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Abstract
The problem of finite-time synchronization for memristive neural networks (MNNs) with
proportional delay is considered. Since proportional delay is unbounded and different from
infinite-timedistributed delay, the classical finite-time analytical techniques are not applicable
anymore. First, a discontinuous state feedback controller is designed such that the delayed
MNNs achieve drive-response synchronization in a finite settling time. By using Filippov
solution and Lyapunov functional method, sufficient conditions are derived. It is shown that,
though the proportional delay is unbounded, complete synchronization can still be realized
and the settling time can be explicitly estimated. Second, a special adaptive controller is
designed for the finite-time problem in order to reduce the control gains. Finally, numerical
simulations are given to verify the effectiveness of the theoretical results.

Keywords Memristive · Neural network (NN) · Finite-time synchronization · Proportional
delay

1 Introduction

Neural networks (NNs) are a class of important model which have significant effect in dif-
ferent filed, such as pattern recognition [1], image processing [2], visual perception [3,4] and
so on. Recently, another kind of NN called memristive neural network (MNN) has attracted
increasing attention [5–7]. MNN is a memristor-based NN. Memristor, as a contraction of
memory resistor, was originally predicted by Chua [8] and realized by HP laboratory in 2008.
It is reported thatMNNs possesses more computation power and information capacity, which
would greatly enhance the applications of NNs for associate memory and information pro-
cessing. In the literature, there aremany results on stabilization, passivity, and synchronization
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of MNNs [6,9–15]. In [11], the Lagrange stability of MNNs with discrete and distributed
delays is investigated. Meanwhile, quasi-uniform synchronization, global exponential syn-
chronization, exponential synchronization of MNNs are studied in [10,12,14,16,17].

Time delays are unavoidable in practical systems due to the finite information exchanging
between different units, which may cause divergence, instability, or oscillation [9,10,18–23].
Therefore, time delays should be taken into account in studying dynamics of MNNs. Up
to now, the dynamical behaviors of MNNs with constant delays [10,12,19,22,24,25], time-
varying delays [9,14,18,23,26,27] or distributed delays [11,28] have been intensively studied.
However, to the best of our knowledge, seldom authors consider dynamics of MNNs with
proportional delay. This motivate us to consider MNNs with proportional delay.

It should be noted that most of existing results concerning synchronization of delayed
MNNs are asymptotic, while no published results consider finite-time synchronization of
MNNs with proportional delay. Finite-time synchronization means coupled systems achieve
synchronization state in a desired time instant called settling time. Comparedwith asymptotic
control, finite-time techniques have better robustness and disturbance rejection [29–33]. In the
literature,many papers about finite-time synchronization of coupled systemswith delays have
been published [13,26,33–35]. In [36], finite-time synchronization of NNs with infinite-time
distributed delays was investigated by developing a set of new analytical methods. However,
according the results in [36], the settling time cannot be estimated. From practical point
of view, finite-time results with unavailable settling time are not convenient for engineering
technicians. Thismotivate us consider finite-time synchronization ofMNNswith proportional
delay. It is discovered that, although proportional delay is unbounded, the settling time can
be explicitly estimated.

It is worth noting that since parameter of MNNs are state-dependent, the parameter of
driver and response MNNs are uncertain and cannot be identical all the time when the states
of the two MNNs are different. It means that the state-dependent parameters of driver and
response MNNs may be mismatched before realizing synchronization. Hence, using the
classical analytical techniques and traditional robust analytical techniques of robust synchro-
nization of NNs with matched uncertain parameters [37–40] cannot synchronize MNNs.
Therefore, Yang et al. proposed new robust analytical techniques to investigate the syn-
chronization of MNNs in [13]. Unfortunately, the delays of MNNs in [13] are bounded.
Since proportional delay is unbounded as time approaches infinity, the analytical techniques
proposed in [13] cannot be directly applied to finite-time synchronization of MNNs with
proportional delay.

Therefore, how to overcome mismatched parameters and realize stability and synchro-
nization of MNNs has attracted the interest of many authors. In [41], the stability problem is
investigated for a class of reaction-diffusion uncertain MNNS with time-varying delays and
leakage term. The global asymptotic stability and stabilization ofMNNswith communication
delays are achieved via event-triggered sampling control in [42]. In [43–45] the synchroniza-
tion issue of MNNs is studied via different control and analytical methods. For instance,
using impulsive control to realize synchronization for delayed memristive based bidirec-
tional associative memory neural networks with random nonlinearities in [43]. And as in
[44], the authors discussed exponential synchronization and anti-synchronization of MNNs
with time-varying delays via matrix measure strategies. In general, designed controller is
required to be simple and reduce the cost of control. Hence, designing suitable controller to
achieve finite-time synchronization of MNNs with proportional delay is a challenging work.

Motivated by the above discussions, this paper aims to investigate finite-time synchro-
nization of MNNs with proportional delay. The main contributions of this paper are: (a) By
using Filippov solution and differential inclusion [46,47], the drive-response MNNs with
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proportional delays are transformed into traditional NNs with unmatched uncertain bounded
parameters; (b) New 1-norm-based analytical methods are constructed to deal with the dif-
ficult induced by proportional delay; (c) Design a simple discontinuous state controller to
overcome mismatched parameters and ensure the synchronization of the considered MNNs
with proportional delay in a finite settling time. Moreover, the settling time is theoretically
estimated; (d)An adaptive controller is also designed to guarantee finite-time synchronization
of drive-responseMNNs which can reduce control gains; (e) Without utilizing the finite-time
stability theorem in [48], finite-time synchronization criteria are obtained. Results of this
paper can easily be extended to finite-time synchronization of classical NNs with propor-
tional delays and parameters uncertainties.

The rest of this paper is organized as follows. In Sect. 2, a model of MNNs with propor-
tional delay is desired. Some necessary definitions and assumptions are also given. Section 3
develops new criteria for finite-time synchronization of the MNNs. In Sect. 4, numerical
examples are given to illustrate the effectiveness of our result. Finally, Sect. 5 discusses the
conclusions.
Notations The notations are quite standard. Throughout this paper, R denotes the set of real
number,Rn is the set of n×1 real vector, andRn×m denotes the set of n×m matrices; D+(·)
is the directional derivative in the positive direction; the superscript T stands for vector or
matrix transposition; ‖ · ‖1 is standard 1-norm of a vector or a matrix.

2 Model Description and Preliminaries

Consider a MNN with proportional delay described as follows:

ẋi (t) = − ci xi (t) +
n∑

j=1

ai j (xi (t)) f j (x j (t)) +
n∑

j=1

bi j (xi (t)) f j (x j (qt)) + Ji , (1)

where i = 1, 2, . . . , n, xi (t) ∈ R is the voltage of the capacitor Ci at time t > 1, ci > 0 rep-
resents the rate with which the i th neuron will reset its potential to the resting state, fi (xi (t))
denotes the activation function about xi (t), f (x(t)) = ( f1(x(t)), f2(x(t)), . . . , fn(x(t)))T ,
Ji ∈ R is an external bias on the i th unit. In particular, the constantq satisfies 0 < q < 1which
is a proportional delay factor, correspondingly, qt = t − (1−q)t in which (1−q)t is a time-
varying continuous function that satisfies (1−q)t → +∞ as t → +∞. ai j (xi (t)), bi j (xi (t))
are the connect non-delayed and time-delayed memristive synaptic connection weight,
respectively, which satisfies the following condition:

ai j (xi (t)) =
{
âi j , if |xi (t)| ≤ Ti ,
ǎi j , otherwise,

bi j (xi (t)) =
{
b̂i j , if |xi (t)| ≤ Ti ,
b̌i j , otherwise,

where Ti > 0 is switching jump, âi j , ǎi j , b̂i j , b̌i j , (i, j = 1, 2, . . . , n) are constants which
satisfy âi j �= ǎi j and b̂i j �= b̌i j . The initial conditions of system (1) are xi (s) = φi , s ∈
[q, 1], i = 1, 2, . . . , n.

Remark 1 The proportional delay exists in many practical systems, for example, in Web
quality of service routing decision, proportional delay is usually involved. In general, the
proportional factor is denoted by constant q which satisfies 0 < q < 1, then qt = t−(1−q)t ,
and (1 − q)t is the proportional delay.
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Take system (1) as the drive system and consider controlled response MNN as follows

ẏi (t) = − ci yi (t) +
n∑

j=1

ai j (yi (t)) f j (y j (t)) +
n∑

j=1

bi j (yi (t)) f j (y j (qt)) + Ji + ui (t), (2)

where ai j (y j (t)) and bi j (y j (t)) are defined similarly as those given in ai j (xi (t)) and
bi j (xi (t)), respectively; and ui (t) is the control input. In general, the initial conditions of
(2) are different from those given in (1). They can be denoted by yi (s) = ϕi , s ∈ [q, 1], i =
1, 2, . . . , n.

Basically, the MNNs (1) and (2) can be considered as traditional NNwith state-dependent
switching parameters, which is different from the time-dependent switching phenomena in
[49].Ourmain objective is to establish the relationship of the synchronization control between
MNNs and traditional neural networks by transforming theMNNs (1) and (2) into the form of
traditional NNswith uncertain parameters. By designing new controllers and using Lyapunov
analysis method, some synchronization criteria between (1) and (2) are given.

Definition 1 (Filippov regularization [46]) The Filippov set-valued map of f (x) at x ∈ R
n

is defined as follows:

F(x) =
⋂

δ>0

⋂

μ(�)=0

co[ f (B(x, δ)\�)],

where B(x, δ) = {y : ||y − x || ≤ δ}, and μ(�) is the Lebesgue measure of the set �, co[�]
is the closure of the convex hull of the set �. Let

āi j = max{âi j , ǎi j }, b̄i j = max{b̂i j , b̌i j },
ai j = min{âi j , ǎi j }, bi j = min{b̂i j , b̌i j }.

By the measurable selection theorem in [47], there exist measurable functions λ1i j (t) ∈
co[ai j , āi j ] and λ2i j (t) ∈ co[bi j , b̄i j ] such that

ẋi (t) = −ci xi (t) +
n∑

j=1

λ1i j (t) f j (x j (t)) +
n∑

j=1

λ2i j (t) f j (x j (qt)) + Ji . (3)

Similarly as (3), we obtain

ẏi (t) = − ci yi (t) +
n∑

j=1

λ3i j (t) f j (y j (t)) +
n∑

j=1

λ4i j (t) f j (y j (qt)) + Ji + ui (t), (4)

where λ3i j (t) ∈ co[ai j , āi j ] and λ4i j (t) ∈ co[bi j , b̄i j ] are measurable functions.

Remark 2 Due to the different initial conditions, when |xi (t)| ≤ Ti at time t , the state yi (t) in
(2) may be |yi (t)| ≤ Ti or |yi (t)| > Ti , which is a common phenomenon for chaotic system
because they have the characteristic of initial-value-sensitivity. It means that λ1i j (t) = λ2i j (t)

or λ3i j (t) = λ4i j (t) can not be guaranteed. Therefore, we will design suitable controller to
overcome mismatched parameters in this paper.

The following assumptions are needed.

(H1) There exist constants pi such that | fi (z)| ≤ pi , ∀z ∈ R, i = 1, 2, . . . , n.

123



Finite-Time Synchronization of Memristive Neural Networks… 1143

(H2) There exist constants li , i = 1, 2, . . . , n, such that

| fi (x) − fi (y)|
|x − y| ≤ li , ∀x, y ∈ R, x �= y.

Definition 2 The MNN (2) is said to be finite-timely synchronized with (1) if, by designing
suitable controllers ui (t), i = 1, 2, . . . , n, there exist a constant t∗ > 1 (t∗ is dependent on
the initial values of systems) such that limt→t∗ ‖y(t) − x(t)‖1 = 0 and ‖y(t) − x(t)‖1 ≡ 0
for t > t∗, where y(t) = (y1(t), y2(t), . . . , yn(t))T , x(t) = (x1(t), x2(t), . . . , xn(t))T .

In order to study the synchronization of MNNs (1) and (2), we only need to consider the
synchronization between the systems (3) and (4). Denote the error between xi (t) and yi (t)
by zi (t) = yi (t) − xi (t). Then, subtracting (3) from (4) yields

żi (t) = − ci zi (t) +
n∑

j=1

λ3i j (t)g j (z j (t)) +
n∑

j=1

λ4i j (t)g j (z j (qt)) + ui (t)

+
n∑

j=1

(λ3i j (t) − λ1i j (t)) f j (x j (t)) +
n∑

j=1

(λ4i j (t) − λ2i j (t)) f j (x j (qt)), (5)

where g j (z j (t)) = f j (y j (t)) − f j (x j (t)) and g j (z j (qt)) = f j (y j (qt)) − f j (x j (qt)),
i, j = 1, 2, . . . , n.

3 Finite-Time Synchronization of theMNNs

In this section, ourmain objective is to design two different types of controller such thatMNN
(2) can be synchronized with MNN (1) in finite time, which is equivalent to study finite-time
stabilization of the error system (5). Firstly, state feedback controllers are proposed for
researching the finite-time synchronization problem. Then adaptive controllers are designed
to reduce the control gains. Meanwhile, some sufficient criteria for synchronization between
MNNs (2) and (1) in finite time are obtained by mathematical proofs.

State feedback controllers are designed as

ui (t) = − ri (zi (t)) − ηi sgn(zi (t)), (6)

where i = 1, 2, . . . , n, ri and ηi are positive constants to be determined, sgn(zi (t)) stand for
sign function.

Theorem 1 Suppose that Assumptions (H1) and (H2) are satisfied. The controlled MNN (2)
can be synchronized onto MNN (1) under controller (6) in a finite time if the control gains ri
and ηi in (6) satisfy the following conditions:

ri = − ci + li

n∑

j=1

(|ā| j i + 1

q
|b̄| j i ) � �i , (7)

ηi =
n∑

j=1

(|âi j − ǎi j | + |b̂i j − b̌i j |)p j + ε, (8)

where i = 1, 2, . . . , n, ε is a positive constant, |ā|i j = max{|âi j |, |ǎi j |}, and |b̄|i j =
max{|b̂i j |, |b̌i j |}. Moreover, the settling time is estimated as T = q

ε

∑n
i=1

[|zi (1)| +
1
q

∑n
j=1

∫ 1
q |b̄| j i li |zi (s)|ds

] + q, where zi (s) = ϕi − φi , s ∈ [q, 1], i = 1, 2, . . . , n.
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Proof Consider a Lyapunov functional as follow:

V (t) = V1(t) + V2(t), (9)

where

V1(t) =
n∑

i=1

|zi (t)|,

V2(t) = 1

q

n∑

i=1

n∑

j=1

∫ t

qt
|b̄| j i li |zi (s)|ds.

Differentiating V1(t) along the solutions of (5) and considering the controller (6) lead to

D+V1(t) =
n∑

i=1

{
di (t)

[ n∑

j=1

λ3i j (t)g j (z j (t)) +
n∑

j=1

λ4i j (t)g j (z j (qt)) + 
i (t) − ηi di (t)

]

− (ci + ri )|zi (t)|
}
, (10)

where 
i (t) = ∑n
j=1(λ

3
i j (t) − λ1i j (t)) f j (x j (t)) + ∑n

j=1(λ
4
i j (t) − λ2i j (t)) f j (x j (qt)), di (t)

is chosen as follows [24]:

di (t) =
{
sgn(zi (t)), i f zi (t) �= 0,

0, i f zi (t) = 0.

By the condition (H2), one has

di (t)λ
3
i j (t)g j (z j (t)) ≤ |λ3i j (t)g j (z j (t))|

≤ |ā|i j l j |z j (t)|, (11)

and

di (t)λ
4
i j (t)g j (z j (qt)) ≤ |λ4i j (t)g j (z j (qt))|

≤ |b̄|i j l j |z j (qt)|. (12)

When zi (t) �= 0, it is followed by (H1) that, for i = 1, 2, . . . , n,

di (t)
i (t) ≤
n∑

j=1

(|âi j − ǎi j | + |b̂i j − b̌i j |)p j , (13)

and

−di (t)ηi di (t) = − ηi . (14)

When zi (t) = 0, for i = 1, 2, . . . , n, it follows:

di (t)
i (t) = − di (t)ηi di (t) = 0. (15)

Combining (13)–(15) produces

di (t)
i (t) ≤ μi

n∑

j=1

(|âi j − ǎi j | + |b̂i j − b̌i j |)p j , (16)
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and

−di (t)ηi di (t) ≤ μiηi , (17)

where μi = 1 if zi (t) �= 0, otherwise, μi = 0. Then, it is obtained from (10)–(12), (16), and
(17) that

D+V1(t) ≤
n∑

i=1

{
− (ci + ri )|zi (t)| +

[ n∑

j=1

|ā| j i l j |z j (t)| +
n∑

j=1

|b̄| j i l j |z j (qt)|

+ (|âi j − ǎi j | + |b̂i j − b̌i j |)p jμi

]
− ηiμi

}
. (18)

The following inequality is derived from V2(t).

V̇2(t) ≤ 1

q

n∑

i=1

n∑

j=1

|b̄| j i l j |z j (t)| −
n∑

i=1

n∑

j=1

|b̄| j i l j |z j (qt)|. (19)

The inequalities (9), (18), and (19) yield

D+V (t) = D+V1(t) + V̇2(t)

≤
n∑

i=1

[(−ri + �i )|zi (t)| − εμi ]. (20)

When ‖z(t)‖1 �= 0, the conditions (7) and(8) and the inequality (20) imply

D+V (t) ≤ −ε

n∑

i=1

μi . (21)

According to (21) and the definition of V (t) in (9), there exists nonnegative constant V ∗
such that

lim
t→+∞ V (t) = V ∗ and V (t) ≡ V ∗ for t ≥ 0. (22)

Meanwhile, integrating both sides of the inequality (21) from 1 to t yields

V (t) − V (1) ≤ −ε

n∑

i=1

μi (t − 1). (23)

When |zi (t)| = 0 at instant t∗ ∈ (1,+∞) for i = 1, 2, . . . , n, the discussion can be
proceeded from (25). If ‖z(t)‖1 > 0 for all t ∈ (1,+∞) where ‖z(t)‖1 = ∑n

i=1 |zi (t)|,
there exists at least one i0 ∈ {1, 2, . . . , n} such that |zi0(t)| �= 0, then −ε

∑n
i=1 μi < 0. In

this case, the inequality (23) means limt→+∞ V (t) = −∞. This contradicts (22), and hence
the inequality (22) is not true for t → +∞. Therefore, there exists t∗ ∈ (1,+∞) such that

lim
t→t∗

V (t) = V ∗ and V (t) ≡ V ∗ for t ≥ t∗. (24)

In the following we prove that

‖z(t∗)‖1 = 0 and ‖z(t)‖1 ≡ 0 for t ≥ t∗. (25)

First, we claim ‖z(t∗)‖1 = 0. Suppose that ‖z(t∗)‖1 > 0, then there exists a small
constant ε > 0 such that ‖z(t∗)‖1 > 0 for all t ∈ [t∗, t∗ + ε]. So there exists at least
one i1 ∈ {1, 2, . . . , n} such that |zi1(t)| > 0 for any instant t ∈ [t∗, t∗ + ε]. Based on the
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previous analysis, it is easy to get that V̇ ≤ −ε < 0 holds for the instant t ∈ [t∗, t∗ + ε].
This contradicts (24).

Now, it is necessary to prove ‖z(t)‖1 ≡ 0 for ∀t ≥ t∗. Otherwise, there exists t1 > t∗ such
that ‖z(t1)‖1 > 0. Let ts = sup{t ∈ [t∗, t1] : ‖z(t)‖1 = 0}. We have ts < t1, ‖z(ts)‖1 = 0
and ‖z(t)‖1 > 0 for all t ∈ [ts, t1]. Moreover, there exists t2 ∈ (ts, t1] such that ‖z(t)‖1 is
monotonously increasing on the interval (ts, t2]. Hence V (t) is also monotonously increasing
on the interval (ts, t2], i.e., V̇ (t) > 0 for t ∈ (ts, t2]. On the other hand, because ‖z(t)‖1 > 0
for all t ∈ (ts, t2], there exists at least one i2 ∈ {1, 2, . . . , n} such that |zi2(t)| > 0 at any
instant t ∈ (ts, t2]. By the discussion as above, it follows that V̇ (t) ≤ −ε < 0 holds for the
instant t ∈ (ts, t2], which is a contradictionwith V̇ (t) > 0 for t ∈ (ts, t2]. Hence, ‖z(t)‖1 ≡ 0
for ∀t ≥ t∗. Therefore, (25) holds. According to Definition 1, the synchronization is realized
in finite time under the controller (6).

Next, one has to estimate the settling time by proving V ∗ = 0. If V ∗ > 0, then it is
obtained from (9) that V1(t∗) > 0 or V2(t∗) > 0. When V1(t∗) > 0, there exists at least
one i3 ∈ {1, 2, . . . , n} such that |zi3(t∗)| > 0, then V̇ (t) ≤ −ε

∑n
i=1 μi < 0, this means

that there will exist t3 > t∗ such that V (t3) > V ∗ contradicts (24). In the other case,
when V2(t∗) > 0, i.e., 1

q

∑n
i=1

∑n
j=1

∫ t∗
qt∗ |b̄| j i li |zi (s)|ds > 0, there exist t4 ∈ [qt∗, t∗]

and a small constant ι > 0 such that ‖z(t)‖1 > 0 for all t ∈ [t4 − ι, t4 + ι]. Therefore,
V̇ (t) ≤ −ε

∑n
i=1 μi < 0, this also will lead to a contradiction with (24). Hence, V ∗ = 0.

From the above discussions, one has that, if ‖z(qt∗)‖1 = 0, then ‖z(t∗)‖1 = 0. Therefore,
when V2(t∗) = 0 holds, V1(t∗) = 0 must be true. Integrating both sides of the inequality
V̇ (t) ≤ −ε when ‖z(t)‖1 �= 0 from 1 to t∗ yields t∗ ≤ V (1)

ε
+ 1. Meanwhile, ‖z(T )‖1 = 0

and ‖z(t)‖1 ≡ 0 for ∀t ≥ T , where T = qt∗. This completes the proof. �

Remark 3 Byusing the discontinuous state feedback controller and constructing new1-norm-
based Lyapunov–Krasovskii functionals, the controlled MNN (2) with proportional delay is
synchronized onto MNN (1) in the estimated settling time. It should be noted that, since
0 < q < 1, the settling time T = qt∗ < t∗ is more accurate which is more convenient for
practical application.

Remark 4 Note that the considered proportional delay is unbounded, which is different from
infinite-time distributed delay in [13]. The settling time in [13] cannot be estimated. Because
qt → +∞ as t → +∞, hence, when V2(t) = 1

q

∑n
i=1

∑n
j=1

∫ t
qt |b̄| j i li |zi (s)|ds = 0,

V1(t) = 0 holds.

Remark 5 The parameter ηi in the controller (6) is used to eliminate proportional delay and
mismatch parameters of the systems. Moreover, ε is a tunable parameter which can adjust
the length of the settling time. In general, the larger the ε, the faster the synchronization will
be (as shown in Fig. 2).

It is well known that, compared with state feedback control, adaptive control reduces
control gains through adaptive law. Hence, in the following section, adaptive controllers are
designed and some criteria are proposed to guarantee the finite-time synchronization between
MNN (1) and (2).

Design adaptive controller as follows:
⎧
⎪⎨

⎪⎩

ui (t) = − ri (t)(zi (t)) − ηi (t)sgn(zi (t)),

ṙi (t) = εi |zi (t)|,
η̇i (t) = δiμi ,

(26)
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whereμi = 1 if zi (t) �= 0, otherwise,μi = 0., εi > 0; δi > 0, i = 1, 2, . . . , n, are constants;
sgn(zi (t)) stand for sign function.

Theorem 2 Suppose that Assumptions (H1) and (H2) are satisfied. Then, the MNN (2) can
be synchronized onto MNN (1) in finite time under adaptive controller (26).

Proof Consider the following Lyapunov–Krasovskii functional:

V (t) = V̄1(t) + V2(t), (27)

where

V 1(t) =
n∑

i=1

|zi (t)| +
n∑

j=1

{
1

2εi
(ri (t) − ρi )

2 + 1

2δi
(ηi (t) − ξi )

2
}
,

V2(t) = 1

q

n∑

i=1

n∑

j=1

∫ t

qt
|b̄| j i li |zi (s)|ds,

ρi , ξi , i = 1, 2, . . . , n are constants to be determined.
Using the same proof procedure as that given in Theorem 1, it is not difficult to find that

D+V (t) ≤
n∑

i=1

{[
− (ci + ri (t)) +

n∑

j=1

(|ā| j i li + 1

q
|b̄| j i li )

]
|zi (t)|

+
n∑

j=1

(|âi j − ǎi j | + |b̂i j − b̌i j |)p jμi − ηi (t)μi

}

+
n∑

i=1

(ri (t) − ρi )|zi (t)| +
n∑

i=1

(ηi (t) − ξi )μi

=
n∑

i=1

[
− ci +

n∑

j=1

(|ā| j i li + 1

q
|b̄| j i li ) − ρi

]
|zi (t)|

+
n∑

i=1

[ n∑

j=1

(|âi j − ǎi j | + |b̂i j − b̌i j |)p j − ξi

]
μi . (28)

Takingρi = − ci+∑n
j=1(|ā j i |li+ 1

q |b̄ j i |li ) and ξi = ∑n
j=1(|âi j−ǎi j |+|b̂i j−b̌i j |)p j−1,

it follows from (28) that, when ‖z(t)‖1 �= 0,

D+V (t) ≤ −
n∑

i=1

μi ≤ −1.

The rest proof is the same as that given in the proof of Theorem 1. This completes the proof.
�


Remark 6 Compared with the state feedback controller (6), the adaptive controller (26) for
Theorem 2 can reduce the control gains. Note that Theorems 1 and 2 are obtained without
utilizing the finite-time stability theorem in [44]. In addition, results of this paper can easily
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be extended to finite-time synchronization of NNs with proportional delays, parameters
uncertainties.

Remark 7 When the adaptive controllers are considered, the settling time is dependent on the
initial values of systems and parameters, the adaptive laws parameters, and synchronization
errors. It can be found that the larger of the adaptive laws parameters, for instance, εi and
δi in (26), the smaller the settling time will be. On the other hand, because the time interval
of the increasing of the adaptive laws parameters from initial value to theoretical values is
difficult to be estimated, the settling time cannot be explicitly estimated.

4 Numerical Examples

In this section, some numerical simulations are given to validate the effectiveness of the
above theoretical analysis.

Consider MNN (1) with the following parameters: c1 = c2 = 1, J1 = 0.5 cos(t), J2 =
− 0.5 sin(t), q = 0.5, fi (xi ) = tanh(xi ), i = 1.2, and

a11(x1) =
{−0.75, |x1| ≤ 2,

−1.5, |x1| > 2,
a12(x1) =

{−2.1, |x1| ≤ 2,
−0.12, |x1| > 2,

a21(x2) =
{
1.75, |x2| ≤ 2,
2.1, |x2| > 2,

a22(x2) =
{−2.85, |x2| ≤ 2,

−3.2, |x2| > 2,

b11(x1) =
{
2.7, |x1| ≤ 2,
−1.6, |x1| > 2,

b12(x1) =
{
0.08, |x1| ≤ 2,
−1.11, |x1| > 2,

b21(x2) =
{
1.3, |x2| ≤ 2,
2.2, |x2| > 2,

b22(x2) =
{−1.5, |x2| ≤ 2,
2.36, |x2| > 2.

Obviously, Assumptions (H1)–(H2) are satisfied with p1 = p2 = 1, l1 = l2 = 1. The
forward Euler numerical scheme in MATLAB is used in the simulations. Figure 1 presents
several trajectories of the MNN with different initial values, from which one can see that the
trajectories of the MNN with different initial values are different. Hence, Fig. 1 verifies the
discussions in Remark 1.

Example 1 Nowwe verify Theorem 1. By simple computation, we can obtain that the control
gains r1 = 12.4, r2 = 11.24, and η1 = 8.22 + ε, η2 = 5.46 + ε for any positive constant ε
from (7) and (8), and the drive and response MNNs can be synchronized in finite time by the
controller (6).We take the initial values of drive and response systems as x(t) = (0.1,−0.2)T

and y(t) = (0.5,−0.4)T , respectively, where t ∈ [q, 1]. The trajectories of the drive and
response systems are presented in (a) and (b) of Fig. 1. Figure 2 presents the trajectories of
the synchronization error ‖z(t)‖1 under the controller (6) with different values of ε. Figure 2
also shows that the larger the ε, the faster the synchronization will be, which demonstrates the
discussions in Remark 5. As a matter of fact, the drive and response MNNs are synchronized
within the estimation. For instance, when ε = 1.5, the synchronization is achieved before
t = 1.1, which is within the estimated settling time 2.2534.

Example 2 This example considers adaptive control law to verify Theorem 2. Take ε1 =
0.1, ε2 = 0.15, δ1 = 0.12, δ2 = 0.1. By using the adaptive controller (26) with the initial
values r(t) = (0.3, 0.3)T and η(t) = (0.2, 0.2)T , and the other parameters are same as those
in Example 1, we obtain the time response of the synchronization error shown in Fig. 3. The
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Fig. 1 Trajectories of the MNN with different initial conditions for t ∈ [q, 1], a x(t) = (0.1,−0.2)T ; b
x(t) = (0.5, −0.4)T ; c x(t) = (−1, 1)T ; d x(t) = (3, 1)T
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Fig. 2 Time responses of synchronization error ‖z(t)‖1 under the controller (6) with ε = 0.1 (red) and ε = 1.5
(blue). (Color figure online)

trajectories of the control gains ri (t) and ηi (t), i = 1, 2 are presented in Fig. 4. Comparing
the ultimate control gains with corresponding ones of state feedback control, it is found that
the adaptive control gains are smaller, while the synchronization time is larger than that in
Fig. 2.
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Fig. 3 Time responses synchronization error ‖z(t)‖1 under the adaptive controller (26)
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Fig. 4 Trajectories of the control gains r1(t) and r2(t) of the adaptive controller (26) in (a); trajectories of the
control gains η1(t) and η2(t) of the adaptive controller (26) in (b)

5 Conclusions

This paper has addressed the problem of finite-time synchronization of MNNs with pro-
portional delay. A set of powerful state feedback controllers are designed for finite-time
synchronization. Then, adaptive controllers are designed to reduce the control gains. Based
on the framework of Filippov solution and Lyapunov functional method, sufficient conditions
are derived to guarantee the synchronization goal without using existing finite-time stability
theorem. Finally, the effectiveness of the theoretical analysis has been validated by numerical
simulations.

Note that the settling time is dependent to the initial conditions. When the initial condition
is not available, the settling time cannot be estimated. Hence, fixed-time synchronization is
our next research topic, where the settling time is not dependent on the initial condition.
Moreover, controller without the sign function is also our direction of effort.
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