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Abstract
In thiswork, a robust clustering algorithm for stationary time series is proposed.The algorithm
is based on the use of estimated spectral densities, which are considered as functional data, as
the basic characteristic of stationary time series for clustering purposes. A robust algorithm
for functional data is then applied to the set of spectral densities. Trimming techniques and
restrictions on the scatter within groups reduce the effect of noise in the data and help to
prevent the identification of spurious clusters. The procedure is tested in a simulation study
and is also applied to a real data set.

Keywords Time series clustering · Robust clustering · Robust functional data clustering ·
Spectral analysis

1 Introduction

Interest in the problem of finding clusters of time series has grown in recent years. A variety
of methods have been proposed, and applications to several different fields have been studied.
However, many of these methods are sensitive to the presence of outliers in the sample. A
robust clustering algorithm for stationary time series that considers the possible presence
of contamination and is based on the analysis of spectral densities as functional data is
proposed in this work. A mixture modeling approach is adopted for the functional clustering
approach developed. To achieve robustness, the possibility of trimming certain fraction of
the (hopefully) most outlying time series is considered. The introduction of appropriate
constraints on the clusters’ scatter parameters is another key ingredient of the proposed
method. These constraints aim to avoid a well-known drawback in mixture modeling which
has to do with local maxima of the likelihood resulting in the detection of non-interesting
or “spurious” clusters. The method considered in this work has robust characteristics that
reduce the effect of noise in the sample and hinder the detection of spurious clusters.
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Liao [31], Caiado et al. [9], Aghabozorgi et al. [1] provide extensive revisions of the
time series clustering area (see also [20]). A time series clustering package in R, with a wide
choice ofmethods, was developed by [33]. According to [31], there are threemain approaches
to time series clustering: procedures based on the comparison of the raw data, procedures
that depend on the comparison of models fitted to the data and, finally, methods based on
characteristics derived from the time series. Our proposal falls within the third group, and
the feature used to assess the similarity between time series is the spectral density.

Other authors have considered the spectral viewpoint for time series clustering. For
instance, [7,8] considered the use of periodogram and normalized periodogram values. [32]
propose a fuzzy clustering algorithm based on the estimated “cepstrum”, which is the spec-
trum of the logarithm of the spectral density function. [3,17] use the total variation distance as
a dissimilarity measure between normalized estimates of the spectral densities for time series
clustering. A brief review of these two algorithms will be given in Sect. 2. Other distances
such as the Kullback–Leibler divergence [34] have been used. A discussion on its use in
cluster analysis of time series can be found in [39]

Our approach relies on the use of functional data clustering as a tool for grouping stationary
time series, and the functional object considered is the spectral density. The use of Functional
Data Analysis in Statistics can be reviewed in the following two monographs: [18,35]. A
recently developed algorithm for robust functional data clustering presented in [36] is used
on the normalized estimated spectral densities to cluster the corresponding time series. This
procedure will be described in Sect 3. Some preliminary results on this approach, for robust
time series clustering, were presented in [37].We extend this work herewith special emphasis
on how to choose, in practical applications, the several tuning parameters involved. Various
clustering procedures for functional data have been proposed in the literature as, for example,
[6,28,29] but they are not aimed at dealing with contamination by outlying curves, which is
a commonplace in (unsupervised) Data Analysis. Trimming techniques for robust clustering
of functional data have been also used in [13,22].

Several works have focused on developing robust algorithms for time series clustering.
[42] obtain Independent Components for multivariate time series and develop a clustering
algorithm, known as ICLUS to group them with good robustness performance. [15] use
autoregressive models and a fuzzy approach to propose a robust clustering model for time
series. A partition around medoids scheme is adopted and the robustness of the method
comes from the use of a robustmetric between time series. [16] present robust fuzzy clustering
algorithms for heteroskedastic time series, based on GARCH parametric models, using again
a partition around medoids approach. Three different robust models are proposed, following
different robustification approaches: metric, noise, and trimming. [5] propose a clustering
framework for functional data, known as Functional Subspace Clustering, which is based on
subspace clustering [41] and can be applied to time series with warped alignments.

Many of the previously commented methods for robust clustering are based on the par-
tition around medoids (PAM) procedure. Although it is true that PAM entails a noticeable
robustification in most cases, it is also known that a single outlying observation placed in a
harmful position can still break PAM-based clustering results down (see [21]). In fact, when
using PAM, protection against “gross” outliers is not fully guaranteed and “gross” outliers
may often be present in Data Analysis applications. Trimming is also useful because it nat-
urally helps to identify potential outliers, as long as trimmed observations are considered as
the potentially “most outlying” ones. The proper identification of outliers is an interesting
task in itself if the researcher is able to explain why these observations differ from the bulk
of the data. The consideration of constraints is also an important feature of the proposed
methodology given that they allow us to obtain a wider range of different solutions, accord-
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ing to the degree of the constraint imposed, so that one of them can better fit the researcher’s
clustering aims. Constraints also turn the corresponding likelihood maximizations into a
mathematically well-defined problems and they prevent the detection of spurious clusters
[24,25].

The paper is organized as follows: Sect. 2 considers time series clustering and describes the
idea behindour proposal. Sect. 3 gives a brief description of the robust clustering procedure for
functional data that supports the time series clustering algorithm. Sect. 4 provides information
about the choice of the several tuning parameters involved. Sect. 5 presents a simulation study
designed to compare the performance of the algorithm with existing alternatives and Sect.
6 gives an application to a real data set. The paper ends with some discussion of the results
and some ideas about future work.

2 Spectral Densities and Time Series Clustering

In this section, we describe the main ideas behind the proposed clustering method. The
general problem is that of clustering a collection of stationary time series. Assume that we
have data from n time series:Y1 = {Y1t }τ1t=1,…,Yn = {Ynt }τnt=1, i.e. different series may have
different lengths. The spectral densities φ1, . . . , φn for these series are estimated using one
of the many methods available, and these functions are used to compare the different time
series to obtain homogeneous clusters. As we mentioned, previous methods for time series
clustering based on the spectral domain rely on similarity measures for differentiation. In
contrast, in this work, the spectral densities are considered as functional data and the robust
clustering algorithm presented in [36] is used. Time series belonging to the same cluster will
have spectral densities similar in shape and therefore similar oscillatory characteristics. The
algorithm is sensitive to the presence of contamination in the sample of spectral densities,
which correspond to time series having unusual oscillatory behavior.

In Sect. 5 the method proposed in this paper will be compared with three other methods
based on the estimated spectral densities as the characteristic feature of each time series. Two
of them were proposed in [3,17] and will be described briefly in what follows. We refer to
them as “TVDClust” and “HSMClust”, respectively. The third one is based on the use of the
well-known Kullback–Leibler divergence.

“TVDClust” and “HSMClust” use the total variation distance (TVD) to measure dissimi-
larities between spectral densities. This distance is frequently used for probability measures
and if the measures P and Q have densities f and g, the TVD between them is given by

dTV ( f , g) = 1 −
∫ ∞

−∞
min( f , g) dx = 1

2

∫ ∞

−∞
| f − g| dx . (1)

The first equation helps to interpret the meaning of this distance. If dTV ( f , g) = 1− a then
the common area below the curves representing f and g is a. In consequence, the bigger the
common area, the closer the two densities and the smaller the TVD.

However, spectral densities are not probability densities, since their integral is not neces-
sarily equal to one. Hence, they have to be normalized so that the total area below the curve
equals one. These normalized spectral densities will be denoted as x1, . . . , xn in the sequel.
This is tantamount to rescaling the time series so that its variance is one. Thus, the oscillatory
behavior of the series and not the size of the oscillations, is the basis of these algorithms.

The “TDVClust” method, proposed in [3], uses a classical hierarchical agglomerative
algorithm, fed with a dissimilarity matrix that contains the TVD between all pairs of normal-
ized spectral densities. Two linkage functions, average or complete, can be used to obtain a
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dendrogramwhich can be cut to obtain the desired number of groups. The number of clusters
is selected using an external criterion, such as the Silhouette or Dunn’s index. More details
can be found in [3].

The “HSMClust” (Hierarchical Spectral Merger) method is a modification of the previous
one. The difference is that every time two clusters are joined, the information in them is used
to obtain a new characteristic spectrum for the new group. This can be done by taking the
average of all the spectra in the new cluster which is the “average” option or by concatenating
the corresponding time series and estimating a new spectral density, which is the “single”
option. Under the assumption that the time series in the same cluster come from the same
model, either of these procedureswill give a better estimation of the common spectral density.
Hence, every time two clusters are joined the dissimilarity matrix reduces its size while in
the previous algorithm the dissimilarity matrix is the same during the whole procedure, and
the distances between clusters are calculated using linear combinations of the entries in this
matrix. The linear combination used varies according to the linkage function selected. Euán
et al. [17] present two methods for selecting the number of clusters, one method is based
on the distance between the closest clusters at each step, and the other is based on bootstrap
procedures. More details can be found in the reference. This method, has been implemented
in R and is available at https://es.kaust.edu.sa/Pages/CarolinaEuan.aspx.

Finally, the use of the Kullback–Leibler divergence in this context has been reviewed in
[3], where its performance is compared with the two methods we have just described. This
method will be denoted as ‘KLClust” in what follows.

3 Robust Clustering for Functional Data

In this section, we review themethodology introduced in [36] for robust functional clustering.
Let us assume that X is a random process taking values in L2([0, T ]), the Hilbert space of
the square integrable functions in the closed interval [0, T ]. The inner product in that space
is defined as 〈 f , g〉 = ∫

f (t)g(t) dt and ‖ f ‖2 = 〈 f , f 〉.
The well-known Karhunen-Loève expansion allows representing the random process X

through the expression:

X(t) = μ(t) +
∞∑
j=1

C j (X)ψ j (t), (2)

where μ(t) = E{X(t)} and ψ j are the orthonormal eigenfunctions of the eigen-equation:

〈Γ (·, t), ψ j 〉 = λ jψ j (t), (3)

for the covariance operator Γ (s, t) = cov(X(s), X(t)). The random variables C j (X) are
known as the principal components and are obtained as C j (X) = 〈X − μ,ψ j 〉. These
principal component variables are uncorrelated with E(C j (X)) = 0 and Var(C j (X)) = λ j .
The λ j are chosen in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λ j ≥ · · · and satisfy∑∞

j=1 λ j < ∞.
A finite dimensional approximation of the random process X can be obtained by taking

only the first p terms in the expansion (2). Moreover, if fC j (·) denotes the probability density
function (p.d.f.) of the random variable C j (X) and c j (x) = 〈x, ψ j 〉, it is shown in [14] that
log P(||X − x || ≤ h) can be approximated by

∑p
j=1 log fC j (c j (x)) for small values of

h. This approximation holds for any x ∈ L2([0, T ]) and, thus, the joint distribution of
(C1(X), . . . ,Cp(X)) can be used to define a kind of “small-ball pseudo-density” in the
context of Functional Data Analysis. More details about this “pseudo-density” approach can
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be found in [14]. Furthermore, if we assume that X is a Gaussian random process then the
C j (X) random variables are uncorrelated and normally distributed C j (X) ∼ N (0, λ j ) and
the joint distribution of (C1(X), . . . ,Cp(X)) simplifies to

p∏
j=1

1√
2πλ j

exp

(−c j (x)2

2λ j

)
. (4)

From previous ideas, a “model-based” clustering approach for functional data can be
derived assuming K different expansions, one for each cluster component, g = 1, . . . , K .
This is the approach considered in [6,28]. They both propose considering the same order p
in all the cluster expansions, but [6] considers that the first qg eigenvalues/variances are the
most important ones while the remaining p−qg are smaller and they are assumed to be equal
in each cluster. This simplifies this largely parameterized problem and, then, qg may be seen
as a kind of “intrinsic” cluster dimension. We denote the first qg main variances/eigenvalues
in the g-th cluster as a1g ,…, aqgg and the common (residual) eigenvalue/variance as bg .

Although the methodology introduced in [6,28] is notably useful for clustering purposes,
these methods are not designed to deal with the presence of outlying functions in the data
set. However, even the presence of a small fraction of outlying functions can be extremely
harmful. For instance, main clusters can be artificially split or joined together and small
clusters consisting of a few outlying observations can be wrongly detected. With the idea of
robustifying the procedures in [6,28], [36] introduces a robust functional clustering approach
where a fixed proportion α of the most outlying functions are allowed to be trimmed. The
proposed approach also imposes appropriate constraints on the eigenvalues/variances to avoid
the detection of non-interesting or “spurious” clusters (see [36]).

Given a set of functions {x1, . . . , xn} in L2([0, T ]), we use a 0–1 indicator function
such that η(xi ) = 0 if the xi function is trimmed and η(xi ) = 1 if it is not. In this work,
recall that {x1, . . . , xn} are going to be the normalized spectral densities for our n time
series {Y1, . . . ,Yn}. As we only trim a proportion α of functions, we consider the constraint∑n

i=1 η(xi ) = [n(1 − α)]. The associated trimmed mixture-loglikelihood is then defined as

n∑
i=1

η(xi ) log(D(xi ; θ)), (5)

with

D(xi ; θ) =
K∑

g=1

Dg(xi ; θ), (6)

and

Dg(xi ; θ) = πg

qg∏
j=1

1√
2πa jg

exp

(−c2i jg
2a jg

) p∏
j=qg+1

1√
2πbg

exp

(−c2i jg
2bg

)
. (7)

All the parameters, which are needed to be estimated for that representation, are encom-
passed in θ and ci jg = c jg(xi ) is the j-th principal component score of function xi in group
g. As often in mixture modeling, πg weights, summing up to 1, are considered as mixing
proportions which also have to be estimated.

Given two fixed constants d1 ≥ 1 and d2 ≥ 1, we propose the constrained maximization
of the trimmed likelihood (5) under the following two restrictions:

maxg=1,...,K ; j=1,...,q j a jg

ming=1,...,K ; j=1,...,q j a jg
≤ d1 (8)
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and
maxg=1,...,K bg
ming=1,...,K bg

≤ d2. (9)

The smaller d1 and d2, the more similar the variance/eigenvalues should be across and within
clusters but a different treatment can be given for the main and the residual variances.

The highest value obtained for (5) after the constrained optimization is denoted as
Ld1,d2(α, K ) and will be used in Sect. 4.

Cluster assignments for the original time series {Y1, . . . ,Yn} can be obtained by assigning
Yi to cluster G if

πGDG

(
xi ; θ̂

)
= max

g=1,...,K
πgDg

(
xi ; θ̂

)
, (10)

where θ̂ is the optimal θ resulting from the constrained trimmed likelihood maximization.
The proposed constrained maximization is obviously a computationally expensive task.

However, a computationally feasible algorithmwas given in [36]. The algorithm follows from
the adaptation of the classical Expectation-Maximization (EM) algorithm but incorporating
a “trimming step”. This is similar to the “concentration” steps already applied in [38]. A brief
description of the proposed algorithm is given in Algorithm 1 but a more detailed description
of all the steps can be seen in [36].

Algorithm 1 Basic algorithm
Data: Time series {Yi }i=1,...,n , trimming level α, dimensions {qg}g=1,...,K and constraining constants d1
and d2
Result: Time series that are trimmed and clustering assignments for the non-trimmed ones

1: Compute the normalized spectral densities {xi }i=1,...,n of {Yi }i=1,...,n
2: for b = 1, . . . , B do
3: Initialize θ(0)

4: for c = 1, . . . ,C do
5: τig ← Dg(xi ; θ(c−1))/D(xi ; θ(c−1))

6: Sort {D(xi ; θ(c−1))}i=1,...,n into {D(x(i); θ(c−1))}i=1,...,n

7: I(c) ← {i : D(xi ; θ(c−1)) ≤ D(x([n(1−α)]); θ(c−1))}
8: τig ← 0 for i /∈ I(c)

9: π
(c)
g ← ∑n

i=1 τig/(n(1 − α))

10: Perform FPCA with {τig}i=1,...,n weights for g = 1, . . . , K

11: Apply constraints on {a jg} j=1,...,qg
g=1,...,K and {bg}Kg=1

12: Update θ(c) accordingly
13: end for
14: Compute (5) with η(xi ) = 1 if i ∈ I(C) and η(xi ) = 0 if not
15: end for
16: Return the optimal θ(C) and I(C) yielding the smallest value of (5)
17: Use the rule as in (10) to obtain the clustering assignments

In the M-step, we have to perform weighed Functional Principal Component Analyses
[35]. It may happen that the resulting a jg and bg parameters do not satisfy the required
constraints, for the fixed d1 and d2 constants. In that case, these parameters have to be
truncated in an optimal way so that the required constraints are satisfied. This is done as in
[19] by maximizing two real valued functions (see details in [36]).

As will be seen in Sect. 4, we propose determining the qg “intrinsic dimensions” by
considering a Bayesian Information Criterion (BIC) approach.
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The computing cost, although high, is not much higher than the two closely related
approaches in [6,28]. Notice that only an extra sorting of the D(xi ; θ(c−1)) values is needed
in each iteration, and that the constraints on the scatter parameters only require the maxi-
mization of two real valued functions (that can be quickly done by adapting the procedure in
[19]). The higher B, the smaller the probability that the algorithm ends up trapped in a local
maxima of the likelihood. Of course, higher B and C values yield higher computing times.
Computing time can be saved by considering an stopping criterion that avoids fully iterating
until c = C , in Algorithm1, when convergence has been already reached for c < C . In fact,
our experience shows that very high C values are rarely needed. Consequently, a sensible
strategy is to consider a high B value but a small C value. Then, we only fully iterate the
“most promising” initializations, i.e. those with the highest values of the target function after
a small number C of iterations.

Given that each initialization b = 1, . . . , B returns a clustering partition, another pos-
sibility to be explored is trying to combine all the information from those B partitions by
applying “ensemble clustering” techniques (see, e.g., [27] and references therein). This could
serve to obtain interesting initializing partitions which would allow exploring the space of
solutions in a more efficient way. Take also into account that the algorithm can be easily
parallelized. It is also important to note that the procedures for choosing parameters, that
will be described in Sect. 4, are the most computationally demanding part of the procedure
because the problem must be solved for several combinations of the tuning parameters. In
that case, the optimal values from contiguous parameter configurations have to be taken into
account in the initializing steps to alleviate the computational efforts.

4 Choice of Parameters

The proposed methodology is very flexible but needs the specification of several tuning
parameters. In this section, we will comment on some tools that can help the user in this task.

For instance, the qg “intrinsic dimensions” can be determined by considering the Bayesian
Information Criterion (BIC). In the BIC approach, models with complexity higher than
needed are penalized when comparing their associated log-likelihoods. To be more precise,
we propose performing the constrained maximization in (5) for several combinations of the
qg “intrinsic dimensions” and consider as final solution the one with the largest value of the
target function in (5) after subtracting κ log(n), where κ is the total number of free parameters
that need to be estimated in the target function. As already shown in [36], we can see that the
number of free parameters is

κ = (Kp + K − 1) +
K∑

g=1

qg(p − (qg + 1)/2) + 2K +
K∑

g=1

qg.

We have considered this BIC approach in the simulation study and in all the illustrating
examples throughout this work.

The parameters d1 and d2 serve to control the maximum differences in scatter allowed
within and across clusters. Large values of these parameters may produce excessive cluster
heterogeneity. In fact, having a small value for d2 (i.e., close to 1) is recommended because
this is the parameter that avoids degeneracy of the target function. Our experience is that the
number of significantly different solutions when moving d1 and d2 is not very large, once
large d1 values are excluded and it is a good idea to explore them to choose the one that
better fits the user’s clustering purposes. In a recent work [10], a modified BIC proposal is
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introduced that takes into account the higher “model complexity” that larger d1 and d2 entail.
This possibility needs to be explored and it will be considered in future works.

Choosing the correct trimming level α is a key decision. It is particularly important to
choose α higher than the true contamination level to avoid the harmful effect of outlying
functions in the final clustering results. However, although less problematic, a trimming
level higher than needed is also troublesome because good observations can be wrongly
trimmed. This conflict may be seen as a kind of tradeoff between robustness and efficiency.
The choice of the number of clusters K is also a complex problem, extensively addressed in
Cluster Analysis. Note also that the choices for K and α are also dependent on d1 and d2. For
instance, a set of scattered spectra can be considered as a main cluster (so increasing K and
decreasing α is needed) if d1 and d2 are chosen large enough to allow the detection of more
heterogeneous clusters. Once d1 and d2 are fixed, an adaptation of the “ctlcurves” introduced
in [23] can be used to obtain sensible choices of K and α, simultaneously. The “ctlcurves” are
based on plotting the functionals (α, K ) �→ Ld1,d2(α, K ), where Ld1,d2(α, K ) was defined
in Sect. 3. As an example, let us consider the simulated data set shown in Fig. 1. The modes
of two main clusters spectra are located at 0.2 and 0.3 Hz, respectively, with the same energy
equal to 1.2. On the other hand, the modes for a 10% proportion of outlying spectra are
randomly obtained from a uniform distribution in the (0.1, 0.4) interval and their energies
are also randomly obtained from a uniform distribution in the (1.05, 1.1) interval. The right
panel of Fig. 1 shows the “ctlcurves” for this simulated data set when d1 = d2 = 1 and
qg = 1, g = 1, . . . , K (these values are chosen just to have an idea of sensible K and α

values for this data set). The examination of these “ctlcurves” suggests that more than K = 2
clusters are needed if α = 0, as a noticeable increase in the “ctlcurves” when increasing K
can be seen, because extra clusters are needed in order to accommodate the outlying spectra.
We can also see that increasing K from K = 2 is not clearly needed when considering
trimming levels α ≥ 0.1, as the increments in the associated curves are not so obvious.
Therefore, these “ctlcurves” suggest K = 2 and α around 0.1 as a sensible choice for these
two tuning parameters. More details about the use of these “ctlcurves” can be found in [23].

Once the “ctlcurves” give us an idea of the number of clusters to be detected, the trimming
proportion also suggested by “ctlcurves” can be further checked and improved if needed. For
this purpose, we can use a graphical procedure described in [36], which is based on the
evaluation of the rates of increase in the function mapping α onto D(x([nα]); θ̂α0), where
θ̂α0 are the optimal parameter values when α0 is the trimming level that we want to check.
D(x(1); θ) ≤ D(x(2); θ) ≤ · · · ≤ D(x(n); θ) are the sorted contributions of our n observa-
tions to the target function (see Algorithm 1 in Sect. 3). For instance, the resulting curves
when α0 = 0.05, α0 = 0.2 and α0 = 0.1 for the same data set as in Fig. 1 are shown in Fig.
2. For this data set, with a “true” 10% contamination level, Fig. 2a shows how the sorted con-
tributions are still increasing sharply at α = 0.05 when a trimming level α0 = 0.05 (smaller
than needed) is tried. In contrast, the sorted contributions already show a stable behavior at
α = 0.2 when an α0 = 0.2 (greater than needed) is tried in Fig. 2b. Finally, Fig.2c shows
how a value of α around 0.1 is a sensible choice for the trimming level in this problem.

5 Simulation Study

In order to evaluate the performance of the methodology proposed here, a simulation study
was carried out. We now describe the different scenarios and contamination types. As in
[17], the simulations are based on autoregressive time series of order 2 and mixtures of
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Fig. 1 a The simulated dataset with two main clusters and a fraction of 10% outlying spectra. b Associated
“ctlcurves” curves for this data set in a when d1 = d2 = 1

them. AR(2) processes are defined as Yt = u1Yt−1 + u2Yt−2 + εt , where εt is a white noise
process. The associated characteristic polynomial is h(y) = 1 − u1y − u2y2 and its roots,
denoted by y1 and y2 are related to the oscillatory properties of the time series. If the roots
are complex-valued, then they must be conjugate, i.e., y1 = y2 and their polar representation
is

|y1| = |y2| = M and arg(yi ) = 2πν

ws
(11)

where ws is the sampling frequency in Hertz; M is the magnitude of the root (M > 1 for
causality) and ν the frequency index, ν ∈ (0, ws/2). The spectrum of the AR(2) process will
have modal frequency at ν, which will be broader as M → ∞ and narrower when M → 1+.
Then, given (ν, M, ws) and with ω0 = 2πν

ws
, we have
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Fig. 2 Graphical procedure for determining α for the data set depicted in Fig. 1: α0 = 0.05 in a, α0 = 0.2 in
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u1 = 2 cos(ω0)

M
and u2 = − 1

M2 . (12)

Two groups of 50 AR(2) time series each were simulated, with parameters ν1 = 0.21,
ν2 = 0.22, M1 = M2 = 1.15, ws = 1 and length τ = τ1 = τ2 = 1000. From the
simulated time series, the spectral densities were estimated using a smoothed lag-window
estimator with a Parzen window and bandwidth 100/τ . The estimated spectral densities for
both clusters are shown in Fig. 3a. The functional form of the estimated spectral densities
was recovered using a B-spline basis of degree 3 with 14 equispaced nodes and smoothing
parameter λ = 0.000003 (see e.g. [35], Ch. 3)Wewant to test the performance of the different
algorithms in recovering these two groups, even in the presence of contaminating data. In
the absence of contamination we have 100 observations divided into two groups.

Before describing the contamination schemes considered, we introduce the mixtures of
AR(2) processes that will be used in some cases. Let Y 1

t and Y 2
t be two AR(2) processes with

parameters M1 and M2, and ν1 and ν2. Their mixture is given by Yt = a1Y 1
t + a2Y 2

t + εt ,

where a1 and a2 are the weights and εt is a white noise process. This mixture of AR(2)
processes creates a signal that combines the oscillatory behavior of the original Y 1

t and Y 2
t

time series.
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Fig. 3 Spectral density of the simulated time series: a No contamination, b contamination type (i), c contam-
ination type (ii) and d contamination type (iii)

Starting from the two groups of 50 AR(2) time series described in the beginning of this
section, which are considered as the clean data, we added another 11 time series (around
10% contamination level) using the following schemes:

(i) AR(2) processes with parameters νi chosen randomly with uniform distribution in the
interval (.20, .25), denoted as U (.20, .25), i = 1, . . . , 11; M = 1.2 and ws = 1. This
means that the contaminating curves have less energy than the series in the clusters (see
Fig. 3b).

(ii) Amixture of twoAR(2) processes having parameters ν1 = .20 and ν2 = .25;M1 = 1.05
and M2 = 1.1 and ws = 1 (see Fig. 3c).

(iii) A mixture of two AR(2) processes with random parameters ν1 = U (.19, .22) and
ν2 = U (.24, .26); M1 = 1.05 and M2 = 1.1, and ws = 1 (see Fig. 3d).

In order to test the performance of the proposed methodology based on robust functional
clustering (RFC), the simulated time series and their estimated spectral densities were used
to compare with the results obtained when using the “Funclust” algorithm [28], the hierar-
chical methods using the total variation distance: “HSMClust” [17], “TVDClust” [3] and the
Kullback–Leibler divergence “KLClust” [34].

It is important to recall that we assume the qg dimensions in the RFC procedure to be
unknown parameters and that the BIC criterion is used to estimate them. The results in [36]
already show the importance of trimming. Trimming levels α = 0 and α = 0.1 are used. As
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regards the constraints, we are assuming d1 = d2 to simplify the simulation study. Values of
d1 = d2 = 3, d1 = d2 = 10 and d1 = d2 = 1010 (i.e., almost unconstrained in this last case)
were used. We always return the best solution in terms of the highest BIC value for each
combination of all those fixed values of trimming level and constraints. We use B = 100
random initializations with C = 20 iterations.

For the “Funclust” method we have used the library Funclustering [40] in R where
the EM algorithm has been initialized with the best solutions out of 20 “short” EM algorithms
with only 20 iterations and threshold values of ε = 0.001, 0.05 and 0.1 in the Cattell test. In
case of the agglomerative methods we use the library HSMClust in R for “HSMClust” [2],
“TVDClust” and “KLClust” by means of the algorithms described in [3,34].

Figure 4 shows the results for the simulation study. This figure is composed of a matrix of
graphs, where the rows correspond to the different contamination schemes (uncontaminated
in the first row) while the columns correspond to the methodologies tested. The first column
corresponds to “Funclust”, the second to “HSMClust”, the third to “KLClust”, the fourth
to “TVDClust” and finally, the fifth column shows the results for the procedure based on
robust functional clustering (RFC) with trimming levels α = 0 (untrimmed), α = 0.1 and
three constraint levels d1 = d2 = 3, d1 = d2 = 10 and d1 = d2 = 1010. The x-axis
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Fig. 4 Correct classification rate (CCR) for the five methods considered, represented in different columns.
Rows correspond to the different contamination schemes described previously in this section, starting with
no contamination in the first row and following with contamination schemes (i), (ii) and (iii) described in the
text. Constraint levels d1 = d2 = 3, 10 and 1010, trimming levels α = 0 and 0.1 were used for the RFC
method. Threshold values ε = 0.001, 0.05 and 0.1 are used for the “Cattell” procedure in “Funclust”. Single
and average linkage aggregation procedures are used for “HSMClust” while average and complete linkage are
used for “TVDClust” and “KLClust”
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corresponds to the threshold applied in the Cattell test for “Funclust”, the linkage function,
for the “HSMClust”, “TVDClust” and “KLClust” agglomerative methods, and constraints
values d1 = d2 for RFCwhile the y-axis corresponds to the correct classification rate (CCR).

Results show that the hierarchical methods, “HSMClust”, “KLClust” and “TVDClust”
are better in the absence of contamination, giving very consistent results. However, their
performance degrades sharply in the presence of noise. This is not surprising since these
procedures were not designed to handle contamination in the sample. The joint use of trim-
ming and constraints in RFC improve the results (CCR) substantially. Results are very good
for small (d1 = d2 = 3) and moderate (d1 = d2 = 10) values of the constraint constants,
while for high values the results are poor. Very high values for these constants are equivalent
to having unconstrained parameters. The use of trimming also turns out to be very useful
in all the contaminated cases while the results are not severely affected by trimming in the
uncontaminated case.

In the presence of contamination, the results for “Funclust”, “HSMClust”, “KLClust”
and “TVDClust” fall below those of RFC when applying the α = 0.1 trimming and
small/moderate values d1 and d2 for the variance parameters.

6 Analysis of Real Data

In this section, we will consider an application to the analysis of Electrocardiogram (ECG)
data. The data sets come from several databases in PhysioBank [26] (https://physionet.org/
physiobank/). We consider data from 22 subjects in the malignant ventricular arrhythmia
database and 26 normal subjects, 8 from the MIT arrhythmia database and 18 from the
normal sinus rhythm database. For each subject the data corresponds to 3 min ECG recorded
at frequencies ranging from 128 to 360 Hz. depending on the database. Additionally, 8
fabricated time series were added as noise. These were constructed by mixing amplitude-
augmented normal ECG recordings from the MIT arrhythmia database with a sinusoidal
signal with random uniform amplitude and random frequency.

Several authors have considered the use of clustering techniques on ECG data. We only
mention a few, as examples. [30] compare subjects with malignant ventricular arrhythmia,
supraventricular arrhythmia and normal subjects. Their procedure is based on fitting ARIMA
models and using the partition around medoids method with various similarity measures.
[4] also consider patients with the same conditions and their procedure is based on fitting
ARMA models to clipped data. Finally, [12] compare supraventricular arrhythmia patients
with healthy subjects. They use the autoregressive distance between ARIMA processes.

In our case, the spectral densities were estimated by a smoothed lag-window estimator
with a Parzen window and bandwidth 100 points, using the WAFO toolbox in Matlab. The
estimated spectral densities are shown in Fig. 5. The RFC method was applied to this data
set in order to obtain a clustering for the time series. The functional form of the data was
recovered using B-splines of order 3 with 19 equispaced nodes. We use 100 initializations
with 20 iterations each. The constraint levels considered were d1 = d2 = 1, 3, 5, 1010, and
the trimming levels were 5, 10, 15 and 20%.

The results for the correct classification rates (CCR) obtained with RFC are given in
Table 1. We can see that the CCR clearly improve when the trimming level α allows to
discard the 8/(26 + 22 + 8) = 0.125 fraction of “gross outliers” added. Moreover, we can
see that a trimming level α slightly greater than needed does not deteriorate the method’s
performance. Also, allowing certain flexibility to the cluster variabilities, by considering
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Fig. 5 Original estimated spectral densities. Red is used for those corresponding to the malignant ventricular
arrhythmia patients and green for those corresponding to normal subjects. The black curves represent the 8
fabricated time series that were added as noise. (Color figure online)

Table 1 Correct classification
rates for different combinations
of the α and d1 = d2 = d
parameters for the proposed
methodology

α

d 0.00 0.05 0.10 0.15 0.20

1 0.54 0.56 0.56 0.75 0.73

3 0.54 0.56 0.77 0.79 0.83

5 0.54 0.60 0.73 0.79 0.73

10 0.54 0.54 0.79 0.81 0.77

1010 0.60 0.56 0.56 0.69 0.71

Table 2 Correct classification
rate for the four clustering
procedures, ECG data

Funclust TVDClust HSMClust

0.001 0.708 Average 0.542 Average 0.542

0.05 0.688 Complete 0.646

0.1 0.729

d1 = d2 = d > 1, serves to improve slightly the CCRs but too high a flexibility, by
considering d1 = d2 = d = 1010, seems to reduce the CCRs.

Three other clustering procedures considered previouslywere applied to this contaminated
sample and the results were compared using 2 groups. In the case of the RFC methodology,
the assignments based on ’ posterior” probabilities were considered for the wrongly trimmed
observations. Results are given in Table 2, which should be compared with Table 1. For the
“Funclust” procedure three values of the Cattel threshold were considered, 0.001, 0.05 and
0.1.

The best results are obtained with RFC with α = 0.2 and d1 = d2 = d = 3 (Figs. 6,
7). “Funclust” gives reasonable values in the presence of noise. As regards “TVDClust” and
“HSMCllust” results are generally poor.
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Fig. 6 Results of applying the proposed methodology with α = 0.15 and d1 = d2 = 10
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Fig. 7 Results of applying the proposed methodology with α = 0.2 and d1 = d2 = 3

To reinforce these claims, Fig. 8 shows examples of the effects that the presence of
noise may have on the clustering methods considered. The first row shows the two original
groups, which correspond to normal subjects and malignant ventricular arrhythmia patients.
The following rows correspond to “Funclust” with parameters 0.1 and 0.05, and “TVDClust”
with the average linkage. The results for “TVDClust”with complete linkage and “HSMClust”
with average linkage (not included) coincide exactly with this last graph For all the methods,
noise affects the composition of the groups, and, in the case of “TDVClust”, some of the noise
curves are clustered as a group while the bona-fide data together with the rest of the noise
curves constitute the other group, giving a clear example of the type of extreme clustering
errors that may be obtained in the presence of noise.

As commented by one of the anonymous reviewers, it may be interesting to extend this
approach to “multi-view” clustering, which would allow us to consider multi-channel ECG
[11].

7 Conclusions

A feasible methodology of robust clustering for stationary time series has been proposed
and illustrated. The key idea behind the algorithm presented is the use of estimated spectral
densities of the time series, that are then considered as functional data. A robust model-based
algorithm based on approximation of the “density” for functional data, together with the
simultaneous use of trimming and constraints is then used to cluster the original time series.

The use of trimming tools protects the estimation of the parameters against effect of
outlying curves, while the constraints avoid the presence of spurious clusters in the solution
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Fig. 8 Groups obtained with the different clustering methods. a Original groups, b “Funclust” with parameter
0.1, c “Funclust” with parameter 0.05, and d “TVDClust” with average linkage
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and improve the performance of the algorithms. The simulation study shows that the joint
use of constraints and trimming tools improve results of the clustering algorithm in the
presence of outliers, in comparison to some other procedures for time series and functional
data clustering, not designed to work with contamination. The real data example shows that
the proposed RFCmethod for time series clustering has a good performance, with or without
the presence of outlying curves. The trimmed curves often correspond to curveswith different
characteristics to the rest. Moreover, in the presence of contamination, the RFC method is
able to detect almost all the outliers in the data. In fact, we conclude that the proposed robust
methodology can be a useful tool to detect contamination and groups in a time series data
sets simultaneously.

However, this methodology has some limitations. The choice of trimming level α and the
choice of the scatter constraints constants d1 and d2, can be subjective and sometimes depend
on the final purpose of the cluster analysis. For this reason, we always recommend the use of
different values of trimming and constraint, monitoring the effect in the clustering partition
of these choices. The development of more automated selection procedures for these values
may be considered as an open problem for future research.
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