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Abstract

This paper studies the problems of exponential stabilization for a class of uncertain switched
neutral neural networks with mixed time-varying delays. Based on the multiple Lyapunov-
like functional method and the average dwell time method, the sufficient conditions which
guarantee exponential stabilization of the uncertain switched neutral neural networks with
mixed time-varying delays are presented. Averaged well time of switching signals is also
given. Moreover, a design scheme for the stabilizing feedback controllers is proposed to
guarantee exponential stability of corresponding closed-loop systems. Finally, two examples
are given to illustrate the applicability and the effectiveness of the proposed method.

Keywords Uncertain switched neutral neural networks - Exponential stabilization -
Time-varying delay - Average dwell time

1 Introduction

In the past few decades, researchers have been increasingly interested in neural networks
because they can be applied to many real-world systems in various fields of science and engi-
neering such as combinatorial optimization, automatic control, information science, systems
engineering, parallel computations, fault diagnosis, pattern recognition and signal processing
[1-5]. As a special kind of neural networks, neutral neural network contains delays in both
the state and the derivatives of the state. It is generally known that neutral neural network
has more complicated characteristics. Many real-world systems can be fitly described by
neutral-type neural networks.

It is well known that time delay is usually encountered in electronic implementations of
neural networks due to the finite switching speed of the amplifiers and communication time.
Therefore, delayed neural networks have been proposed and have received a great deal of
attention. In the successful application of neural networks, such as signal processing, pat-
tern recognition and associative memory design, stability is a prerequisite. In the hardware
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implementation of neural networks, some signal transmission delays are unavoidable, which
may cause undesirable dynamical behaviors such as instability and oscillation. Therefore, it
is necessary to take time delays into consideration in studying stability of neural networks.
In the past decades, stability analysis of delayed neural networks has been extensively inves-
tigated and many useful stability criteria have been established [5-8]. On the other hand,
the stabilization of delayed neural networks has attracted considerable attention and several
feedback stabilizing control methods have been proposed [9-11].

As an important class of hybrid systems, switched systems consist of a finite number of
subsystems and a logical rule that orchestrates switching between these subsystems [12].
Due to the success in practical applications [13, 14], switched systems have been studied
during the past decades. For recent progress, readers can refer to survey papers ([15-20] and
the references therein). Ma et al. [14] investigated stabilization of networked switched linear
systems by an asynchronous switching delay system approach. Dong et al. [15] dealt with
exponential stabilization and L;-gain for uncertain switched nonlinear systems with interval
time-varying delay. Liu et al. [17] investigated the stability and stabilization of nonlinear
switched systems by average dwell time method. Arunkumar et al. [19] gave robust stability
criteria for discrete-time switched neural networks with various activation functions. Wu et al.
[20] investigated the global exponential stability for switched stochastic neural networks with
time-varying delays. Shen et al. [21] considered stability analysis for uncertain switched
neural networks with time-varying delay. In [22], stabilizability analysis and stabilizable
switching signals design of switched Boolean networks were investigated via semi-tensor
product of matrices. The above discussion shows that it is significant to investigate switched
neural networks with time delay and parametric uncertainty.

To the best of our knowledge, the problem of robust exponential stabilization for uncertain
switched neutral neural networks with mixed time-varying delays has rarely been studied.
This paper filled up this blank space by investigating the problem of exponential stabilization
for a class of uncertain switched neutral neural networks with mixed time-varying delays. By
employing new multiple Lyapunov-like functional and introducing free-weighting matrices,
we have developed novel sufficient conditions for exponential stabilization for a class of
uncertain switched neutral neural networks with time-varying delay. Moreover, a design
scheme for the stabilizing feedback controllers is proposed to guarantee exponential stability
of corresponding closed-loop systems. Finally, two numerical examples are presented to
illustrate the developed results.

This paper is organized as follows. Section 2 gives the system description, an assumption
and some lemmas. In Sect. 3, some sufficient conditions for exponential stabilization are
presented for a class of uncertain switched neutral neural networks with time-varying delay.
Numerical examples are provided to illustrate the validity of the proposed method in Sect. 4.
Finally, a conclusion and remarks are made in Sect. 5.

Notations: throughout this paper, R" denotes the n-dimensional Euclidean space. R™*™
is the set of all n x m real matrices; * represents the elements below the main diagonal
of a symmetric matrix. M7 means the transpose of M; | - || is the Euclidean norm of a
vector; M > 0(< 0, <0, > 0) means that the matrix is symmetric positive(negative,
semi-negative, semi-positive) definite matrix; / is an appropriately dimensioned identify
matrix; Amax (M) and Ap,ip (M) stand for the maximal and minimum eigenvalue of a matrix
M respectively; Supyxejq,p) f(x) denotes the minimum value of upper bounds of the function
f(x) on the interval [a, b].
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2 Problem Formulation and Preliminaries

Consider the following uncertain switched neutral neural networks with mixed time-varying
delays

x(t) — Cory®)x(t — h(1)) = —Asr)([)x(t) + Bo1)(t) f (x(2)) + Do (1) (1)g(x(t — T(2))
+ Eo(r)(D)u(t),
x() =¢@), Vtel[-1,0], (1

where x(1) = [x1(t), x2(¢), ..., x.(1)]7 € R" is the state vector of the neural networks
associated with n neurons at time . u(t) € R" is the control input.

As)(t) = As(t) + AAc(t)(t),  Bo)(t) = Bot) + ABs(r)(1), Co)(t) = Co(r) + ACs(1)(2),
Ds)(t) = Doty + ADo(1)(t), Eo@r)(t) = Eg@) + AEg)(0).

fx@) = [fiki@®), L), ..., fuea@)])T and gt — (1) = [gi1(x(t —
(1)), ..., gn(xa(t — 7(¢))]7 denote the neuron activation function with f(0) = 0, g(0) =
0.h(t) and t(¢) denote the time-varying delays which are everywhere time-differentiable and
satisfies

0<h(t)<h, ht)y<h<l,

O0<t@®) <7, t@)<t<l1, T=max{hy, 11}, )

for known constants 7y, k1,2 and t. The initial condition ¢(¢) denotes a continuous
vector-valued initial function on the interval [—7,0]. The right continuous function
o) : [0,00) - N £ (1,2,...,N} is the switching signal. The matrices Aq;) =
diag{alya(,), a2, 5(t)s - - » anqa(l)} is the positive definite matrix. A;, B;, C;i, D;i, E;, i €N,
are known constant matrices with appropriate dimension. By ;)(¢) and Dy )(t) are the con-
nection weight matrix and delayed connection weight matrix respectively. The matrices
AAsr)(#),ABs1)(t), ACqx1)(t), ADg()(t) and AEq(;)(¢t) are all unknown time-varying
matrices with appropriate dimensions which represent the system uncertainty and stochastic
perturbation uncertainty, respectively, which satisfy:

[ AA;(t) AB;(t) ACi(1t) AD;i(1) AE;(1)] = H; F;(t)[ Mi M} M M} ML],

where H;, M j., j=1,2,3,4,5,i € N, are known real constant matrices with appropriate
dimensions, F;(t) is unknown real time-varying matrix with Lebesgue measurable elements
bounded by F/ (1)Fi(t) < I.

Assumption 1 [23] Forany i = 1,2, ..., n, there exist constants /;, l;’, ¥; »and yf', such
that
I~ < L}?(ﬂ) <Ir, i=12....n
o —
o< SO Z&B) o, @)
oa—p

where o, B € R, o # B.
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For expression convenience, we denote

Ly =diag{lyIf, 1503, ..., 1,0}, Ty=diagly; vl va vss 0 va v )
Ly = diag ll_+lf’ lz_+l;"wln‘+l;{ ,
2 2 2
N R 2 P S Y +Vn
D=d , . 4
) lag: 2 2 2 @

Lemma 1 [24] For any x,y € R" and a positive definite matrix P € R"*", the following
matrix inequality holds:

—ZXTy ExTPy+yTP_1y. 5)
Lemma 2 [23] For any matrices Q = QT , H, E with appropriate dimensions, the inequal-
ity
O+HFWOE+ETFT(nHT <0,

holds for all F(t) satisfying FT(t)F(t) < I, if and only if there exist a scalar & > 0, such
that the following inequality holds:

O0+¢ 'HHT +¢ETE < 0.

Definition 1 [18] Forany 7> > T; > 0, let N, (T}, T») denote the switching number of o (¢)
on an interval (71, T). If

No(T1, T2) < No+ (T2 — T1)/ 14, (6)

is the chatter bound. Without loss of generality, we choose Ny = 0 in this paper.

holds for given Ng > 0, t, > 0, then the constant 7, is called the average dwell time and Ny

Definition 2 [15] The switched system (1) with u(r) = 0 is said to be exponentially stable
under switching signal o (¢) if there exist two constants k > 0 and A > 0 such that

lx(0)] < ke =g, V> 10,

where (¢l = sup_zg<o{llx(20 + O, lx(t0 + O)I}.

3 Main Results
In this section, we shall state and prove the main results.

3.1 Exponential Stability Analysis

Consider the following uncertain neutral neural networks:

X(1) = Coy()x(t = h(1)) = = Ag(n)()x(1) + Bo(1) (1) f (x (1)) + Do (1)(1)g (x(t — T(1))),
x(t) = ¢(t), Vie[-7,0], (7
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Choose a Lyapunov-like-Krasovskii functional candidate:

Vo) (x(#)) = Vie@)(x (1)) + Voo () (X(1)) + V3 (0)(x(2)) + Vas 1) (x (1))
+ Vso (1) (x(1)) + Voo (1) (X (1)) + Vi (1) (x(2)), 8)

where

Vie@(x(1) = x7 (1) Py x (1),
t
Vao((t) = / X () Qo) x(5)ds,
-1
t

Vao(n(x(1)) = / e“CTOXT ($)Ry(yx (s)ds,
t—hy
t

Vio () (x(1) = / e 0xT(5) Sy x(5)ds,
t—t(t)
t

Vso(o(x(1)) = / TN (U x(5)ds,
t—h(t)

0 t
Voo (n(x(1)) = f / 03T () Ay (s)dsdo,
—T1 t+0
t

Viow(x(1)) = / 60T (x() W1y g (£ (s))ds. ©

t—t(t)

First of all, we give the following lemma.

Lemma 3 Consider the system (7). For given constants o« > 0,p; > 0, the following inequal-
ity holds:

Vi(x(1)) < —aVi(x(1)),

if there exist matrices P, > 0, Q; >0, R; >0, S; >0, U; >0, A; >0, G;j; >
0, Gi» >0, W; >0, X;; > 0and X;» > 0, such that the following matrices inequality
hold for all i € N:

Zi(t) G 1 X;
i) = *  —T11e*M A 0 <0, (10)
* * —11e%M A;

where
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Ej@m 0 0 &y 0 Ej@) I Ejg() Eje(t) & 1)

x &, 0 0 0 0 0 0 0 0
* x 2, 0 0 0 0 0 0 0
* * ok Ej4 Eis 0 0 I 0 0
20) = * * ok % ES"S 0 0 0 0 0 ,
* * % x x —I 0 0 Zg) Eé,lo([)
* * ok ok ok * E§7 0 0 0

* * ok %k ok * *  Hgg Hggt) Eé,lo(t)

i i
X ok ok ox ok ok xx By Ey

i
* * ok %k % * * * * “10,10(0_

Ei() = —PiAit) — AT()Pi + 0 Pi + Q; + R; + S; + Uy + ¢~ (G,T1 + Gil) — L -1,

Ely=e(Gh —Gu). Sig) = B+ Lo, Eist) = D),

Eio(t) = —pi AT (OP;, B 1o(t) = pi Al (VP + PiCi(1), B3y = —(1 —h)e *"U;,
Bl = —e MR, Bl = —(1—1)e TS, + e (—G,.T2 — G+ XL+ X“) e
Sl = e (Xh = Xun), 8ls=—-e"0; — ™ (X] 4 Xi2),

Eio) = pi Bl ()P, E{ o) =—pi Bl (OP;, Bl =W; -1,

By =—(1—0)e "W, — I, Ei(t) = p;D] (1)P;, 5y 1o(t) = —pi D] ()P,
By =1 i — 2piPi, E§19=piPi, Eig10) = —2pi PiCi(2),
Gi=[6%00G65000000]",
X;=[000x7% x500000]".
Proof Assume o(t) =i,0(t, ) = j, i,j € N. Whent € [t, tx+1), we have o(¢) = i.
Along the trajectories of system (7), the time derivative of V;(x(t)), k = 1,2,...,7, can
be obtained:
Vii(x () = 2x " (O P[Ci(D)x(t — h(t)) — Ai(D)x(1) + Bi (1) f (x(1)) + Di()g(x(t — T(1)))],
Vai(x () = xT (1) Qix(t) — e~ xT (t — 1) Qix(t — 7)) — a Vi (x(1)),
Vai(x() = xT(ORix(t) — e~ xT(t — h)Rix(t — h1) — aV3i(x(1)),
Vai(x(0) = x" (O)Six(t) = (1 — 1(0)e™*" OxT (¢ — 1) Six(t — T(1)) — Vi (x(1))
<xT@)Six(t) — (1 — De M xT (¢t — T()Six(t — T(1)) — & Vai (x(1)),
Vsi(x()) = xT ()Uix(t) — (1 — h(t)e " OxT(t — h(t)Uix(t — h(t)) — a Vs (x (1)
<xTOUx(t) — (1 = e " xT(t — h(t)Uix(t — h(1)) — aVsi(x(1)),
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t
Voi (x(1)) = —a Vi (x(1)) + 11 27 (1) A (1) — / eS0T () A i (s)ds

-1
t

< —aVei(x() + T1xT (1) A x(1) — e @0 / T ()Aix(s)ds,
=1
V3i(x (1)) = —a Vi (x(1)) + g7 (x())Wig(x(1)) — (1 — #(1))e ™
x gT(x(t — T Wig(x(t — T(1))
< —aVyi(x(0) + 8" (x(1)W; g(x(1)
— (=D Mgl (x(t — T()W;g(x(t — T(1))). (11)

Let
S(t)z[xT(t), X' —n@y), xT@—h), xT@—w@), xT¢t—-1), frxae),
T
g ). T — ), &) T —h))]

Using the Newton Leibniz formula, it follows

t

ZST(t)Gi |:x(t) —x(t — (1)) — / X(s)yds | =0,
t—t(t)

t—t(t) .

26T (1) X, |:x(t — () — x(t — 1)) — / %(s)ds | =0, (12)

-1

where
Gi=[G0065,000000]",
X;=[000x% x500000]".

According to Lemma 1, one obtains
t t
— 267 ()G f $(5)ds = f (- 2ET ()G (s)ds

t—t(t) t—1(t)
t

<tET (G AT'GT () + / 1T () Ak (s)ds

t—1(t)
t

<0t (0G: AT Gl e@r) + / T (s) Ak (s)ds,

t—t(t)
—2(r) t—1(t)
e / H(s)ds = / (= &7 ()X, 5(s)ds
-1
—T1
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t—t(t)

<(m—tETOX; AT XTED) + / xT(9)Aix(s)ds
-1
t—1(1) 1
<us' X AT X e + / T (s)Aix(s)ds.
=1
So, it follows that
t t
/ () Aik(s)ds < 1g" (G AT Gl EW) +28T (NG, / i(s)ds,
t—1(t) r—t(t)
t—1(t) t—1(t)
/xT(s)Aix(s)ds5ngT(t)X,»A;leg(t)+2gT(t)X,- / x(s)ds. (13)
t—11 =1

From (13), we have

t—T1 —1(1) =1

t t t—1(1)
—e~ % /)'CT(S)A,)'C(S)dse‘”‘[/ T () Aix(s)ds + f )'cT(s)Ai)'c(s)ds]
t

t

<e™om [stmG,- / i(s)ds + g (G AT G E(r)
t—1(t)

t—1(t)

26T ()X, /

1—11

i(s)ds + T X AT X S(t):|

= e 267 (G Lx(0) - x(t — 1)1+ 26T (OX;
X [x(t — (1)) — x(t — 1]
+1ET (G AT Gl E() + rléT(t)X,-Ai_lXiTé(t)}. (14)
From Assumption 1, we get
(fi(xi(0) = 17 xi () xi (1) — fi(xi (1)) = 0,

(&i(xi (D) — v xi )y xi(1) — gi(xi (1)) > 0,
(&i(xi(t — (@) — v, xi(t — TN xi(t — T(1))) — gi(x;(t — (1)) = 0.

So, it follows that

x(t) _T-—Ll Ly r x(1)
[f(x(t))_ |+ T _f(x(t)):| =0, (15)
x(7) —T_—Fl I T x(1)
[g(x(t))_ | *x —T ] _g(x([))] >0, (16)
xt—t@) V'[=n ][ xt—10)
[8(X(t —to) | | * 1] e~ T(z)))] 20, a7

where L;, I7, i =1,2, are given by (4).
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From (7), one obtains
2pi[&7 (1) — T (t = RO P[—3(6) + Ci()x(t — k(1)) — A ()x(2)
+Bi(1) f(x(1)) + Di(1)g(x(t — T(1)))] = 0, (18)
From (11), (14)—(18), we have
Vi) + Vi) < €70 S0+ e (GiaT 6T + xiaT x] ) Jew, a9)

where
—El’](t) 0 0 8], 0 Eic@) I Eig(n) E19() E 100 T
* By, 0 0 0 0 0 0 0 0
* * 85 0 0 0 0 0 0 0
* I Eis 0 0 D 0 0
(1) * ¥ % ok Hig 0 0 0 0 0
=ill) = o) o8
* * ok ox ok —] 0 0 5_469(t) ._46’10(t)
* * ok % % * &5 0 0 0
=i =i =i
* * % ok % * *  Hgg ‘_,89'(t) "‘8,10(t)
=i =i
* * k% % * * * E99  Eo10
| * P T * * * * 800 ]

i) = —PiAi(t) — AL (OP; +aPi + Qi + R + S; + Ui + e *"(G], + Gi1) — Ly — I,
Bly =" (G}, = Gi), Ej¢(t) = PiBi(t)+ Ly, E{3(t) = P;Di(1),

Eio(t) = —pi AT OP;, 8 1o(t) = pi Al (OPi + PiCi(t), 5}y = —(1—h)e *"U;,
Bl =—e MR, 8l =—(1—1)e 1S +e (=G — Gin+ X1, + Xi1) — I,
Bis = ¢ (X — Xin). B35 =—e "M Q; — e (X + Xi),

Eeo(t) = pi Bl (O, 85 10(t) = —pi Bl ()P, 837 = Wi — 1,

Sy =—(1—0)e "W, — 1, Fg()=pD] (P, Ego(t) =—piD] ()P,
B0 =11Ai — 2piPi, 850 =piPi, Elg100) = =20 PCi(0).
From (19), using Schur complement and (10), we can get
Vi(x(1) < —aVi(x(1)).
This completes the proof. a

Theorem 1 Under Assumption 1, for given constants o > 0, u > 1, p; > 0,6 >0, i € N,
the system (7) is exponentially stable for any switching signal with the average dwell time
satlsfymg T, > (Inu) / o, if there exist symmetrlc and positive definite matrices Y;, Q;, R;,
S:, Ui, A;, W; and any matrices Gi1, Gio, Xi1 and Xi» such that the following LMIs hold
foralli, j e N:

& uG _ uX; Y’
= * —11e%T1A; 0 0
X = - 0 20
! * * —11e%TTA; 0 = (20)
* * * —&il

Yi suYj, Qi =wpQj. R <uRj, Si=uS;, Ui =pUj, A;j<pdj, W <pW;,

@2y
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where
r_ i i P ]
i = = 75
&y 0 0 &y 0 &Yl Di By &y
1
* Eyy 0 0O 0 0 O 0O 0 0
x % — R0 0 0O O 0 0 0
i
% ok * Ejy 84 0 0 Vil O 0
i
_ * ok * * Hss 00 0 0 0
Ei: ,\i ~1
* 0k * * + =1 0 0 Fg B¢
1
* % * * ok % H, 00 0
i i i
Py Py
* % * * % k% x Hgg Hg g
i
| * * * * * * * * 510,10_
élil:—AiYi—YiAiT+O{Y,‘+Q,‘+R3i+si+0i+e_ar](GiTl+G,‘1)—L1Yi—Y,'Ll
— Y — Y, +21 +&; H: H
B, = e (Gl — Gi), Tyg= Bi+YiLy, Eyo=—pYiA 410 HiHT
Sy =€ ( i2 = zl)s Sy =Dbi+ YLy, Zy9g=—pitiA; t&piid;,

Al Al -
Erw=pYiAl +CiYi —eipi HiH, 55 = —(1 — e " U,

E£4 =—(1- ‘L')e_(”ls‘i +e_atl(—GiT2 — GiZ +)_(1T1 +Xi1) —nNY, =Y n+1,
_ _ ~i _ _ _
s=e (XL —Xi1), Bs5=—e "0 —e (X +Xi),

1

i
= T 5
i Be10=—piBi, Ep=Wi—1I
~i i T ~i p
Bgg=—(1—0)e "M W; =1, Eg9=pDj, Eg10=—piD;,

L

o =T1A;i — 2p;Y; +eip} H HT Eg90=piYi — eipP HHT

G =[GL00GL000000]",
X;=[000X% X5 00000]",

93 =[-M{Y; 0000 M} 0 M} 0 MiY;].

o

Proof Note that X;(¢t) < 0 is not standard LMIs due to the existence of parameter uncer-
tainties, which will be further dealt with via the following approach. X;(f) can be written
as

i) =2+ A1), (22)
where
. [& uG 11X ) AZi(1)00
X = * —fle‘”l A; 0 s AE,‘(t) = * 00 |,
* * —11e¥M A; *  *0
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_F:fl 0 0 Eis 0 E:'fs I3 PiD; éb éf,lo_
* 8l 0 o 0 0 0O 0 o 0
¥ x — R0 0 0 0 0 0 0
* % * By Ejs 0O 0 In O 0
- * %k * * B 0 0 0 0 0
S = * % * * x —1 0 0 éé9 éé,lo ’
* %k * * ok X E§7 0o o0 0
ko ok * ko ox ok ok Eég E:'§9 éé,lo
ko ok * ko okx ok ok * 559 Eé.lo
B * * ok % ok ok Kk :":'io 104
AZL (10000 AZI(1) 0 ABL() AE[y(t) AE] (1) ]
* 0000 0 0 0 0 0
* *000 0 0 0 0 0
* *x00 0 0 0 0 0
A * * % % 0 0 0 0 0 0
AEM=1 1w wwsx 00 0 ABLM ABL0 |
* * k% ok * 0 0 0 0
* * % k% * * 0 A:":'é9(t) Aéé,lo(l)
* * k% ok * * * 0 0
L * % %k k% * * * * Aéfo_lo(t)_

{1 =—PA; —A Pi+aP; +Q,+R +S +U; +e’°”1(G +Gj1)— Ly — I,
1’6_PB +Ly, Elg=—pAl P, B, =pAl P+ PG,
10=—piB Pi, Ej=pD] P,
Ei o= plDz Pi. &, 10= —2pi PiCi,
AE[ (1) = =P AAI(D) — AAAI (P, AEZl(t) = PiAB;(1),
AE[g(1) = PIADi(0). - AZio(t) = —oi AA] ()P,
A 1o(1) = pi AA] (DP; + P ACi (), A._,69(t)_p,AB ()P,
Aué 100 = —pi AB] (1)) P;, ugg(t)—plAD )Py,
AE{ ()= —pi AD] (1)P;,  AEL) 1o(1) = —2p; P; ACi(1).

The other parameters are the same as (10). According to Assumption 1, X;(¢) could be
rewritten as

. [ | ©)" |
S=%+| 0 [Fo[e;00]+| 0 [F'®[@)HT00], (23)
0 0

where
Ol =[HTP,0000000 pHT P —pHI P;]",
Oy =[-M, 0000 M0 M0 M].

By Lemma 2 and Fl.T (F;(t) <1, Xi(t) < 0holds if and only if there exists a positive scalar
&; such that,

) o] CO
Si+ve| 0 [[@DT00]+e | 0 |[©i00]<0. (24)
0 0
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Using Schur complement, (24) is equivalent to the following inequality

. Tei @7
Sive| O @001 01|, 25
* —& 1
Equation (25) could be rewritten as:
Ei+e0{@D"  uGi uXi (@7
o= : —tle::fl A _-L-legfl A 8 <0. (26)
* * * —&il

Set
m=diag{ P P PR R L L LR P Y= P R = P X P
Oi=pP'oiP" Ri=P'RiP
S=pP'RP7', U =P 'UP,
Ai=P'APTY, Giy=P 'GP
Gi2 = P;]Gigpiil, )_(1‘1 = P;IX“P.
Using @ = diag{Il, Plfl, Plfl, I} pre- and post- multiply the left term of (26), the following
matrix inequalities are obtained:

g,  uhoGp! ulnx;pmt men’
_ —1 ot 4. p—1
PP — * —T P e*A; P 1O 1 0 <0
* * T P e A P 0
* * * —&; 1
where
i i i i i 7
g 0 0 Eiy 0 EYila Di By &9
Py
5y 0 0O 0 0 O 0 0 0
* —emp7lRp”t 0 0 0 0 0 0 0
i i
* ok * By 545 0 0 Yl O 0
1
~ * ok * * Bs55 0 0 0 O 0
El = 1 1 5
k ES * * * -1 0 0 E69 EG 10
i
* % * *  x % s 0 0 0
Py i i
N
¥ % * * ok % * *  Egg Egqg
i
* % * * % % * * * 10

i _ - - - - _
B =-AY — Y,‘AiT+O[Yi +Q;+R+S;+U; +€_arl(GiTl + Gi1)
—YiL\Y; — Y;\Y; + & H;H],

i

i i
_ =T = = - T T
u=e "Gy —Gii, Eg=Bi+YiLa, 89g=—pY;iAj +eipiHiH; ,

Q)
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i

Al —~ -
B0 =pYiA] +CiY; —eipi HHT, 25 = —(1—he MU,

&3] )

s =—(1=1)e M8 +e N (=GL — G+ XL + Xi) — Vi Y3,

6] )

i
- T = —an 5y, et 5T 4 %
5= M](X il)v g5 = —¢€ Y0 —e ar](Xiz*'Xiz),
I

1
i

4

l

4

i i

60 =piBl, Bsio=—piBl, By =Wi—1I,
i

8

i

9

6] )

i i
- = T = T
—(1 =)™ "W; -1, Egg=piD;, Eg19=—piD;,
i

o=T14A; — 2piYi +eipf HiH], Eq o= pi¥; —eip} HiH},

6] )

8

’ [I])

;’7110’1 = —2p,CiY; + &;p; HlHT
Gi=I[Gl, 0 0 G5,b 00000 0,
X;=[0 00 X, x5 0000 0,
O =[-MiY; 0000 Mi, 0 M, 0MyY;].
From L; > 0, we can get
(P = DLy(PT = 1) > 0.
So, we have
~P 'L P <P - LiPT
that is
—Y;L1Y; < —Y;Ly — L{Y; +1.
From (20), we have 2 < 0, so it follows
() < 0.
From Lemma 3, we have
Vi(x(1) < —a Vi (x(1)). 27
From (27), it follows that
Vo) (x(1) < e U TOVo ) (x(t0)), 1 € [tk re)-
We have

Voo (x(0)) < e @OV, (0 (x (1))
< e TRV g (@)

IA

< pheloDemalt=ly . (x(1))
20 (-1
SpnTlae Vo (1) (t0)

In
< @Y 1), (28)
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From (8), it is easy to know that there exist scalars a, b such that

allx@®)I* < Vi) (x(0),
Vot (t0) < bllgl%, (29)

where
= min} Amin (P},
a 1};11{]1{ min( l)}
b = max{Amax(P;)} + 11 max{Amax(Q;)} + h1 max{Amax (R;)}
ieN ieN ieN

+ 71 max{Amax(S;)} + 71 max{Amax(U;)}
ieN ieN
4
2 —\2 —
+(v/2) max{Amax (40} + 37 r}le%((yf +y7 ) =y, )T?E?}\)I({kmaX(Wi)}«

From (27)-(29), we obtain

b 1, Iy
Ix @)l s\/;e 2@ 70016 (30)

This completes the proof. a

3.2 Exponentiall Stabilization of Uncertain Neutral Neural Networks

For switched neutral neural networks (1), we consider the following state feedback controller
u(t) = Konx(1). (€28)
Under the controller (31), the corresponding closed-loop system is given by

X(1) = Coy()x(t = h(1)) = —=(Aon)(t) = Eot)(1)Ko@)x(1) + Bi (1) f (x(1))
+ Ba(1) f(x(r — (1)),
x() =), Vie[-7,0], (32)

Theorem 2 Under Assumption 1, for given constants « > O,u > 1 p; > 0,8 > 0,i €
N, the switched neutral neural networks (1) is exponentially stabilizable under feedback
controller (31) for any switching signal with the average dwell time satisfying T, > (Inp)/c,
if there exist symmetric and positive definite matrices Y;, Q,-, Ié,-, §i, U,-, Ai, Wi, and any
matrices Z;, C_}il, C_}iz, )_(H and )_(iz such that the following LMIs holdforalli, j € N,i # j:

& uG  uk (@

o * —T](:"”]A,' 0 0

i = * * —71e*MA; 0 <0, (33)
* * * —el

Yi <uYj, Qi <pnQj, R <puR;, S <uS;, Ui < pUj, Aj < pdj, Wy < uW;, (34)
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where
r . i i _ ~ .
i = = .ol i
i
IOPY 0 0o 0 0 O 0O O 0
x % — MR, 0 0 0 0 0 0 0
i
* % * By 85 0 0 Vi O 0
i
5 * % * * Hs5 0 0 0 o0 0
5 = I , 35)
1

* % * * k% 4 0 0 0
I AN A

* % * * %k kx  Hgg Hgg Egp
i

* % * ko ok ok * * g9 Egqg
i

| * ok * *x ok % * * * Hy 10 |
El =AY, — VA +aY; + Qi + R + 8 + U + e " (G, + Gi1) — L1Y; — YLy

— Y =Y +21 +e; H:H' + E; Z; + ZT ET
éfg = —piYiAiT+€ipiH,’HiT+,0,'ZiTEiT,
S0 T T T T
Eio=pYiA; +CY; —eipiHH —p;Z] E;,

=i

By =—1—=1)e M8 +e (=G — G+ X, + X)) — Y, — Vil + 1,
O =[-MiY; +MiZ; 0000 M 0 M, 0 MY |.

and the other elements in (33) and (35) are given by (20). Moreover, the controller gains are
constructed by

Ki=27Y"", ieN

Proof Consider the system (32). Using Theorem 1, replace A; (t) with A;(t) — E;(¢)K; and
notice K; = ZYlfl, (33) can be get. This completes the proof. O

4 Numerical Examples

In this section, two examples are given to illustrate the effectiveness of the proposed approach.

Example 1 Consider uncertain switched neutral neural networks (1) composed of two sub-
systems with the following parameters:

0.6 0 03 0 14 2
Al:[ 0 0.2}’ Az:[ 0 0.3}’ 312[0.3 0.6]’
0.5 0.7 [—14 0 230
32:[0.6 0.2 } “=1 0 —0.4]’ sz[ 0 0.4]’
1.6 0 54 0 6.7 0
Dl—[ 0 —4.5}’ Dz_[ 0 —3.4} El_[ 0 3.9]’

[-480 _[307, [30 1 _[o01 o
Ez—[ 0 6.3]’ Hl‘[oz_’Hz‘[oz]’ M‘—[ 0 —o.oz]’
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» [002 0 . _[oo1 o » 002 0
Ml—[ 0 —003|° M2=| o —o03| M= o —-0.07 |
1 _[-002 o0 > [—004 O 1 [004 0

M3_[ 0 —0.01]’ M3_[ 0 —0.05]’ M4_[ 0 003
> [0.02 0 1 _[-001 o0 > [—0.02 0 ]
M4_[ 0 0.03]’ MS_[ 0 —0.07]’ MS_[ 0 —0.06]

h(t) =03 +0.3sin(z), 7(t) =0.2+0.1cos(?).

F(x(@)) = [tanh(0.08x1(z)), tanh(0.08x2(1))]7,

g(x(t — t(1)) = [tanh(0.12x(t — ©(2)), tanh(0.12xx(z — t(t))]".
Obviously there is

Ly =diag{0.04, 0.04} L =diag{0, 0}, I = diag{0.06, 0.06},

I =diag{0, 0}, h; =06, 711=03, 7=0.1, h=03.

We take p1 = 0.15, pp =024, e1 =13, ep =15, u=2.5, a=0.5.
By utilizing the MATLAB LMI Toolbox solving (33) and (34), feasible solutions can be
obtained as follows:

y, = [ 18675 —00120] 5 17339000307 5 [ 22873 0.0073

"= -00120 48814 1= 10.0030 4.1020 | " T | —=0.0073 5.3746 |’

g _[1745500028] - _[1.89940.00737 - [ 09085 —0.01787 . _
17100028 40158 | 77 7| 0.0073 49766 | 1 T | —0.0178 4.3986 oo
wo [ 11534 000377 o [-10.6204 00297 7 - [ 12.7180 —0.0400

= | —0.0037 0.6655 00297 —17.7516 771 T | —0.0400 20.2326 |
G [ 131088 0.0383 7 - [ 127376 —0.0393 2. _ [ 122364 0.0349
A7 00383 213155 7 T [ —0.0393 20.1208 |’ T 0.0349 —19.1660 |
5 _ [ 127747 —0.0400] o [ —12.9809 0.0400 - [ 127675 —0.0398
27 —0.0400 204491 | T2 T | 0.0400 —20.9831 [ 72T | —0.0398 20.4090 |’
4. _ [ —438428 —0.0410 4, _ [ 36953 —0.0183

"7 -0.0410 —10.0260 | “* T | —0.0183 —3.6446 |°

Then the controller gains are given by

Ko | —2:5934 —00148] [ 1.9788 0.0011
171 -00352 —2.0540 |° 727 | —0.0146 —0.7467 |’

According to Theorem 2, the switched neutral neural networks (1) is exponentially stabi-
lizable under the feedback control (31) for any switching signal with the average dwell time
satisfying T,, > 1.8326.

Figure 1 shows the switching signal and the state trajectory of the closed-loop switched
neutral neural networks. From Fig. 1, itis easy to see that the switched neutral neural networks
(1) is exponentially stabilizable under the feedback control (31).

Example 2 Consider uncertain switched neutral neural networks (1) composed of two sub-
systems with the following parameters:

0.6 0 13 0 0.4 0.2 0.5 —0.1
Al_[ 0 0.6}’ Az_[ 0 1.1} Bl_[os 0.6]’ B2 = [0.3 0.2 }
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Fig. 1 State trajectory of the closed-loop switched neutral neural networks under switching signal o ()

00 2 0 50 40

C1=C2=[00:|, 012[0_4], D2=|:0_3], E1=|:03},

_[-420 30 30 . _[oo1 o0
EZ_[ 0 5.3}’ Hl_[oz]’ HQ‘[oz]’ Ml_[ 0 —0.02]’

» [002 o0 . _[oo01 o » 002 o0
Ml—[o—o.o3’ My=1"9 _o03| M= :

00 0.04 0 002 0
M31:M32:[00]’ Mi:[ 0 0.03]’ M‘%:[ 0 0.03]’

. [-001 0 , [-002 0
MS_[ 0 —0.03]’ MS_[ 0 —0.05]’

h(t) =0.2+0.2sin(t), 7(r) =0.1+0.1cos().

f&(@®) = [tanh(x (1)), tanh(oE)]”,
gx(t — (1)) = [tanh(0.2x1(t — 7(¢)), tanh(0.2xy(t — t(t))]T.

Obviously there is

Lo =diag{0.5, 0.5} Ly =diag{0, 0}, I» = diag{0.1, 0.1}, I'1 =diag{0, 0}, h; =
0.6, 71=03, =01, h=0.3.

Wetake p1 = 0.5, pp =03, e1 =13, e =16, u =13, «a=0.2.

By utilizing the MATLAB LMI Toolbox solving (33) and (34), feasible solutions can be
obtained as follows:

i

6.1809 —0.0013 O; = 7.0703 0.0015
—0.0013 6.3102 |’ ' 710.0015 7.2179 |’

[ 4.4029 0.0021:| |:6.3958 0.0016:|

Ri=1_0.0021 4.4309 51 =1 0.0016 6.5090
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22

State response and switching signal

-3 L 1
0 5 10 15
time(s)

Fig. 2 State trajectory of the closed-loop switched system under switching signal o ()

- [3.8864 0.0021} : [18.4132 0.0037] P12
i = ) ’ — L&

0.0021 3.9144 =1 0.0037 19.3815
|: 3.1623 —0.()492] |:—119.8959 —0.0021 ]
) 1= )

Q

W= —0.0492 1.1772 —0.0021 —123.6164

G, _ [ 11526737 0.0057 G [ —119.0128 —0.0100
271 0.0057 119.1783 |’ 2871 _0.0100 —121.4332 |

- [117.0148 0.0081 - [—120.2690 —0.0106
271 0.0081 119.2635 |’ =1 _00106 —122.6040 |’
2., _ [117.9901 0.0086 2. _ [ —117.9358 —0.0099
271 00086 1202179 |° “2' = | —0.0099 —120.3014 |’

2., _ [ 118.0324 0.0085 4 _ [ 22834 —0.0389
271 0.0085 1203156 |° “' = | —0.0389 —2.8536 |’

4 _ [ 47928 —0.0288
271 —0.0288 —3.7641 |

Then the controller gains are given by

c _ [—0.3694 000627 [ 07754 —0.0044
P= 1 -0.0064 —0.4522 |© "2 7 | —0.0048 —0.5965 |’

According to Theorem 2, the switched neutral neural networks (1) is exponentially stabi-
lizable under the feedback control (31) for any switching signal with the average dwell time
satisfying 7, > 1.3118.

Figure 2 shows the switching signal and the state trajectory of the closed-loop system.
From Fig. 2, it is easy to see that the closed-loop system is exponentially stable.
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5 Conclusions

In this paper, the exponential stabilization of a class of uncertain switched neutral neural
networks with mixed time-varying delays in the state variable has been studied. Based on
the multiple Lyapunov-like functional method and the average dwell time method, a set of
sufficient conditions was developed in terms of LMIs by assuming conditions on the system
parameters, which guarantee exponential stabilization of the uncertain switched neutral neural
networks. Moreover, a design scheme for the stabilizing feedback controllers is proposed.
Finally, two numerical examples are given to illustrate the effectiveness of the results.

In our future work, the proposed methods will be extended to more general uncertain
stochastic switched neural networks with interval and distributed time-varying delays.
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