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Abstract
This paper is concerned with fractional-order neural networks with proportional delays.
Applying inequality technique, some sufficient criteria which ensure the stability of such
fractional-order neural networks with proportional delays over a finite-time interval are
established. Computer simulations are carried out to illustrate our theoretical predictions.
The derived results of this paper are new and complement some earlier ones.
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1 Introduction

During the past decades, the dynamics of neural networks has become one important area of
research due to their various potential utilizations in pattern recognition, optimization, parallel
computation and image processing and so forth [1–16]. Because information processing
and the inherent communication time of neurons need the finite switching speed [17], then
time delay inevitably appears in neural networks. Thus numerous researchers consider the
dynamical behavior of delayed neural networks and many interesting results on delayed
neural networks have been reported [18–33].

For a long time, fractional calculus, which is a generalization of the traditional integer
order differentiation and integral, has been payed little attention due to its complexity and
the lack of the practical background [34]. Recently, many scholars find that fractional calcu-
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lus is a valuable tool to describe memory and hereditary properties of dynamical processes
[35,36]. It has been applied in many areas such as applied mathematics, physics engineer-
ing and finance, etc. [37,38]. For example, Lundstrom et al. [39] pointed out that fractional
derivative provides neurons with a fundamental and general computation ability that can con-
tribute to efficient information processing, stimulus anticipation and frequency-independent
phase shifts of oscillatory neuronal firing. Anastasio [40] argued that the oculomotor inte-
grator, which converts eye velocity into eye position commands, may be of fractional order.
Anastassiou [41]mentioned that fractional-order recurrent neural networks play an important
role in parameter estimation and neural network approximation taken at the fractional level
resulted in higher rates of approximation. Thus it is significant to investigate the dynamical
behaviors of fractional-order delayed neural networks. Recently there are some important
results on delayed fractional-order neural networks. For instance, Wu and Zeng [42] studied
the boundedness, Mittag–Leffler stability and asymptotical α-periodicity of fractional-order
fuzzy neural networks, Zhang et al. [43] analyzed the stability of fractional-order Hop-
field neural networks with discontinuous activation functions, Chen et al. [44] established
some sufficient conditionswhich ensure the stability and synchronization ofmemristor-based
fractional-order delayed neural networks,Wang et al. [45] considered the asymptotic stability
of delayed fractional-order neural networks with impulsive effects. For more knowledge on
these topics, we refer the readers to [46–54].

Neural networks are said to be finite-time stable, if the states do not exceed some bounds
within a prescribed fixed time-intervals when the initial states satisfy a specified bound [34].
We must point out that classical Lyapunov stability concepts require that the systems operate
over an infinite time interval and is mainly concerned with the asymptotical behavior and
seldom concerned with specified bounds on the states [34]. In many practical applications, it
is important to remain the states within a certain bound during a specific time-interval. Thus
the finite-time behavior of the networks is more important than the asymptotic behavior of
the networks. The investigation on finite-time stability for fractional-order delayed neural
networks has important theoretical value and practical significance [55–59].

In 2016, Chen et al. [60] considered the following fractional-order neural networks with
delay

⎧
⎪⎨

⎪⎩

Dαxi (t) = −ci xi (t) +
n∑

j=1

ai j f j (x j (t)) +
n∑

j=1

bi j g j (x j (t − τ)) + Ii ,

xi (t) = ϕi (t), t ∈ [−τ, 0],
(1.1)

where 0 < α < 1, n corresponds to the number of units in a neural network. xi (t) denotes
the state of the i th neuron at time t , ai j and bi j denote the strengths of connectivity between
j and i at time t and t − τ , respectively, τ denotes the time delay required in transmitting
a signal from the neuron j to the neuron i , Ii is the input to the neuron i , ci is the charging
rate for the neuron i , fi (.) denotes activation functions. By means of inequality technique,
authors established two delay-dependent sufficient criteria which ensure the stability of (1.1)
over a finite-time interval.

Considering that the parameters of neural networks can not remain constants as time goes
by, Wu et al. [61] considered the following delayed fractional delayed neural networks with
time-varying coefficients

⎧
⎪⎨

⎪⎩

Dαxi (t) = −ci xi (t) +
n∑

j=1

ai j (t) f j (x j (t)) +
n∑

j=1

bi j (t)g j (x j (t − τ)) + Ii (t),

xi (t) = ϕi (t), t ∈ [−τ, 0].
(1.2)
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By using Hölder inequality, Grönwall inequality and inequality scaling techniques, authors
obtained some sufficient conditions which guarantee the finite-time stability of (1.2).

Herewewould like to point out that the presence of an amount of parallel pathways of axon
sizes and lengths often make the neural networks possess the spatial structure. Moreover, the
amount of parallel pathways will be affected by various materials and topology. Thus time
delay existing in neural networks often appears as proportional [62–64], i.e, the proportional
delay function τ(t) = t − qt is a monotonically increasing function with the increase of
time t > 0, where 0 < q < 1 is a constant. In real world, proportional delay plays a key
role in many fields such as web quality of serve routing decision, collection of current by
the pantograph of an electric locomotive [65], nonlinear dynamics [66,67], electrodynamics
[68] and probability theory on algebraic structures [69].

Stimulated by the above viewpoint, in this paper, we considered the following fractional
delayed neural networks with proportional delays

⎧
⎪⎨

⎪⎩

Dαxi (t) = −ci xi (t) +
n∑

j=1

ai j (t) f j (x j (t)) +
n∑

j=1

bi j (t)g j (x j (q j t)) + Ii (t),

xi (t) = ϕi (t), t ∈ [q0, 1],
(1.3)

where i ∈ � = {1, 2, · · · , n}, q0 = mini∈�{qi }, t ≥ 1, 0 < α < 1, n corresponds to
the number of units in a neural network. xi (t) denotes the state of the i th neuron at time
t , ai j and bi j denote the strengths of connectivity between j and i at time t and t − τ j (t),
respectively, τ j (t) denotes the time delay required in transmitting a signal from the neuron
j to the neuron i , Ii is the input to the neuron i , ci is the charging rate for the neuron i , fi (.)

denotes activation functions, q j , j ∈ � are proportional delay factors and satisfy 0 < q j ≤ 1,
and q j t = t − (1− q j )t , in which τ j (t) = (1− q j )t is the transmission delay function, and
(1 − q j )t → ∞ as q j �= 1, t → ∞, for all t ≥ 1.

For convenience, we present some notations. R, R+ and Z+ denotes the sets of all real
numbers, the sets of all positive real numbers and the sets of integer numbers, respectively.
Let ||x || = ∑n

i=1 |xi | and ||A|| = max1≤ j≤n
∑n

i=1 |ai j | be the Euclidean vector norm and
matrix norm, respectively, where xi and ai j are the elements of the vector x and the matrix
A, respectively. Let C̃ = C̃([q0, 1], Rn) be the space of all continuous function from [q0, 1]
to Rn .

The key object of this article is to establish some sufficient conditions for the finite-time
stability for fractional-order neural networks with proportional delays. The main highlights
of this article consist of four points: (i) the analysis on the finite-time stability for fractional-
order neural networks with proportional delays is firstly proposed; (ii) a set of new sufficient
conditions which guarantee the finite-time stability of such fractional-order neural networks
with proportional delays over a finite-time interval are established; (iii) the analysis meth-
ods can be applied to investigate many other similar fractional-order neural networks with
proportional delays; (iv) to the best of our knowledge, it is the first time to focus on the
finite-time stability for fractional-order neural networks with proportional delays.

The remainder of the paper is organized as follows. In Sect. 2, applying the differential
inequality theory and fractional-order differential equation theory, we will establish a set of
sufficient conditions which guarantee the finite-time stability of (1.1). In Sect. 3, simulation
experiments are put into effect to verify the availability of theoretical findings. We ends this
paper with a short conclusion in Sect. 4.
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2 Preliminaries

In this section, we state some definitions and lemmas which will be used in next section.

Definition 2.1 [70] The fractional integral with noninteger order α > 0 of function u(t) is
defined as follows:

D−α
t0,t u(t) = 1

�(α)

∫ t

t0
(t − θ)α−1u(θ)dθ,

where �(.) denotes the Gamma function �(s) = ∫ ∞
0 t s−1e−t dt .

Definition 2.2 [70] The Riemann–Liouville derivative of fractional order α of function u(t)
is defined as follows:

RL Dα
t0,t u(t) = dk

dtk
D−(k−α)

t0,t u(t) = dk

dtk

1

�(k − α)

∫ t

t0
(t − θ)k−α−1u(θ)dθ,

where k − 1 < α < k ∈ Z+.

Definition 2.3 [67] The Caputo derivative of fractional order α of function u(t) is defined as
follows:

C Dα
t0,t u(t) = D−(k−α)

t0,t
dk

dtk
u(t) = 1

�(k − α)

∫ t

t0
(t − θ)k−α−1u(k)(θ)dθ,

where k − 1 < α < k ∈ Z+.

Lemma 2.1 [70] (Hölder inequality)Assume that a, b > 1 and 1
a + 1

b = 1, if | f (.)|a, |g(.)|b ∈
L1(E), then f (.)g(.) ∈ L1(E) and

∫

E
| f (u)g(u)|du ≤

(∫

E
| f (u)|adu

) 1
a

(∫

E
|g(u)|bdu

) 1
b

(2.1)

where L1(E) is the Banach space of all Lebesgue measurable functions f : E → R with∫

E | f (u)|du < ∞. In particular, if , a, b = 2 then (2.1) becomes the Cauchy–Schwarz
inequality of the following form:

(∫

E
| f (u)g(u)|du

)2

≤
(∫

E
| f (u)|2du

) (∫

E
|g(u)|2du

)

(2.2)

Lemma 2.2 [71]Let n ∈ N and u1, u2, . . . , un be nonnegative real numbers. Then for ρ > 1,
(

n∑

i=1

ui

)ρ

≤ nρ−1
n∑

i=1

uρ
i .

Lemma 2.3 [72] (Grönwall inequality) If u(t) ≤ l(t)+∫ t
t0

k(θ)u(θ)dθ, t ∈ [t0, 	), where all
the functions involved are continuous on [t0, 	), 	 < ∞, and k(t) ≥ 0, then u(t) satisfies

u(t) ≤ l(t) +
∫ t

t0
k(θ)u(θ) exp

[∫ t

θ

k(s)ds

]

dθ, t ∈ [t0, 	). (2.3)

If, in addition, l(t) is nondecreasing, then

u(t) ≤ l(t) exp

(∫ t

θ

k(s)ds

)

, t ∈ [t0, 	). (2.4)
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Lemma 2.4 [73] If u(t) ∈ Ck[0,∞) and k − 1 < α < k ∈ Z+, then

(i) D−α D−βu(t) = D−(α+β)u(t), α, β ≥ 0;
(ii) Dα D−αu(t) = u(t), α ≥ 0;

(iii) D−α Dαu(t) = u(t) − ∑k−1
j=1

t j
j ! u

( j)(0), α ≥ 0.

System (1.3) can be rewritten as following form:
{

Dαx(t) = −Cx(t) + A(t)F(x(t)) + B(t)G(x(qt)) + I (t),
x(t) = ϕ(t), t ∈ [q0, 1], (2.5)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector of the cellular neural
networks, 0 < α < 1 is fractional order, F(x(t)) = ( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ,
G(x(qt)) = (g1(x1(q1t)), g2(x2(q2t)), . . . , gn(xn(qnt)))T , f j (x j (t)) and g j (x j (t)) denote
the activation function of the neurons, C = diag(ci ), A(t) = (ai j (t)), B(t) = (bi j (t)) are
matrix functions respect to t , Ii (t) = (I1(t), I2(t), . . . , In(t))T is an external bias vector.
Define the norm ||ϕ|| = sups∈[q0,1] ||ϕ(s)||, where ϕ ∈ C̃ . Denote A = supt≥1 ||A(t)||, B =
supt≥1 ||B(t)||.

If x(t) and y(t) are any solutions of (2.5) with different initial functions ϕ ∈ C̃ andψ ∈ C̃ ,
let y(t) − x(t) = u(t) = (u1(t), u2(t), . . . , un(t))T , ϑ = φ − ϕ, then we obtain one error
system which takes the following form:

{
Dαu(t) = −Cu(t) + A(t)[F(y(t)) − F(x(t))] + B(t)[G(y(qt)) − G(x(qt))],
u(t) = ϑ(t), t ∈ [q0, 1], (2.6)

Definition 2.4 For a given time T > 0 and positive number ι < δ, a solution x∗(t) of
(2.5) is said to be finite-time stable with respect to (ι, δ, T ) if for any solution x(t) of (2.5),
||x(0) − x∗(0)|| ≤ ι implies that ||x(t) − x∗(t)|| < δ for all t ∈ [q0, T ]. System (2.5) is said
to be finite-time stable with respect to (ι, δ, T ) if any solution x∗(t) of (2.5) is finite-time
stable with respect to (ι, δ, T ).

Throughout this paper, we also make the following assumptions:
(H1) For each i, j ∈ �, ai j (t) and bi j (t) are bounded functions defined on R+.
(H2) There exist constants L f ≥ 0 and Lg ≥ 0 such that |F(u)−F(v)| ≤ L f |u−v|, |G(u)−
G(v)| ≤ Lg|u − v| for all u, v ∈ R.

(H3) The following condition holds.
√

6 + 3χe(χ+2)t

χ + 2
<

ι

δ
, t ∈ J ,

where

χ = 6�(2α − 1)[(||C || + AL f )
2 + 1

q (BLg)
2]

4α�2(α)
.

(H4) The following condition holds.

b

√

b3b−1 + 3b−1χ∗e(χ∗t+b)

b + χ∗ <
ι

δ
, t ∈ J ,
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where

χ∗ = 3b−1
(

�[a(α − 1) + 1]
�a(α)aa(α−1)

) b
a

[

(||C || + AL f )
b + 1

q
(BLg)

b
]

.

and a, b > 1 and satisfy 1
a + 1

b = 1.

Remark 2.1 In this paper, we will deal with the finite-time stability of (1.3) with Caputo
derivative.

3 Main Results

In this section,wewill establish two sufficient conditionswhich ensure the finite-time stability
of system (1.3).

Theorem 3.1 In addition to (H1)–(H3), if 1
2 < α < 1 is satisfied, then system (2.5) is finite

time stable w.r.t. (ι, δ, T ).

Proof Choose the initial time t0 = 1, u(1) = ϑ(1) as the initial condition of (2.6). In view
of Lemma 2.4, we can conclude that the solution of system (2.6) takes the following form:

u(t) = D−α{−Cu(t) + A(t)[F(y(t)) − F(x(t))] + B(t)[G(y(qt)) − G(x(qt))]}
= ϑ(1) + 1

�(α)

∫ t

1
(t − s)α−1{−Cu(s) + A(s)[F(y(s)) − F(x(s))]

+B(s)[G(y(qs)) − G(x(qs))]}ds. (3.1)

By (H1) and (H2), we have

||u(t)|| ≤ ||ϑ(1)|| + 1

�(α)

∫ t

1
(t − s)α−1{||C ||||u(s)||

+AL f ||u(s)|| + BLg||u(qs)||}ds

≤ ||ϑ(1)|| + 1

�(α)

∫ t

1
(t − s)α−1[(||C || + AL f )||u(s)||]ds

+ 1

�(α)

∫ t

1
(t − s)α−1BLg||u(qs)||ds. (3.2)

Applying (2.2), we get

||u(t)|| ≤ ||ϑ(1)|| + 1

�(α)

∫ t

1
(t − s)α−1es [(||C || + AL f )e

−s ||u(s)||]ds

+ 1

�(α)

∫ t

1
(t − s)α−1es BLge−s ||u(qs)||ds

≤ ||ϑ(1)|| + 1

�(α)

(∫ t

1
(t − s)2α−2e2sds

) 1
2
(∫ t

1
(||C || + AL f )

2e−2s ||u(s)||2ds

) 1
2

+ 1

�(α)

(∫ t

1
(t − s)2α−2e2sds

) 1
2
(∫ t

1
(BLg)2e−2s ||u(qs)||2ds

) 1
2
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≤ ||ϑ(1)|| + 1

�(α)

(∫ t

1
(t − s)2α−2e2sds

) 1
2
[(∫ t

1
(||C || + AL f )

2e−2s ||u(s)||2ds

) 1
2

+
(∫ t

1
(BLg)2e−2s ||u(qs)||2ds

) 1
2
]

. (3.3)

Notice that
∫ t

1
(t − s)2α−2e2sds =

∫ t−1

0
	2α−2e2(t−	)d	

= e2t
∫ t−1

0
	2α−2e−2	d	

= e2t

22(α−1)

∫ 2(t−1)

0
ς2α−2e−ς dς

≤ 2e2t

4α
�(2α − 1) (3.4)

It follows from (3.3) and (3.4) that

||u(t)|| ≤ ||ϑ(1)|| + 1

�(α)

(
2e2t

4α
�(2α − 1)

) 1
2
[(∫ t

1
(||C || + AL f )

2e−2s ||u(s)||2ds

) 1
2

+
(∫ t

1
(BLg)

2e−2s ||u(qs)||2ds

) 1
2
]

. (3.5)

In view of Lemma 2.2, we let n = 3 and ω = 2, then it follows from (3.5) that

||u(t)||2 ≤ 3||ϑ(1)||2 + 6e2t�(2α − 1)

4α�2(α)

[ ∫ t

1
(||C || + AL f )

2e−2s ||u(s)||2ds

+
∫ t

1
(BLg)

2e−2s ||u(qs)||2ds

]

≤ 3||ϑ(1)||2 + 6e2t�(2α − 1)

4α�2(α)

[ ∫ t

1
(||C || + AL f )

2e−2s ||u(s)||2ds

+ 1

q

∫ qt

q
(BLg)

2e−2s ||u(s)||2e(1− 1
q )2sds

]

≤ 3||ϑ(1)||2 + 6e2t�(2α − 1)[(||C || + AL f )
2 + 1

q (BLg)
2]

4α�2(α)

∫ t

1
e−2s ||u(s)||2ds

≤ 3||ϑ ||2 + 6e2t�(2α − 1)[(||C || + AL f )
2 + 1

q (BLg)
2]

4α�2(α)

∫ t

1
e−2s ||u(s)||2ds,

(3.6)

which leads to

||u(t)||2e−2t ≤ 3e−2t ||ϑ ||2

+6�(2α − 1)[(||C || + AL f )
2 + 1

q (BLg)
2]

4α�2(α)

∫ t

1
e−2s ||u(s)||2ds,

(3.7)
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Let χ = 6�(2α−1)[(||C ||+AL f )
2+ 1

q (BLg)2]
4α�2(α)

. Then

||u(t)||2e−2t ≤ 3e−2t ||ϑ ||2 + χ

∫ t

1
e−2s ||u(s)||2ds. (3.8)

By the Grönwall inequality (2.3), we have

||u(t)||2e−2t ≤ 3e−2t ||ϑ ||2 +
∫ t

1
χ3e−2s ||ϑ ||2 exp

(∫ t

s
χdν

)

ds

= 3e−2t ||ϑ ||2 +
∫ t

1
χ3e−2s ||ϑ ||2eχ(t−s)ds

=
(

3e−2t + 3χeχ t − 3χe−2t

χ + 2

)

||ϑ ||2

= 6e−2t + 3χeχ t

χ + 2
||ϑ ||2. (3.9)

Then

||u(t)|| ≤
√

6 + 3χe(χ+2)t

χ + 2
||ϑ ||. (3.10)

Thuswhen ||ϑ || < δ, if (H3) is fulfilled, then ||u(t)|| < ι.According to theDefinition 2.4, we
can conclude that system (2.5) is finite-time stable. This completes the proof of Theorem 3.1.

	

Theorem 3.2 In addition to (H1),(H2) and (H4), if 0 < α < 1

2 is satisfied, then system (2.5)
is finite time stable w.r.t. (ι, δ, T ).

Proof In view of proof of Theorem 3.1, we get

||u(t)|| ≤ ||ϑ(1)|| + 1

�(α)

∫ t

1
(t − s)α−1[(||C || + AL f )||u(s)||]ds

+ 1

�(α)

∫ t

1
(t − s)α−1BLg||u(qs)||ds (3.11)

Let a = 1+ α, b = 1+ 1
α
. then a, b > 1 and 1

a + 1
b = 1. In view of Hölder inequality (2.1),

we get

||u(t)|| ≤ ||ϑ(1)|| + 1

�(α)

∫ t

1
(t − s)α−1es [(||C || + AL f )e

−s ||u(s)||]ds

+ 1

�(α)

∫ t

1
(t − s)α−1es BLge−s ||u(qs)||ds

≤ ||ϑ(1)|| + 1

�(α)

(∫ t

1
(t − s)a(α−1)easds

) 1
a

(∫ t

1
(||C || + AL f )

be−bs ||u(s)||bds

) 1
b

+ 1

�(α)

(∫ t

1
(t − s)a(α−1)easds

) 1
a

(∫ t

1
(BLg)be−bs ||u(qs)||bds

) 1
b
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≤ ||ϑ(1)|| + 1

�(α)

(∫ t

1
(t − s)a(α−1)easds

) 1
a

[ (∫ t

1
(||C || + AL f )

be−bs ||u(s)||bds

) 1
b

+
(∫ t

1
(BLg)be−bs ||u(qs)||bds

) 1
b

]

. (3.12)

Notice that

∫ t

1
(t − s)a(α−1)easds =

∫ t−1

0
	a(α−1)ea(t−	)d	

= eat
∫ t−1

0
	a(α−1)e−a	d	

= eat

aa(α−1)

∫ a(t−1)

0
ςa(α−1)e−ς dς

≤ eat�[a(α − 1) + 1]
aa(α−1)

. (3.13)

Based on (3.12) and (3.13), we have

||u(t)|| ≤ ||ϑ(1)|| +
(

eat�[a(α − 1) + 1]
�a(α)aa(α−1)

) 1
a

[(∫ t

1
(||C || + AL f )

be−bs ||u(s)||bds

) 1
b

+
(∫ t

1
(BLg)

be−bs ||u(qs)||bds

) 1
b
]

. (3.14)

In view of Lemma 2.2, we let n = 3 and ω = b, then it follows from (3.14) that

||u(t)||b ≤ 3b−1||ϑ(1)||b + 3b−1
(

eat�[a(α − 1) + 1]
�a(α)aa(α−1)

) b
a

[ ∫ t

1
(||C || + AL f )

be−bs ||u(s)||bds

+
∫ t

1
(BLg)

be−bs ||u(qs)||bds

]

≤ 3b−1||ϑ(1)||b + 3b−1
(

eat�[a(α − 1) + 1]
�a(α)aa(α−1)

) b
a

[ ∫ t

1
(||C || + AL f )

be−bs ||u(s)||bds

+ 1

q

∫ qt

q
(BLg)

be−bs ||u(s)||beb(1− 1
q )sds

]

≤ 3b−1||ϑ ||b + 3b−1
(

eat�[a(α − 1) + 1]
�a(α)aa(α−1)

) b
a

×
[

(||C || + AL f )
b + 1

q
(BLg)

b
] ∫ t

1
e−bs ||u(s)||bds (3.15)

which leads to

||u(t)||be−bt ≤ 3b−1e−bt ||ϑ ||b + 3b−1
(

�[a(α − 1) + 1]
�a(α)aa(α−1)

) b
a

×
[

(||C || + AL f )
b + 1

q
(BLg)

b
] ∫ t

1
e−bs ||u(s)||bds, (3.16)
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Let

χ∗ = 3b−1
(

�[a(α − 1) + 1]
�a(α)aa(α−1)

) b
a

[

(||C || + AL f )
b + 1

q
(BLg)

b
]

.

Then (3.16) can be written as

||u(t)||be−bt ≤ 3b−1e−bt ||ϑ ||b + χ∗
∫ t

1
e−bs ||u(s)||bds. (3.17)

By the Grönwall inequality (2.3), we have

||u(t)||be−bt ≤ 3b−1e−bt ||ϑ ||b +
∫ t

1
χ∗3b−1e−bt e−bs ||u(s)||beχ∗(t−s)ds

= b3b−1e−bt + 3b−1χ∗eχ∗t

b + χ∗ ||ϑ ||b. (3.18)

Then

||u(t)|| ≤ b

√

b3b−1 + 3b−1χ∗e(χ∗+b)t

b + χ∗ ||ϑ ||. (3.19)

Thuswhen ||ϑ || < δ, if (H4) is fulfilled, then ||u(t)|| < ι.According to theDefinition 2.4, we
can conclude that system (2.5) is finite-time stable. This completes the proof of Theorem 3.2.

	

Remark 3.1 Chen et al. [60] investigated the finite-time stability of a class of fractional order
neural networks with constant delay and constant coefficients, Wu et al. [61] studied the
finite-time stability of a class of fractional order neural networks with constant delay and
time-varying coefficients. All themodels considered in [60,61] does not involves proportional
delays. In this paper, we studies the the finite-time stability of cellular neural networks with
proportional delays. All the obtained results in [60,61] can not be applicable to the model
(1.3) to obtain the finite-time stability of system (1.3). Up to now, there are no results on the
finite-time stability of cellular neural networks with proportional delays. From the viewpoint,
our results on finite-time stability for cellular neural networks with proportional delays are
essentially new and complement earlier publications to some degree.

Remark 3.2 Proportional delay, which is unbounded, differs from the constant delay and
bounded time-varying delay. Proportional delay and unbounded distributed delay are
unbounded, but unbounded distributed delay usually requires the delay kernel function
κi j : R → R satisfies

∫ ∞
0 κi j (x)dx = 1,

∫ ∞
0 xκi j (x)dx < ∞, i, j = 1, 2, . . . , n, which

make the distributed delay easier to deal with, proportional delay has no the restrict condition.
Thus it is more difficult to handle the proportional delay than to handle the distributed delay
in dynamical systems.

Remark 3.3 Li, Yang, Shi and Ho [74–76] considered the finite-time synchronization of
delayed neural networks and chaotic systems. All the papers do not involve the fractional-
order proportional delays. In this paper, we investigate the finite-time stability for fractional-
order neural networks with proportional delays. All the derived results in [74–76] can not be
applied to (1.3) to obtain the finite-time stability for (1.3). From the viewpoint, themain results
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Fig. 1 Numerical solutions of system (4.1): times series of x1

of this article on finite-time stability for fractional-order neural networks with proportional
delays are essentially innovative.

Remark 3.4 Theorems 3.1 and 3.2 are correct for all kinds of the fractional derivatives.

4 Examples

In this section, we will give two examples to verify the correctness of our main results
obtained in previous section. The choice of all the parameters in the following examples is
based on the practical implication of neural networks.

Example 4.1 Considering the following fractional-order neural networks with proportional
delays

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαx1(t) = −c1xi (t) +
2∑

j=1

a1 j (t) f j (x j (t)) +
2∑

j=1

b1 j (t)g j (x j (q j t)) + I1(t),

Dαx2(t) = −c2x2(t) +
n∑

j=1

a2 j (t) f j (x j (t)) +
2∑

j=1

b2 j (t)g j (x j (q j t)) + I2(t),

(4.1)

where t > 1, f1(u) = f2(u) = g1(u) = g2(u) = 0.5(|u + 1) − |u − 1|), α =
0.6, c1 = 0.2, c2 = 0.3, a11(t) = 0.1 sin t, a12(t) = 0.3 sin t, a21(t) = 0.4 cos t, a22(t) =
0.5 cos t, b11(t) = 0.5 sin t, b12(t) = 0.5 cos t, b21(t) = 0.3 cos t, b22(t) = 0.2 cos t,
I1(t) = 0.2 sin t, I2(t) = 0.4 sin t, q1 = 0.2, q2 = 0.1 Then L f = Lg = 1, ||C || =
0.3, A = 0.5, B = 0.5, χ = 5.5470. Let δ = 0.1, ι = 1. We have

√
6+3χe(χ+2)t

χ+2 < ι
δ
and

T = 0.7024. Thus all the conditions in Theorem 3.1 are satisfied, then system (4.1) is finite
time stable w.r.t. {1, 0.1, 1}. This result can be shown in Figs. 1 and 2.
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Fig. 2 Numerical solutions of system (4.1): times series of x2

Example 4.2 Considering the following fractional-order neural networks with proportional
delays

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαx1(t) = −c1xi (t) +
2∑

j=1

a1 j (t) f j (x j (t)) +
2∑

j=1

b1 j (t)g j (x j (q j t)) + I1(t),

Dαx2(t) = −c2x2(t) +
n∑

j=1

a2 j (t) f j (x j (t)) +
2∑

j=1

b2 j (t)g j (x j (q j t)) + I2(t),

(4.2)

where t > 1, f1(u) = f2(u) = g1(u) = g2(u) = tanh(u), α = 0.3, c1 =
0.1, c2 = 0.2, a11(t) = 0.2| sin 2t |, a12(t) = 0.1| sin 2t |, a21(t) = 0.4| cos 2t |, a22(t) =
0.1| cos 2t |, b11(t) = 0.3| sin 2t |, b12(t) = 0.5| cos 2t |, b21(t) = 0.3| cos 2t |, b22(t) =
0.6| cos 2t |, I1(t) = 0.2 sin2 t, I2(t) = 0.4 cos2 t, q1 = 0.4, q2 = 0.5 Then L f = Lg =
1, ||C || = 0.2, A = 0.4, B = 0.6, χ∗ = 4.7714. Let δ = 0.2, ι = 1.5. We have
b
√

b3b−1+3b−1χ∗e(χ∗+b)t

b+χ∗ < ι
δ
and T = 0.5477. Thus all the conditions in Theorem 3.2 are

satisfied, then system (4.2) is finite time stable w.r.t. {1, 0.2, 1.5}. This result can be shown
in Figs. 3 and 4.

5 Conclusions

The finite-time stability of fractional-order neural networks can effectively characterize the
dynamical behavior of neural networks. Thus it has been widely investigated by numerous
authors in recent years. In this article, we have discussed finite-time stability for fractional-
order neural networkswith proportional delays. Bymeans of the differential inequality theory,
fractional-order differential equation theory, some sufficient criteria which guarantee the
stability of such fractional-order neural networks with proportional delays over a finite-time
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Fig. 3 Numerical solutions of system (4.2): times series of x1
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Fig. 4 Numerical solutions of system (4.2): times series of x2

interval are established. It is shown that these sufficient conditions are easily tested only by
very simple algebra operation. The derived results complement some earlier publications (for
example [60,61]). Furthermore, the research approach of this article can be transplanted to
investigate some other similar fractional-order neural networks with proportional delays.
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