0.384 (7)

SonyAIBORobotSurface 2 20 601 70 0.305 0.305 (0)

SonyAIBORobotSurfaceII 2 27 953 65 0.141 0.141 (0)

Swedish Leaf 15 500 625 128 0.213 0.157 (2)

Symbols 6 25 995 398 0.100 0.062 (8)

SyntheticControl 6 300 300 60 0.120 0.017 (6)

Trace 4 100 100 275 0.240 0.010 (3)

TwoPatterns 4 1000 4000 128 0.090 0.002 (4)

TwoLeadECG 2 23 1139 82 0.253 0.132 (5)

uWaveGestureLibrary_X 8 896 3582 315 0.261 0.227 (4)

uWaveGestureLibrary_Y 8 896 3582 315 0.338 0.301 (4)

uWaveGestureLibrary_Z 8 896 3582 315 0.350 0.322 (6)
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Table 2 continued

# of classes Dataset size Length Basic distances

Train Test ED cDTW (r )

Wafer 2 1000 6174 152 0.005 0.005 (1)

WordsSynonyms 25 267 638 270 0.382 0.252 (8)

Yoga 2 300 3000 426 0.170 0.155 (2)

Table 3 Classification error
using the best configuration of
three numeric representations

Metrics PAA TVA MTVA

ED-norm cost1 cost2 costdot

Av. error 0.226 0.225 0.217 0.227 0.218

win/tie/lose ↪→ 12/9/23 26/4/14 19/6/19 25/5/14

p value ↪→ 0.291 0.053 0.814 0.059

# Segments 23% 21% 21% 19% 19%

noitatneserpeRcilobmySnoitatneserpeRciremuN

Fig. 8 Comparison of our multi-resolution representation with other state-of-the-art techniques

Table 4 Equalizing the
quantitative information

Symbolic representation Alphabet size Word size

αv αs m

SAX 8 − 2L − 1

1d-SAX 4 4

MTVA 4 4

compared with the raw representation, and the p value. Moreover, we performed two tests:
a first test using the maximum level of resolution for each dataset (Eq. 4), and a second test
using the best level of resolution for each dataset.

We obtain a smaller classification error when we use MTVA, mainly in two of the pro-
posed trend-value costs: cost1 and costdot . Using linear distance, we note that the obtained
decrease in classification error is statistically significant (p value < 0.05). Using the DTW
distance, our multi-resolution representation has a non-significant difference regarding the
raw representation (p value > 0.05). However, we observed that MTVA was particularly
effective in half of the datasets, which means that our approach performs better than the
classic distance depending on the data collection.
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Table 5 Classification error
using raw representation and
MTVA representation

Metrics Raw MTVA

cost1 cost2 costdot

Linear distance

ED a Maximum level of resolution

Average error 0.251 0.226 0.236 0.229

Win/tie/lose ↪→ 32/1/11 20/11/13 32/2/10

p value ↪→ 0.001 0.160 0.002

ED-norm b The best level of resolution

Average error 0.245 0.217 0.227 0.218

Win/tie/lose ↪→ 31/4/9 28/9/7 33/3/8

p value ↪→ 0.000 0.001 0.000

Dynamic time warping

DTW Maximum level of resolution

Average Error 0.212 0.194 0.205 0.195

Win/tie/lose ↪→ 25/2/17 22/3/19 25/1/18

p value ↪→ 0.050 0.299 0.059

cDTW c The best level of resolution

Average error 0.192 0.190 0.197 0.192

Win/tie/lose ↪→ 21/6/17 21/2/21 21/5/18

p value ↪→ 0.695 0.357 0.804

aEuclidean Distance [4]
bZ-normalized Euclidean Distance [24,27]
cThe best configuration for the constrained DTW [4]

As noted above, the efficiency is the most remarkable characteristic of using time series
representation. To show the computational advantage of our approach, we select the largest
dataset that contains time series of length 750, where the maximum level of resolution is
Lmax = 8. Figure 9 shows the improved efficiency of MDist (using the linear distance)
compared with the classic Euclidean Distance in terms of computed cost functions increasing
the level of resolution. We first perform a linear scan using the MDist according to Eq. 6.
Afterwards, we apply the anticipatory pruning strategy (Algorithm 1). We note the wide lead
of using the anticipatory pruning, which allows us to save about one order of magnitude in
computed cost functions in the best case (L = 8). This efficiency advantage is due to multi-
resolution properties described in Sect. 2.3. We finally evaluate our simple bucket index,
where the search algorithm also employs the pruning property (Algorithm 2). We note that
our indexing method outperforms the linear scan up to two orders of magnitude, thus being
the most efficient option for retrieving TVA time series.

We conclude with an important fact about our multi-resolution representation: the best
level of resolution was obtained in the interval L = {4, 5, 6} for 38 of 44 time series col-
lections. This will allow us to limit the range of possible values for L in new time series
collections.

4.2 Anomaly Detection

In this experiment, we address the anomaly detection problem using the discord discovery
approach together with our proposed methods. Effectiveness will be evaluated over a set of
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Fig. 9 Efficiency improvement by the MTVA Distance regarding the classic ED that uses raw representation

Table 6 Datasets for discord discovery evaluation

File Variables Length Window Anomalous Region

Begin End

1 stdb_308_0 2 5400 308 2364 2504

2 mitdbx_mitdbx_108 2 16,000 600 10,827 11,243

3 xmitdb_x108_0 2 5250 108 3932 4039

4 mitdb_100_180 2 5400 180 1826 2001

5 chfdb_chf01_275 2 3750 200 2345 2551

6 chfdb_chf13_45590 2 3750 200 2809 2950

7 ltstdb_20221_43 2 3700 200 672 746

8 lltstdb_20321_240 2 3600 200 668 732

9 qtdbsele0606 (1) 1 2500 40 1130 1175

10 qtdbsele0606 (2) 1 2500 150 1109 1226

11 chfdbchf15 2 15,000 256 2253 2392

12 qtdbsel102 2 10,000 200 4234 4377

13 ann_gun_CentroidA 2 5500 150 1585 2089

14 e_nogunCentroidA 2 6325 150 5389 5648

15 nprs43 1 18,000 350 14,835 14,976

16 nprs44 1 6500 350 4950 5195

17 TEK14 1 5000 128 1114 1168

18 TEK16 1 5000 128 4266 4358

19 TEK17 1 5000 128 2103 2199

20 power_data 1 35,000 750 11,380 12,130

Data domains: Electrocardiograms (rows: 1–12), video surveillance tracking (rows 13–14), space shuttle valve
sensor (rows: 17–19), patient’s respiration sensor (rows 15–16) and power demand measurement (row 20)
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Table 7 Percentage of true detections for trend-value representations

ε ED (%) ED-TVA ED-MTVA

m = 3 (%) m = 7 (%) m = 15 (%) L = 2 (%) L = 3 (%) L = 4 (%)

0.025 60 63 73 63 60 67 70

0.050 77 77 90 83 70 83 87

0.075 73 73 90 83 70 80 83

0.100 80 80 90 87 73 83 87

0.125 83 80 90 80 77 83 87

0.150 77 70 80 80 73 77 80

real cases of anomalous time series collected by Keogh et al. [13] detailed in Table 6. An
expert in the field (application domain) annotated the anomalous region. Also, the window
size is different for each time series. To evaluate the efficiency of our approach on static time
series, we use the datasets ECG, EEG, ERP, Koski, RandomWalk and Packet from the UCR
Time Series Archive [4]. We also use the “Time Series for Weather Data” from the National
Oceanic and Atmospheric Administration in the USA (available at www.esrl.noaa.gov/psd/
boulder/). For each dataset, we randomly extract time series of lengths 1k, 2k, 4k, 8k, 16k
and 32k. We empirically set the maximum number of elements in a bucket as thmax = 50.

We first evaluate the accuracy of the two trend-value numeric representations, TVA and
MTVA, over all anomaly cases. An important feature of the trend-value representations is
that the slope of the noisy segments tends to zero and thereby the unusualness of noisy
subsequences is reduced. The classic techniques use the Euclidean Distance as measure
distance over the raw representation of the normalized subsequence. For TVA and MTVA
representations, we use the linear distance with the cost function cost2. We use the same
number of inputs in bothmethods and three different values of dimensional reduction. Table 7
shows that trend-value representations achieve a higher percentage of true detections (ACC ≥
0.5) than using the raw representation. In this way, we assert that our method is more robust
to local noise. Furthermore, we can improve this percentage up to 100% of true detections
finding the best value for ε for each of the time series. Additionally, we also note that TVA
outperforms MTVA, but nevertheless we highlight the flexibility of MTVA for dynamically
working in different levels of resolution at runtime.

Secondly, we accelerate the search using our indexing structures and compare it with the
main state-of-the-art techniques like HOT_SAX [13] and HOT_iSAX [15]. We set the same
quantitative information for each technique (see Table 4). We empirically set the indexing
level as IL = 3, so the word size is set as m = 2I L − 1. To measure the efficiency of the
algorithms, we consider the number of computed distances (see Fig. 10). We observe that our
MTVA techniques are much more efficient than HOT_iSAX in terms of computed distances.
Moreover,we achieved a better performance inCPU runtime due to the dimensional reduction
and the anticipatory pruning distance. Finally, Fig. 11 shows experimentally the benefits of
using amulti-resolution index forMTVA representation instead of a simple bucket index. The
multi-resolution index significantly reduces the number of buckets and computed MINDIST
for the same resolution level.

Clearly, discord discovery using our multi-resolution trend-value representation returns
better results. Our approach also provides flexibility with finding anomalies at different levels
of granularity.
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Fig. 10 Efficiency improvement of our multi-resolution method in Anomaly Detection

Fig. 11 Structural comparison of two indexing methods for MTVA representation

Table 8 Parameters to be tuned Numeric Symbolic

PAA: m SAX: m, αv

TVA: m 1d-SAX: m, αv, αs

MTVA: L MTVA: IL, αv, αs

MPAA: L

5 Conclusions

We proposed a multi-resolution time series representation (MTVA) which is composed of
trend-value pairs obtained by applying regression linear in each resolution segment. Our
parameter-free technique models the full resolution of time series, keeping the same spatial
complexity of the raw representation. We also provided a (dis)similarity measure and its
lower bounding function to perform efficient searches.

We demonstrated the utility of our proposedmethod in Classification Accuracy improving
the performance of the classic techniques based on raw representation. Also, our numeric
representation was more effective than the classic approximations: PAA, TVA and Multi-
resolution PAA. We performed a comparison of three symbolic data models using the same
quantitative information, where our symbolic MTVA slightly outperformed SAX and 1d-
SAX. The efficiency of our method was tested in terms of computed cost functions, where
our MTVA distance was two orders of magnitude faster than the classic Euclidean Distance.

MTVA also was evaluated in Anomaly Detection, where we highlighted the slope feature
for mitigating the false unusualness of noisy subsequences. The efficiency of our multi-
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resolution discord discovery algorithm outperformed HOT_iSAX in terms of computed
distances. One additional advantage of our multi-resolution representation is that the level
of resolution was more intuitive and easier to fine-tune than the number of segments in each
piecewise approximation technique.

One disadvantage of trend-value approximations is that they require twice the space per
segment. Adding a parameter to represent the trend of the time series, it runs the risk of
subtracting simplicity to our concise data model if it is compared with the SAX technique.
Table 8 shows a summary of the parameters that need be tuned by each technique. Neverthe-
less, MTVA can be used as baseline for finding anomalies in different levels of granularity.
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