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Abstract

Low-rank representation (LRR) and its extensions have shown prominent performances in
subspace segmentation tasks. Among these algorithms, structured-constrained low-rank rep-
resentation (SCLRR) is proved to be superior to classical LRR because of its usage of structure
information of data sets. Compared with LRR, in the objective function of SCLRR, an addi-
tional constraint term is added to compel the obtained coefficient matrices to reveal the
subspace structures of data sets more precisely. However, it is very difficult to determine the
best value for the corresponding parameter of the constraint term, and an improper value
will decrease the performance of SCLRR sharply. For the sake of alleviating the problem in
SCLRR, in this paper, we proposed an improved structured low-rank representation (ISLRR).
Our proposed method introduces the structure information of data sets into the equality con-
straint term of LRR. Hence, ISLRR avoids the adjustment of the extra parameter. Experiments
conducted on some benchmark databases showed that the proposed algorithm was superior
to the related algorithms.
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1 Introduction

In recent years, subspace segmentation has played an important role in image representation,
computer vision, and other related fields [1-5]. The ultimate aim of subspace segmentation
is to classify data samples to their corresponding subspaces. According to the surveys in
related research works [6—8], major treatment methods for subspace segmentation include
algebraic methods [9, 10], iterative methods [11, 12], statistical methods [13, 14], and spec-
tral clustering-based methods [6—8, 15-21]. Among them, the methods based on spectral
clustering have achieved great successes in practical applications.

Generally speaking, a spectral clustering based subspace segmentation algorithm consists
of two steps: (1) constructing an affinity matrix for a given data set; (2) obtaining the final
segmentation result via a special spectral clustering algorithm (e.g. Ncut [22]) with the con-
structed affinity matrix. It can be observed that the obtained affinity matrix usually determines
the performance of a spectral clustering based subspace segmentation algorithm.

The existing methods for learning affinity matrices could all be regarded as self-
representation models. The principal ideology of a self-representation model is that each
sample data can be linearly represented by the other data samples from the same data set.
For that, Elhamifar and Vidal [15, 20] first proposed a sparse subspace clustering (SSC)
algorithm, which aims to calculate a reconstruction coefficient vector by /1-minimization
[23] for each data sample and then construct a sparse affinity matrix by concentrating all the
reconstruction coefficient vectors. SSC is designed to obtain the sparsest representation of
each sample, but the global structures of data sets are usually ignored. To capture the global
structures of grossly corrupted data sets, Liu et al. [7, 18] developed a low-rank represen-
tation algorithm (LRR) to discover the reconstruction coefficients matrix for all data points
jointly. LRR expects the coefficient matrix to have a minimal rank, and this goal can be sat-
isfied by minimizing its nuclear norm. It’s proved that the minimal nuclear norm constraint
would make the coefficient matrix is capable of discovering the global structure of corrupted
data points. Therefore, LRR performs better than SSC in corrupted subspace segmentation
problems.

In addition, a lot of approaches have been proposed to show the capabilities of low-rank
methods in different applications [24-29]. Wang et al. [24] developed a novel DCT (discrete
cosine transform) regularized low-rank method to handle image recovery problems for data
with large percentage of corruption. In [25], for solving matrix completion problems, Hu et al.
used a kind of truncated nuclear norm, which is gotten by the nuclear norm subtracted by the
sum of the largest few singular values, to replace the classical nuclear norm. To accelerate the
convergence of the TNNR, Liu et al. presented a TNNR-WRE algorithm, in which different
weights were given to the corresponding rows of the residual error matrix [26]. Wang et al.
formulated a new robust PCA algorithm to discover the low-rank and noisy components
simultaneously [27]. Li et al. [28] proposed a discriminative multi-view interactive image re-
ranking algorithm which could describe the images sufficiently by integrating user relevance
feedback capturing users’ intentions and multiple features. Li et al. [29] proposed an efficient
image retrieval algorithm, called SPA (Spatially Pooled Attributes for image retrieval), which
encoded weak spatial information into attribute embedding.

The wide usages in image applications of LRR and its successes in constructing affinity
graphs have encouraged lots of related subsequent researches. For example, Chen et al. [30]
considered a symmetric low-rank representation to preserve the high-dimensional data sets’
subspace structure. Zhuang et al. [31] presented the locality-preserving low-rank represen-
tation to obtain an undirected graph from a mixture of nonlinear manifolds. Zhang et al.
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[32] claimed that the structured low-rank representation of a data matrix could be learned
by using a supervised method to create a discriminant and reconstructive dictionary. Zhuang
et al. introduced a non-negative low rank and sparse representation (NNLRSR) method [33]
by adding non-negative and sparse constraints of the reconstruction coefficient matrix into
LRR. Experiments showed that these algorithms can get promising results in subspace seg-
mentation for different data sets.

However, the original LRR algorithm can only work well under the condition that the
subspaces of a data set are totally independent. Therefore, Tang et al. [34] raised a structure-
constrained low-rank representation (SCLRR) to handle disjoint subspace segmentation
problems. SCLRR incorporates the structure information of data sets by appending a regular-
ization term in the objective function of LRR, which is a feasible approach for solving multiple
disjoint subspace segmentation problems. On the basis of SCLRR, Li et al. [35] advanced
a structure-constrained low-rank dictionary learning (SCLRDL) algorithm to combine low-
rank constraint with structure information into coefficient matrix for image classification. Wu
et al. [36] overcome the shortcomings of existing techniques in handling disjoint subspaces
and proposed a CS-LRR algorithm to perform optimal spectral clustering of the subspaces.
To find the optimal low-rank affinity matrices of disjoint data sets for Ncut, Wei et al. pro-
posed a SCSLRR algorithm [8] to combine the objection functions of K-means, Ncut, and
LRR together.

For SCLRR, its appended regularization term brings an additional parameter into LRR
and different values of the parameter have great effect on the efficiency of the algorithm.
Furthermore, there is already a parameter for the residual term in the original LRR algorithm,
hence SCLRR has been a more complex double parameters problem. In Fig. 1, we give a
simple experiment on Fashion-MINIST [37] data set to observe the sensitivity of SCLRR
to the additional regularization parameter f, it can be seen that the performance of SCLRR
varies drastically with p.

Therefore, we attempt to find a better way to introduce the structure information of data
sets into LRR and solve the disjoint subspace segmentation problems. In this paper, a new
improved structured low-rank representation algorithm, abbreviated as ISLRR, is presented.
In ISLRR, we introduce the structure information of data sets into the equality constraint
term of LRR. It can be found that ISLRR evades the difficulty of tuning two parameters.
Experiments on some benchmark data sets demonstrate that ISLRR is easy to implement and
efficient for disjoint subspace segmentation tasks.

The main framework of this article is as follows: In Sect. 2, we briefly introduce LRR and
SCLRR. In Sect. 3, we give the motivation of ISLRR and present an optimization algorithm
to solve ISLRR. In Sect. 4, we give some further discussions about the proposed algorithm.
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Experiments for verifying the effectiveness of our algorithm are shown in Sect. 5. Finally,
Conclusions are presented in Sect. 6.

2 Related Algorithms

In this section, we briefly describe LRR and its extended algorithm SCLRR.

2.1 Low-Rank Representation

Suppose a data matrix X = [X1,X2,...,X,] € R*" where d is the dimensions of each
data sample and n is the number of all samples. Because each data sample can be lineally
represented by the data samples from the same subspace, the model can be written as:

X =AZ, (1

where A = [a1, ap, ..., ay] € RI™ isa dictionary and Z is the reconstruction coefficient
matrix. In LRR, X is used as the dictionary and Z is hoped to have minimal rank. Then the
purpose of LRR can be expressed as:

mZin rank(Z) s.t. X = XZ. 2)

However, in real-world applications, data points are usually noisy and even grossly cor-
rupted. So the objective function of LRR can be rewritten as:

min |1 Z||, + A Ell2, s.t. X = XZ+E, 3)

where || Ell,; = Y i1 +/ ZT}:] ([E]ij)2 ([E]jj is the (i, j)-th element of E) is called [ 1 -norm
of noise E and A > 0 is a parameter to balance the contributions of two parts.

Augmented Lagrange multipliers (ALM) [18] method can be used to solve the problem
(3). Once Z is obtained, we can define G = (Z + ZT)/Z (ZT is the transpose of Z) as the
affinity graph and use Ncut [22] to get the final clustering results.

2.2 Structure-Constrained Low-Rank Representation

As we know, LRR algorithm can only work well on data sets with independent subspaces.
Independent subspaces segmentation is a special case of the disjoint subspace segmentation.
To improve the capability of LRR for handling disjoint subspace segmentation problems,
SCLRR adds a weighted sparse matrix [IM © Z|; = Zi’j Mi;|Z|; ; M is a matrix which
characterizes the locality structure information of a data set) into the objective function to
enhance the structure information of Z. For that, the penalty of rank is weaker than that in the
objective function which only considers the nuclear norm, therefore, the structure constraint
can also improve the rank of the solution. As the above descriptions, considering the noise
and outlines, SCLRR can be defined as follows:

min | Z|., + BIM O Z| + A Ell1 s.t. X = XZ+E, @)
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where O is called Hadamard product [38], 8 and X are two parameters to balance the devotions
of three parts. If two matrices A, B both have same size m x n, the Hadamard product means
that:

[Ali1[Bli1 -+ [Alix[Blin
AOB=||: R : ®)
[A]ml[B]ml [A]mn[B]mn

SCLRR was proved to be a better way to draw out the subspace structures of different
data sets than LRR.

3 Improved Structured Low-Rank Representation

In this section, we will present an improved structured low-rank representation algorithm
(ISLRR). Moreover, an optimizing algorithm is also proposed for solving ISLRR problem.

3.1 Motivation

Based on the analysis of [34], it can be found that the structure of the solution to LRR
affects the subspace segmentation results directly. We could hope that the coefficient matrices
obtained by LRR would be block-diagonal, namely, the relationships between intra-subspace
data samples are strong and the relationships between inter-subspace data samples are weaker.

However, LRR is insufficient to handle disjoint subspace segmentation problems. For the
sake of improving the ability of LRR, it is a clear way to ameliorate the structure of its
solution. The purpose of introducing structural information into the algorithm is that we can
achieve the block-diagonal solution even if subspaces are disjoint. From the descriptions
in Sect. 2.2, SCLRR can reveal the subspace structures of data sets more precisely than
LRR, however, the difficulty of SCLRR is greatly increased because of the adjustment of the
additional parameter 3, and an improper value of § will decrease the performance of SCLRR
sharply.

Stated thus, we expect a better algorithm without extra constraint to discover the structure
information of data sets. As described in SCLRR [34], M is a weighted matrix that reflects
the structural relationships between data samples and a new weighted constraint [M © Z|,
is considered to help Z to reveal the structure information of data sets better. Different from
SCLRR, we apply the weighed constraint M © Z into the equality constraint item of LRR to
form a new dictionary, so that a better low rank matrix for subspace segmentation could be
obtained. Considering the noise and outliers, we define the formula of ISLRR as follows:

min | Z [, + 2| Ello,; st X = XM O Z) +E. ©)

It is obvious that if we set all the elements of M as 1, we can get LRR from ISLRR. Hence,
LRR is actually a special case of LRR. After Z is obtained, we define the affinity matrix as
G = (Z +Z")/2 and then compute the segmentation results by Ncut [22].
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In general, the property of preferable weight matrix M is that the dissimilarities between
samples from intra-class are smaller and dissimilarities between interclass samples are larger.
An ideal M [34] can be defined as:

*T %

1—
X; x]

[(M]ij=1—exp| ———— |, )

where x and x;‘ are the normalized data points of x; and x; respectively, and o is set as the

*T*

mean of 1 — for all pairwise x;* and X3 * empirically in this paper.

3.2 Optimization

In order to solve the optimization of problem (6), we introduce two auxiliary variable J and
T into the objective function. Then (6) can be represented as the following equivalent form:

Zrlgun 11l +AIE]2; st. X=XT+E, Z=JMOZ=T. ®)
The augmented Lagrangian function of (8) is:
LZ,J, T,E, Yy, Yp, Ye)=Jlu +AElp 1+ < Yo, X —XT —E>+<Yp, Z—-J >
+<YMOZ-T>+% (||X XT —E|3+I1Z-JI}:+IMOZ-T|}), 9)

where Y,, Y, and Y, are Lagrange multipliers and p > 0 is a parameter. We can use an
iterative approach to optimize the above unknown variables.

3.2.1 Update J with Other Variables Fixed

Suppose J' and other variables have been obtained in the #-th iteration, ignore the irreverent
terms of J in Eq. (9), we have:

J —argmln]r”J || + < Yb,Zt—Jt >+ HZ’—J ||F

—|[J" = (Z’+th>
w!

2
:

(10)

= argming [ J'], +
= argmin jt th « -
then J'"*' = U'O® 1 (S’) VT, where U'S'V,I' is the SVD of matrix Z’ + Y and@isa singular
value thresholdinél operator [39].

3.2.2 Update T with Other Variables Fixed

Similar to the above method, we drop irrelevant items of T, then we have:

T = argming <Y, X = XT' —E' >+ <Y, MOZ —T' >

t
+ (X - xT - Ep+ Moz - T'[})

112

. 1 t t Ya
:argmlnTrE X—-XT —F +E

t
C

y 2
ry =< ) (11)
F

W

F
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then T = (XTX + 1,) " (XT (X = E'+ 4) + (MOZ + %) ). L is an n x n identity
matrix.

3.2.3 Update Z with Other Fixed Variables

Based on the above computed J'*! and T'*!, in the ¢-th iteration, we have
7% = argming < Y,z — JH S 4 < YL, MOZ — T+ S

wu! 2 2
+ |z =+ Moz — 1)

1 Y| y! |2
= argming - ‘z’ — g+l +i; +MoZ -1+ =] ), (12)
2 KollF HAlF
then Z'*! = (J’Jrl - % + T — Z—%)./(EE + M), where EE is an n x n matrix with each

element equals 1. Suppose C = A./B, then [C];; = [A];;/[B];;-

3.2.4 Update E with Other Fixed Variables

Abandon the irrelevant terms in (9) w.r.t E, then we could have:

t
2
E™ = argming M E' |+ < YL, X — XT™' — E' > +%”X - X1 - E'

2

; 13)
F

. A t 1 t 1 Yé
=argming —||E' |l + 5| X — XT" — E' + —
M 2 %

Finally, the update schemes of for the Lagrange multipliers Y, Y and Y, and parameter
w are summarized as follows:

Y[ll‘+1 — Yé +,u/t(X _ XT[+1 _ Et+1),
Y£+1 — th +Mt(zt+1 _ Jf+1)7
YL{+1 — YLI + MI(M Ozt+1 _ Tt+1),

t+1

w* = min(wmax, pu'), (14)

where (y,qy and p are two adjustable parameters.

3.3 Algorithm

According to the descriptions above, ISLRR algorithm can be summarized as follows
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Algorithm 1 Improved Structured Low-Rank Representation (ISLRR)

Input: A data set X = [X{,X;, '+, X, |, the parameter A, the weighted matrix M, and the
maximal number of iteration Maxiter.

Output: The coefficient matrix T, the low rank matrix Z and the noise matrix E.

1. Initialize the variables and parameters:

Yo=Y=Y=0,u"=10"p =10"p=11e=10"t=02"=)"=T"=0,

2. While ||X —XT!—E2>e, |Z8=JHE>e, IMOZE -T2 >¢ and t<
Maxiter

3. Update J¢+1, Tt+1, 781 EE+1 by solving Eq. (10) to Eq. (13);

4. Update Y+, vf+L, vi+L, ut*1 by solving Eq.(14) ;

5.t=t+1;

6. end while

7. return: the matrix T* = T?, the low rank matrix Z* = Z¢, the noise matrix E* = E¢,

4 Further Discussion
4.1 The Relationship Between SCLRR and ISLRR

Comparing SCLRR with our ISLRR, it can be found that:

1. In order to improve the applications of LRR on data sets with disjoint subspaces, both
SCLRR and ISLRR introduce the weighted matrix M to the coefficient matrix Z for
enhancing its structure information, as is to say, they both have the same weighted coef-
ficient matrix M © Z.

2. In this article, the way to define the weighted matrix M is same as that used in [34],

1—
namely [M];; = 1 — exp| —

*T %
XI- )Cj

. In the future works, we can also take more

appropriate ways to get a better M.

3. According to Eq. (4), SCLRR introduces the weighted matrix MO Z = i MijlZl;
as the sparse constraint item into the objective function of LRR for balancing the
nuclear norm to get a better low rank solution. But ISLRR treats the weighed matrix
MoOZ=3 j Mij|Z|; j as anew dictionary for representing data samples more accu-
rately. Therefore, we can also get a more suitable structural low rank matrix for subspace
segmentation.

4.2 Algorithm Convergence

In Sect. 3.2, ISLRR uses ADM to get the optimum solution, whose convergence has been
validated when the number of variables is less than or equal to two [40]. Since there are
four variables: Z, J, T and E in Algorithm 1, it is difficult to give the theoretical explanation
to illustrate the convergence of algorithm. Fortunately, Eckstein et al. [41] provided two
sufficient conditions to guarantee the convergence of the algorithms: one is that the dictionary
matrix in the equality constraints should be of full column rank; the other is that the optimal
solution of each variable is monotonically decreasing in each iteration step. According to
[41], the dataset Z is a full column rank matrix, since the row elements of the weight matrix
M are not all zero, it is easy to verify that the dictionary matrix M © Z is of full column
rank. However, the monotonically decreasing condition cannot be proved directly, while
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(b)

Fig. 2 Sample images of Hopkins 155 motion database. a IR2RC, b arm

the convexity of Lagrange’s function ensures its effectiveness to a certain extent [41]. In a
word, we expect Algorithm 1 to be convergent and use the upper bounded u to guarantee its
theoretical convergence in the alternating direction method, but its strict proof of convergence
is worth further discussion.

5 Experiments

In this section, we evaluate the performance of ISLRR for subspace segmentation problems.
The close related algorithms including SSC [15], LRR [7, 18], and SCLRR [34] are used for
comparisons. The frequently used databases such as Hopkins 155 [42], Fashion_ MNIST [37],
two face image databases Extended Yale B [43] and AR [44] are used in our experiments.

The computer configurations for these experiments are 3.20 GHz Inter (R) Core (TM)
15-6500 CPU with 4 GB machine memory, 500G hard disk memory, 64 bit windows7 pro-
fessional operating system, and R2014a version Matlab.

These four databases are described briefly as follows:

Hopkins 155 motion segmentation data set contains 155 sequences, which includes 104
checkerboard sequences, 38 traffic sequences, and 13 others. Each of sequence is an inde-
pendent clustering task, so there are altogether 156 clustering tasks. The sample images from
Hopkins 155 database are given in Fig. 2.

Fashion-MNIST data set consists of 60,000 train examples and 10,000 test examples. They
are divided into 10 categories: t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag,
and ankle boo. We select the first 50 pictures of each class’ train data set, and resize them to
20 x 20 pixels in our experiments. The samples are given in Fig. 3a.

Extended Yale B face database consists of 38 objects with a total of 2414 images, each
of which has 9 different gestures with 64 Gray scales. Moreover, these photos were taken in
different light and facial expressions. In our experiment, each picture is resized to 32 x 32
pixels. The samples are given in Fig. 3b.

AR face database contains more than 4000 face images of 126 objects. Each object has
26 pictures in two modes, therefore each mode has 13 pictures. These images are taken in
different views and lights. In our experiment, we select altogether 2000 photos from the first
120 people and adjust each image to 50 x 40 pixels. The image samples are shown in Fig. 3c.
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(b)
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PRk

Fig. 3 Static sample images from three image databases. a Sample images of Fashion-MNIST database, b
sample images of the extend Yale B database and ¢ sample images of AR database

5.1 Comparisons with LRR

In this subsection, we carry the experiments on three static image data sets to observe the
relationship between LRR and ISLRR. The first four categories of each data set are selected
for this experiment and parameter \ in both algorithms are set to 1. In Fig. 4, Zy rr is the
low rank coefficient matrix of LRR, Z; g7 rr is the low rank constraint matrix of ISLRR. M
is the structural features matrix of data samples.

From Fig. 4, we can see that: (1) Z;szrr is a dialog matrix, as is to say, Z;sprr can
be a better matrix to design an affinity graph for subspace segmentation; (2) the low rank
matrix Zjsz gg is different from Z; gg of LRR, and it is also not equal to Z; gr./M. This
means that Z;s7 gr could not be directly computed as Zj gg./M. Therefore, it is reliable to
introduce the structure information of data sets into LRR by following the methodology of
ISLRR.
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ZISLRR

ZLRR'/M

(a) (b) (0)

Fig. 4 The reconstruction coefficient matrices obtained by LRR and SLRR. a Extend Yale B, b AR and ¢
Fashion-MINST

5.2 Sensitivity Analysis

In the first section, we took a simple test to observe the sensitivity of SCLRR to the extra
parameter f and claimed that the performance of SCLRR varies drastically with . In this
section, a series of experiments are conducted to observe the sensitivity of ISLRR and SCLRR
to the corresponding parameters. For Hopkins 155, we choose 1R2RC sequence for this
experiment, and the range of parameter { is set as [0.001, 50] while A is chosen in [0.0001,
20]. For the three static image databases, we select the first three classes of each dataset
and set the intervals of A and B as [0.001, 50]. In the experiments on SCLRR, we fix one
parameter at their corresponding optimal point to observe the accuracy along with the change
of another parameter. The experiments results are shown in Fig. 5.

From Fig. 5, we can find that: (1) parameter  will affect the final results of SCLRR directly
even if the parameter \ is fixed in the corresponding optimal value; (2) in most cases, the
sensitivity of ISLRR to the parameter A is similar to that of SCLRR when B is fixed in its
optimal value. But in general, it is much easier to adjust one parameter in ISLRR than to
adjust two in SCLRR.

5.3 Comparisons with Related Algorithms

To further verify the effectiveness of ISLRR, ISLRR and other related algorithms are evalu-
ated on the four databases for comparisons.
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Fig. 5 The performaces of SCLRR and ISLRR varied with the corresponding parameters. a IR2RC, b the
Extended Yale B, ¢ AR and d Fashion-MINIST

5.3.1 Experiments on Motion Sequences

For Hopkins 155 data set, these motion sequences can be regarded as different categories,
so we can consider such problems as 120 two-class segmentation problems and 35 three-
class segmentation problems. The segmentation results of related algorithms including
mean values (Ave.), standard deviations (Std.), and maxima errors (Max.) are reported in
Table 1 (The optimal values of different criteria are emphasized in bold).

From the Table 1, we can see that ISLRR achieved better results in two motion sequences
than those in three motion sequences. Compared with the related algorithms, ISLRR can
reach more promising results.

5.3.2 Experiments on Static Image Datasets

In this subsection, we first find the highest accuracies of the four algorithms with the corre-
sponding optimal parameters on three static image databases, and record the running times of
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Table 1 Segmentation error (%) of different algorithms on Hopkins 155 data set

2 motions 3 motions Total

Ave. Std. Max. Ave. Std. Max Ave. Std. Max.
SSC 4.65 10.11 48.62 8.19 10.23 42.93 545 10.21 48.62
LRR 4.33 9.82 48.61 8.15 10.23 38.30 5.20 10.01 48.61
SCLRR 3.74 8.56 47.22 9.45 11.20 40.43 5.03 9.49 47.22
ISLRR 3.72 9.74 48.82 9.30 10.54 40.26 4.98 9.92 48.82

SSCN=1,LLR\=2.4,SCLRRB =0.01, . =2,ISLRR» =4

Table 2 The experiment results of different algorithms on three image data sets

SSC LRR SCLRR ISLRR
The extend Yale B (%) 0.6031 0.6333 0.6675 0.6831
Parameters rA=0.5 A=3 B=0.001,A=3 A=35
Running times (s) 590.46 2421.94 3131.67 3122.04
AR (%) 0.6651 0.7808 0.7885 0.7975
Parameters rA=0.5 r=1 p=3,r=1 r=3
Running times (s) 1205.03 2144.15 3072.88 2478.11
Fashion-MNIST (%) 0.5360 0.5660 0.5600 0.5760
Parameters Ar=0.5 Ar=04 B=0.1,A=0.35 A=0.1
Running times (s) 9.38 13.50 21.55 16.38

each algorithm in each database. The experimental results are shown in Table 2 (The optimal
values of different criteria are emphasized in bold).

From Table 2, we see that: (1) ISLRR and SCLRR spend more time on three image data
sets for better results; (2) ISLRR can obtain the highest segmentation accuracies on all the
three databases.

Next, we compare the performances of related algorithms on each data set with different
number of classes. In those experiments, we choose q (q is between 3 and the total number
classes of data samples) classes data samples to compute their corresponding accuracies. The
range of parameter X is set as [0.001, 20] and parameter { is [0.0001, 50], and the best results
are recorded in Fig. 6.

From Fig. 6, we can see that: (1) with the increment of segmentation data categories,
the segmentation accuracies of these algorithms decline; (2) ISLRR is superior to other
algorithms in most cases, especially on Yale B data set. The experimental results show
that ISLRR is an effective algorithm in dealing with the segmentation problems of static
images.

6 Conclusions
In this paper, a new subspace segmentation algorithm named ISLRR is proposed. In ISLRR,
we introduce the structure information of data sets into the equality constraint term of LRR.

Comparing with SCLRR, it doesn’t bring any extra parameter, thus it avoids the difficulty
for adjusting two parameters. To confirm the algorithm’s effectiveness, three close related
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Fig. 6 The segmentation accuracies obtained by evaluated algorithms versus the number of classes on different
databases. a Experimental results on Fashion-MINIST database, b experimental results on the Extended Yale
B database and ¢ experimental results on AR database

algorithms are also evaluated on four image data sets. Experimental results show that ISLRR
algorithm is simply and effective for handling subspace segmentation problems.
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