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Abstract Subspace clustering aims to segment a group of data points into a union of sub-
spaces. Reweight sparse subspace clustering is one of the state-of-the-art algorithms which
proposed an iterative weighted subspace clustering. The reweight matrix helps to improve
the performance of the affinity matrix construction process but it easily falls into a local mini-
mization. In this paper, we propose a structural reweight sparse subspace clustering algorithm
which introduces the structural information into reweight subspace clustering. The structural
information achieved in spectral clustering process is useful for the subsequent iterative opti-
mization process which helps to obtain a better local minimization. The experimental results
on the Extended Yale B, Hopkins 155, and COIL 20 datasets demonstrate that our algorithm
achieves a better performance on subspace clustering problem.

Keywords Sparse subspace clustering · Motion segmentation · Structural information

1 Introduction

In many real-world applications, plenty of high-dimensional datasets need to be segmented
into low-dimensional subspaces, e.g., computer vision, machine learning and image process-
ing. Because the high-dimensional data processing always require higher computational
capability and larger memory spaces. It has been observed that these high-dimensional
datasets usually are distributed in intrinsic low-dimensional subspaces. For instance, face
images taken under different illuminations lie in respective subspaces of multiple subjects.
To solve the high-dimensional face recognition problem, Wan et.al. proposed the local graph
embedding dimensional reduction method based on maximum margin criterion via Fuzzy
Set, which was helpful to extract the representative features [1]. The motion trajectories of
multiple moving objects could be approximated by several low-dimensional subspaces. The
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images of one object which is rotated several degrees lie in one subspace. Subspace clustering
methods have been proposed to segment a collection of data points into a union of subspaces
[2].

Subspace clustering methods is traditionally divided into four main categories: alge-
braic, iterative, statistical, and spectral clustering-based methods. Algebraic algorithms
include matrix factorization-based approaches and algebraic-geometric approaches. Matrix
factorization-based methods first obtain a rank-r that r is the rank of input data matrix fac-
torization of the data matrix, and then segment data points by the similarity matrix. So these
approaches need to know the rank r and the subspaces should be independent. Generalized
Principal Component Analysis (GPCA) is the typical algebraic-geometricmethod [3]. GPCA
fits the high-dimensional data with a set of polynomials whose gradient at a data point gives
the normal vector to the subspace including the point. So GPCA is sensitive to the outliers
and its computation complexity grows exponential in terms of the dimensions of subspaces.
Iterative methods first initialize the segmentation randomly, and fit a subspace using PCA.
Then data points are assigned to its closest subspace. The iterative algorithms are sensitive to
the initialization which will lead to a bad result. Statistical methods define proper generative
models for subspaces. Mixtures of Probabilistic PCA (MPPCA) is based on Probabilistic
PCAmodel and optimized by using Expectation Maximization (EM) algorithm [4]. MPPCA
needs to known the number and dimensions of subspaces in advance. Agglomerative Lossy
Compression (ALC) seeks for the minimization of the overall coding length of the segmented
data [5]. The agglomerative procedure in ALC still need to be proved theoretically. Random
Sample Consensus (RANSAC) is another statistical method [6], which randomly chooses
d data points and computes a model for these points, then fit all data points to the model.
RANSAC also needs to know the dimensions of subspaces. Spectral clustering-based meth-
ods are popular algorithms for subspace clustering. Thesemethods divide subspace clustering
into two steps: affinity matrix construction and spectral clustering. Spectral Local Best-fit
Flats (SLBF) [7], Local Subspace Affinity (LSA) [8] and Locally LinearManifold Clustering
(LLMC) [9] cluster the data points based on the observation that a point and its neighbors
always belong to the same subspace. SLBF and LSA can not handle the outliers near the
subspace. When subspaces are independent, LLMC is hardly to select the number of nearest
neighbors properly. SCC is based on the concept of polar curvature which is zero for data
points in same subspace [10]. But its computation complexity grows fast. SSC (Sparse Sub-
space Clustering) introduces sparsity into the affinity matrix construction process [11]. Based
on the hypothesis of data redundancy, the sparse constraint is used to separate data points of
different subspaces. Because the data point could be represented by other data points of same
subspace. In SSC, the l1-norm as the convex relaxation of the l0-norm is applied to achieve
the sparsest self-expressive coefficient matrix. Then the affinity matrix could be obtained
with the sparse coefficient matrix. Similar to SSC, Low Rank Representation (LRR) aims at
finding the lowest-rank representation matrix [12]. Dong et al. proposed the method roboust
low rank subspace segmentation via joint �21-normminimization (LR-L21) to learn low rank
representation by jointing the nuclear norm and �21-norm minimization [13].

SSC only need the number of subspaces as a priori knowledge. Consequently, many
researches have carried out a great deal of improved algorithms based on SSC. For instances,
Lin et al. proposed BD-SSC and BD-LRR that pursue the block-diagonal structure by graph
Laplacian constraint [14]. Inspired by enhanced l1 minimization [15], Reweighted Sparse
Subspace Clustering (RSSC) was proposed for using iterative weighted l1 minimization as
an alternative to the l1 minimization [16]. In order to do subspace clustering at a unified
framwork, Structured Sparse Subspace Clustering (SSSC) was proposed in [17]. Similarly,
Wu et al. proposed a novel robust spectral subspace clustering based on least square regression
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(RS2CLSR) to learn representation matrix through least square regression and the soft label
was utilized to enhance the process [18].

Contributions RSSC proposes the iterative weighted l1 minimization to be the alternative
to the l1 minimization. The main disadvantage of the method is that the optimization easily
falls into a local minimization. It is observed that the structural information of the data helps
to find a better local minimization. So our contributions can be summarized as follows.

1. We propose a structural reweight sparse subspace clustering model (SRSSC) by com-
bining the structural sparse norm and weighted sparse norm into the cost function. 2. We
prove that the structural information is used to help reweight subspace clustering find a better
local minimum that more closely resembles the global minimum.

2 Related Works

Self-expressive model Let X ∈ RD×N be the input data whose columns stand for the data
points. Suppose that all data points are distributed in a union of subspaces S = ∪n

i=1{Si }
whose dimension is di . n is the number of subspaces. The self-expressive model is proposed
by SSC [11]. First, we need to assume that each data point x j ∈ X = {x1, x2, . . . , xN } can
be efficiently reconstructed by a combination of other data points. So xj can be written as

xj = Xzj, zjj = 0, (1)

where zj is the j-th column of the representation coefficientsmatrixZ ∈ RN×N . The function
could also be written in matrix form as

X = XZ, diag(Z) = 0. (2)

The constrain diag(Z) = 0 aims to eliminate the trivial solution that one data point is
represented by itself. In order to obtain a sparse representation coefficient matrix Z, the
sparse norm is introduced into the cost function

min ‖Z‖0 s.t. X = XZ, diag(Z) = 0, (3)

where l0-norm counts the number of nonzero elements in a matrix. Through minimize the
l0-norm of one matrix, we could achieve the sparsest representation matrix. But the l0 mini-
mization is the NP-hard problem. So the function should be relaxed as

min ‖Z‖1 s.t. X = XZ, diag(Z) = 0. (4)

Reweight sparse subspace clustering As discussed in [15], the l1 minimization penalizes
larger elements more heavily than smaller elements while the l0 minimization penalizes
elements equally. An iterative weighted formulation of l1 minimization is designed to more
democratically penalize nonzero elements. In [15], the log-sum surrogate function f (x) =∑n

i=1 log(|xi | + ε) could closely resemble the l0 minimization. So in RSSC [16], the penalty
term is added into the cost function of the sparse subspace clustering,

min ‖W � Z‖1 s.t. X = XZ, diag(Z) = 0, (5)

whereW is the weight matrix related to the representation coefficient matrixZ and is updated
by W = ε2|Z|+ε1

, ε1 is used for numerical stability and to ensure that a zero-valued element
will not lead to a nonzero estimate at the next iteration.
For the reason of the log-sum surrogate function is concave, RSSC easily falls into a local
minimization.
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3 Structural Reweight Sparse Subspace Clustering

Inspired by theRSSCalgorithm,we propose the SparseReweight Sparse SubspaceClustering
(SRSSC) which introduces the structural information into the objective function.

min
Z,E

‖W � Z‖1 + λq‖Q � Z‖1 + λe‖E‖1
s.t. X = XZ + E,ZT1 = 1, diag(Z) = 0,

(6)

whereE is the outliers,Q is the structural matrix. The parameters λq and λe balance the three
terms in the objective function. As parameter λq is equal to 0, the optimization of function (6)
is equivalent to standard RSSC. � denotes the element-wise product between two matrices.
ZT1 = 1 is the constraint of affine subspaces.

The update on weight matrix W and structural matrix Q could be written as

W(k+1) = ε2
∣
∣Z(k+1)

∣
∣ + ε1

(7)

Q(t+1)(i, j) =
⎧
⎨

⎩

1 l(t+1)(i) = l(t+1)( j)

0 l(t+1)(i) �= l(t+1)( j)
, (8)

where l(t+1)(i) and l(t+1)( j) stand for the clustering labels of data point i and j after the
t-th iteration. As shown in [16,17], the updating of W and Q are not synchronous. Suppose
we initialize the W as all the elements to be one, and the Q as zeros, the optimization is
equivalent to a standard SSC.

The structural information is achieved after each iteration of weighted Z minimization. In
detail, SRSSC could be divided into two steps: weighted Z minimization with fixed structural
matrixQ and structural matrixQ updatingwith the result of spectral clustering. The two steps
alternate until the formulation converged.

3.1 The Weighted Z Minimization

We fix the structural matrix Q as Q(t) at the t-th iteration. The function (6) is changed into

min
Z,E

‖W � Z‖1 + λq
∥
∥Q(t) � Z

∥
∥
1 + λe‖E‖1

s.t. X = XZ + E,ZT1 = 1, diag(Z) = 0. (9)

The function (9) could be solved by Alternating Direction Method of Multipliers (ADMM)
[19].

First, we introduce an auxiliary matrix A into the function (9)

min
Z,E,A

‖W � Z‖1 + λq
∥
∥Q(t) � Z

∥
∥
1 + λe‖E‖1 + λn

2
‖X − XA − E‖2F

s.t. AT1 = 1,A = Z − diag(Z). (10)

It’s clearly that the solution of function (9) is consistent with function (10). Then two penalty
terms should be added into the function

min
Z,E,A

‖W � Z‖1 + λq
∥
∥Q(t) � Z

∥
∥
1 + λe‖E‖1 + λn

2
‖X − XA − E‖2F

+ μ

2

(∥
∥ZT1 − 1

∥
∥2
2 + ‖A − (Z − diag(Z))‖2F

)
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s.t. AT1 = 1,A = Z − diag(Z). (11)

Note that adding the penalty terms does not change the optimal solution and makes the
objective function to be strictly convex. Two Lagrangian multipliers δ ∈ RN and Δ ∈ RN

are augmented for two constraints. The Lagrangian function of (11) could be written as

L(A,Z,W,Q,E, δ,Δ) = ‖W � Z‖1 + λq
∥
∥Q(t) � Z

∥
∥
1

+ λe‖E‖1 + λn

2
‖X − XA − E‖2F

+ μ

2

(∥
∥ZT1 − 1

∥
∥2
2 + ‖A − (Z − diag(Z))‖2F

)

+ δT
(
AT1 − 1

) + tr
(
ΔT (A − (Z − diag (Z)))

)
, (12)

where tr(·) is the trace operator.
Note that

(
Z(k),E(k),A(k)

)
are the optimization variables at k-th iteration.

(
δ(k), Δ(k)

)
are

the Lagrange multipliers at k-th iteration.
Update for A Obtain A(k+1) by minimizing function (12) with respect to A while(

Z(k),E(k), δ(k), Δ(k)
)
are fixed. Setting the derivative of function (12) to be zero, we can

obtain
(
λzXTX + μI + μ11T

)
A(k+1) = λz X

T
(
X − E(k)

)
+ μ

(
11T + Z(k)

)
− 1δ(k)T − Δ(k).

(13)
Update for Z Obtain Z(k+1) by minimizing function (12) with respect to Z while(
A(k+1),E(k), δ(k), Δ(k)

)
are fixed. The update on Z(k+1) has a closed-form solution

Z(k+1) = Z̃ (k+1) − diag
(
Z̃ (k+1)

)

Z̃ (k+1) Δ= Γ
Q(t)
(1+λq )/μ

(

A(k+1) + Δ(k)
/

μ

)

,
(14)

where Γ W
η (·) is the shrinkage-thresholding operator which is defined as

Γη
W (X) = max (|X| − ηW, 0) � sgn(X). (15)

Update for E Obtain E(k+1) by minimizing function (12) with respect to E while(
A(k+1),Z(k+1), δ(k), Δ(k)

)
are fixed.

E(k+1) = Γλe/λn

(
XA(k+1) − X

)
. (16)

Update for δ andΔObtain δ(k+1) andΔ(k+1) with step sizeμwhile
(
Z(k+1),E(k+1),A(k+1))

are fixed.

δ(k+1) = δ(k) + μ
(
A(k+1)T 1 − 1

)

Δ(k+1) = Δ(k) + μ
(
A(k+1) − Z(k+1)

)
. (17)

Update for W Obtain W(k+1) while
(
Z(k+1),E(k+1),A(k+1)) are fixed.

W(k+1) = ε2
∣
∣Z(k+1)

∣
∣ + ε1

. (18)

In summary, the optimization of function (9) with ADMM is summarized as Algorithm 1.

123



970 P. Wang et al.

Algorithm 1: Solve (9) via ADMM Algorithm

Input : Data matrix X, structural matrix Q(t) and maximal iteration number K

Initialize
(
A(0),Z(0),E(0), δ(0),Δ(0)

)
is zeros, k = 0, and W(0) = 1

While k ≤ K or not converged do
Update Z(k),E(k), and A(k)

Update δ(k), Δ(k)

k ← k + 1
End while

End
Output: Z(t+1) = Z∗

3.2 Spectral Clustering

After solving the weighted sparse optimization program in (9), we obtain the sparse
representation matrix Z(t+1). Next, we build a symmetric non-negative similarity matrix
G = 1

2

(∣
∣Z(t+1)

∣
∣ + ∣

∣Z(t+1)
T
∣
∣
)
. Then we apply spectral clustering to find cluster label L(t+1)

which is essential to update Q.

Q(t+1)(i, j) =
⎧
⎨

⎩

1 l(t+1)(i) = l(t+1)( j)

0 l(t+1)(i) �= l(t+1)( j)
. (19)

In summary, the SRSSC program could be summarized as Algorithm 2.

Algorithm 2: SRSSC

Input : Data points X, maximal iteration number T of spectral clustering,
and maximal iteration number K of ADMM

Initialize Q(0) = 0, and t = 0.
While t < T or not converged do

Solve (10) via Algorithm 1.
Compute G according to Z(t+1).
Apply spectral clustering to G, and obtain the label vector L(t+1).
Update Q(t+1).

End while
End
Output: L∗

3.3 Convergence Analysis

As shown in [16], the update on weight matrixW stems from the log-sum surrogate function.
The log-sum heuristic function is concave and its minimization problem could be solved by
an iterative linearization method [20]. In [15,21,22], the convergence of the reweight �1
minimization with log-sum surrogate function has been proved that the minimization could
converge to a local minimum. While the Algorithm 1 converges to a local minimum, the
proposedmethodmay not converge. The experimental results show that our proposedmethod
converges in practice under optimal parameters.
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4 Experiments and Analysis

In this section, we evaluate the clustering performance of the proposedmethod in dealingwith
images clustering, and motion segmentation problems. The datasets include the Extended
Yale Database B, COIL 20 and Hopkins 155.

Experimental setup In this paper, we compare with some state-of-the-art subspace cluster-
ing algorithms, i.e., SSC [11], LRR [12], SCC [10], LSA [8], BD-SSC [14], BD-LRR [14],
LR-L21 [13], RSSC [16], SSSC [17], S-SSSC [23], and SSC-OMP [24]. S-SSSC based on
SSSC defines an alternative real-valued structural matrix to binary structural matrix. SSC-
OMP changes the optimization method into OMP (Orthogonal Matching Pursuit). For most
of the algorithms mentioned above, the code is released by the authors based on Matlab
platform. All the parameters keep the same as mentioned in their paper. And for BD-SSC,
BD-LRR and LR-L21, we directly cite the results shown in their papers.

We use the clustering error to measure the performance of algorithms

error = 1

N

N∑

i=1

max (|pi − g(qi )| , 0), (20)

where pi is the ground truth label of point i , and qi is the clustering label. The function g (·)
permutes clustering labels for matching the ground truth which could be Kuhn-Munkres
method.

All the experiments are implemented in Matlab 2010b on a PC with Intel Core i3-3320
CPU at 3.30 GHz and 8.00 GB RAM.

Experimental results on Hopkins 155 dataset In this section, we evaluate the performance
of our algorithm and other state-of-the-art algorithms on the Hopkins 155 dataset. Motion
segmentation refers to the problem of motion trajectories segmentation according to their
moving objects respectively. The Hopkins 155 dataset contains 155 video sequences where
120 of all videos contain two moving objects and 35 of all videos contain three moving
objects, which means that the data lies in a union of 2 or 3 low-dimensional subspaces. In
each video sequence, a set of N feature trajectories has been extracted and tracked by tracking
algorithms. All trajectories data comprises a matrix X = [x1, x2, . . . , xN] and each column
of X is a 2F-dimensional vector where F is the frame number.

For the motion segmentation experiments, we use the noisy variation, without the outlier
term E and with the affine constraint in the optimization process. As shown in [11] , it gives

the setting λZ = α/μZ where μZ
Δ= mini max j �=i

∣
∣xTi x j

∣
∣. In SSC, we use α = 800 as shown

in [11]. In LRR, we use λ = 4 to achieve the best results without the post processing [12].
In SCC, the dimension d = 3 [10]. In LSA, the nearest neighbors number kNeight = 6 and
dimension d = 4 [8]. InRSSC, the numerical stability parameters ε1 = 0.001 and ε2 = 0.015
[16]. In SSSC, we use α = 0.1 [17]. In S-SSSC, we set α = 0.2 [23]. In BD-SSC, BD-LRR
and LR-L21, we directly cite the best results in their papers [13,14]. In SSC-OMP, we use
K = 50 [24]. In our algorithm, we set the parameters value as ε1 = 0.001, ε2 = 0.015 and
λq = 0.1.

The final experimental results are represented in Table 1 where the average and median
errors of subspace clustering are given.

First of all, our algorithm achieves the lowest clustering error in the Hopkins 155 dataset.
The algorithms based on SSC have better performance than other algorithms which is a
verification of SSC superiority over other subspace clustering algorithms based on spectral
clustering. The clustering error of SSC-OMP is far worse than others. We consider the
reason maybe that SSC-OMP could not deal with big data under the affine projection model
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Table 1 Clustering errors on the Hopkins 155 dataset with 2F-dimensional data points

Method 2 motions error (%) 3 motions error (%) Total error (%)

SSC 1.53 0.00 4.40 0.56 2.23 0.00

LRR 3.76 0.00 9.92 1.42 5.51 0.00

LR-L21 2.17 0.00 5.32 1.46 2.88 0.00

SCC 2.18 0.00 7.37 0.19 3.45 0.00

LSA 4.23 0.56 7.02 1.45 4.86 0.89

BD-SSC – – – – 2.90 0.00

BD-LRR – – – – 3.35 0.37

RSSC 0.75 0.00 1.68 0.48 1.08 0.00

SSSC 1.94 0.00 4.92 0.89 2.61 0.00

S-SSSC 1.65 0.00 4.27 0.61 2.24 0.00

SSC-OMP 31.46 33.09 44.59 45.57 34.42 35.71

Ours 0.66 0.00 1.34 0.21 0.82 0.00

The best results are in bold font
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Fig. 1 The histogram of numbers of iterations to convergence

successfully. Secondly, the clustering average error of our algorithm is reduced from 0.75 and
1.52 to 0.66% for the 2-motions case and from 1.68 and 4.41 to 1.34% for the 3-motion case
respectively. Compared with RSSC and SSSC, we can find that the reweight sparse norm
improves the performance of subspace clustering greatly. Compared with RSSC and ours,
we can also find that ours reduces the cluster error greatly. So we can reach the conclusion
that the reweight process is essential for the subspace clustering problem, and the structure
information is also useful in achieving a better local minimization.

From the Fig. 1, we can find that our proposed algorithm mostly converges in 1 ∼ 3
iterations for all 155 video sequences. It proves that our algorithm could converge to a local
minimum in a few iterations.

Experiments on Extended Yale B dataset In this section, we evaluate the performance of
our algorithm and others on the Extended Yale B dataset. The dataset contains the frontal
face images of 38 subjects. Every subject is required to take 64 frontal face images under
different illumination conditions. The size of each image is 192 × 168. To reduce the com-
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Table 2 Clustering errors on the Extended Yale B dataset.

Object number 2 3 5 8 10

Error (%) Ave Med Ave Med Ave Med Ave Med Ave Med

SSC 1.86 0.00 3.31 1.04 4.32 2.81 5.99 4.49 7.29 5.47

LRR 6.74 7.03 9.30 9.90 13.94 14.38 25.61 24.80 29.53 30.00

LR-L21 1.75 0.78 2.74 1.56 3.50 2.81 3.99 3.91 4.32 4.06

SCC 16.62 7.82 38.16 39.06 58.90 59.38 66.11 64.65 73.02 75.78

LSA 32.80 47.66 52.29 50.00 58.20 56.78 59.19 58.59 60.42 57.50

BD-SSC 3.90 – 17.70 – 27.50 – 33.20 – 39.53 –

BD-LRR 3.91 – 10.02 – 12.97 – 27.30 – 30.84 –

RSSC 0.49 0.00 0.92 0.00 1.81 0.63 3.70 1.76 5.73 3.44

SSSC 1.27 0.00 2.71 0.52 3.41 1.25 4.15 2.93 5.16 4.22

S-SSSC 0.94 0.00 2.24 1.04 4.31 2.50 6.23 5.27 11.41 7.03

SSC-OMP 0.96 0.99 2.45 1.56 3.91 2.50 6.11 3.52 7.79 4.69

Ours 0.41 0.00 0.71 0.00 1.43 0.31 2.84 0.59 4.43 3.13

The best results are in bold font

putational complexity, each face image is down-sampled to 48 × 42 and represented as a
2016-dimensional vector. Following the protocol proposed in [11], we divide 38 subjects into
4 groups: 1–10, 11–20, 21–30, 31–38. We perform the combination of n ∈ {2, 3, 5, 8, 10}
subjects for the first three groups and consider the all choices of n ∈ {2, 3, 5, 8} subjects for
the final groups.

For the face clustering experiments, we consider the condition of noisy variation, with
outlier E and without the affine constrain. As shown in [11], outlier E could deal with

small errors due to noise in practice. And the parameter is setting λe = α/μe where μe
Δ=

minimax j �=i
∥
∥x j

∥
∥
1. In SSC, we use α = 20 as shown in [11]. In LRR, we use λ = 0.18 to

achieve the same results in [12]. In SCC, the dimension d = 9 [10]. In LSA, the nearest
neighbors number kNeight = 8 and dimension d = 4 [8]. In RSSC, the numerical stability
parameters ε1 = 0.0002 and ε2 = 0.0014 [16]. In SSSC [17], we use α = 0.1. In S-SSSC
[23], we use α = 0.1. In BD-SSC, BD-LRR and LR-L21, we directly cite the best results in
their papers [13,14]. In SSC-OMP , we use K = 5 [24].

In our algorithm, we use λq = 0.1 and ε1 = 0.006, ε2 = 0.0001. The experimental results
are presented in Table 2.

From Table 2, we can find that our algorithm achieves the best performance for most
conditions on the Extended Yale B dataset. Compared with RSSC and SSC, we can find
that the reweight sparse norm improves the performance of subspace clustering remarkebly.
Compared with RSSC and our algorithm, the clustering errors are reduced from 0.49 to
0.41% for 2 objects case and from 5.73 to 4.43% for 10 objects case. When the object
number increases, the numbers of outliers between clusters will increase synchronously.

Experiments on COIL 20 dataset In this section, we evaluate the performance of our
algorithm and other state-of-the-art algorithms on COIL 20 dataset. COIL 20 contains 1440
images of 20 objects in which the background has been discard. Every object has been taken
72 images with a fixed camera while object is rotated through 360 degrees horizontally. The
size of each image is 32×32, so the dimension of input datamatrixX is 1024. Some examples
are shown in Fig. 2.
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Fig. 2 Examples from COIL 20 dataset

Table 3 Clustering errors on COIL 20 dataset

Object number 2 3 5 8

Error (%) Ave Med Ave Med Ave Med Ave Med

SSC 0.49 0.00 2.06 1.04 8.11 2.81 11.57 3.13

LRR 6.85 0.00 17.40 11.11 23.52 25.28 28.86 24.31

SCC 6.19 0.00 10.91 0.46 15.70 4.72 23.41 25.61

LSA 6.62 0.00 21.79 16.67 34.17 34.44 43.99 42.62

RSSC 0.03 0.00 2.72 0.00 6.23 0.00 7.53 0.00

SSSC 0.03 0.00 0.42 0.00 3.62 0.00 8.87 0.00

Ours 0.01 0.00 0.079 0.00 3.19 0.00 9.82 0.00

The best results are in bold font

Following the protocol proposed in [10], we first divide the 20 objects into two groups: 1–
10, 11–20, and consider all the choices of n ∈ {2, 3, 5, 8} subjects in this experiment. An we
consider the situation of noisy variation, with outlier E and without the affine constrain. For
all methods, we adjust the parameters refer to experimental parameters on the Extend Yale
Dataset B dataset to achieve the best result. In SSC [11], we set α = 10. In LRR [12], we set
λ = 0.01. In SCC [10], we set the dimension d = 7. In LSA [8], the nearest neighbors number
is set kNeight = 8 and dimension d = 7. In RSSC [16], we set ε1 = 0.1, ε2 = 0.005. In
SSSC [17], we use α = 0.1.

In our algorithm, we use λq = 0.1 and ε1 = 0.2, ε2 = 0.005. The experimental results
are shown in Table 3.

In Table 3, we can find that all the state-of-the-art algorithms achieve competitive per-
formance on COIL20 datast, because the discarded images improve the dissimilarity. As
we can seen in Table 3, SRSSC obtains the best performance for the all cases except for
8 objects case. At the same time, we find that the clustering error increases sharply when
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Fig. 3 Percentage of clustering example whose clustering accuracy less than or equal to a given value

object number is 8. This phenomenon is due to the fast growing number of outliers. Struc-
tural information will disturb the optimization process in this situation. The clustering error
increases from 7.53 to 9.82% for 8 objects cases. So our algorithm still need to be improved
in the future.

Then, we calculate the percentage of clustering samples whose clustering accuracy is less
than or equal to a certain value, which ranges in {0, 0.1, . . . , 0.9, 1}. The result are shown in
Fig. 3.

From Fig. 3, we can discovery that most of clustering samples achieve accuracy higher
than 0.6 for SSC, RSSC, SSSC and our algorithm. And the accuracy of more than 90%
clustering samples is higher than 0.9. Generally speaking, our algorithm improve the entire
accuracy on COIL20 dataset.

From the above three experiments as a whole, the clustering errors demonstrate the effec-
tiveness of the proposed SRSSC method.

5 Complexity Comparisions

In this section, we compare the computational and memory complexity of our algorithmwith
four related algorithms. The results are shown in Table 4. For the proposed method, there are
standardmatrix operations in theweighted Z minimization process such asmatrixmultiplica-
tion andmatrix inversion.Assuming that the size of input datamatrix ism×n and themaximal
iteration numbers of ADMM is K , the computation complexity of the weighted Z optimiza-
tion is O

(
Kn3 + Kmn2

)
. It takes time O

(
n3

)
time to compute spectral clustering with Z .

Then the total computational time of our proposed algorithm is O
(
Kn3 + Kmn2 + Tn3

)

where T is the maximal iteration number of spectral clustering. The cost of memory is deter-
mined by the biggest matrices X and Z whose size are m × n and n × n respectively. The
memory complexity of our algorithm is O

(
n2 + mn

)
.

where ns is the number of sampling iterations, d is the intrinsic dimension of input data, and
c is the size of random sampling subsets of input data. The number of sampling iterations ns
will grow fast as the data points grows.
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Table 4 Computation and
memory complexity comparison

Method Computation complexity Memory complexity

SSC O
(
Kn3 + Kmn2

)
O

(
n2 + mn

)

SCC O
(
ns (d + 1)2mnc

)
O (n(m + c))

RSSC O
(
Kn3 + Kmn2

)
O

(
n2 + mn

)

SSSC O
(
Kn3 + Kmn2 + Tn3

)
O

(
n2 + mn

)

Ours O
(
Kn3 + Kmn2 + Tn3

)
O

(
n2 + mn

)

6 Conclusions

In this paper, we propose a structural reweight subspace clustering (SRSSC) algorithm.
The reweight sparse norm is used to make a greater approximation to the �0-norm, and
the structural information is added to find a better local minimum. From the results on the
Hopkins 155 dataset, the Extended Yale B dataset, and the COIL 20 dataset, our algorithm
has much better performance than other subspace clustering algorithms. It can illustrate that
our method is reliable. But the SRSSC still has some drawbacks. SRSSC is sensitive to the
three parameters which bring about the problem of parameters selection. Because SRSSC
has two iterative procedures, it is time consuming. In the future work, we will improve the
robustness and speed up our algorithm.

Acknowledgements This work was supported in part by the National Natural Science Foundation of China
under Grant U1605252, in part by the National Key Research and Development Program of China under Grant
2016QY01W0200, the National Natural Science Foundation of China (41031064, 61572384, 61432014),
China’s postdoctoral fund first-class funding (2014M560752), Shanxi province postdoctoral science fund, The
central university basic scientific research business fee (JBG150225), Shaanxi Key Technologies Research
Program (2017KW-017).

References

1. WanM, Lai Z, Yang G et al (2017) Local graph embedding based on maximummargin criterion via fuzzy
set. Fuzzy Sets Syst 318:120–131

2. Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28(2):52–68
3. Vidal R, Ma Y, Sastry S (2005) Generalized principal component analysis (GPCA). IEEE Trans Pattern

Anal Mach Intell 27(12):1945–1959
4. Archambeau C, Delannay N et al (2008) Mixtures of robust probabilistic principal component analyzers.

Neurocomputing 71(7):1274–1282
5. Derksen H, Ma Y, Hong W et al (2007) Segmentation of multivariate mixed data via lossy coding and

compression. IEEE Trans Pattern Anal Mach Intell (TPAMI) 29(9):1546–1562
6. Fischler M, Bolles R (1981) RANSAC random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Commun ACM 24(6):381–395
7. Zhang T, Szlam A, Wang Y et al (2012) Hybrid linear modeling via local best-fit flats. Int J Comput Vis

100(3):217–240
8. Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid,

non-rigid, degenerate and non-degenerate. In: European conference on computer vision, pp 94–106.
Springer, Berlin

9. Goh A, Vidal R (2007) Segmenting motions of different types by unsupervised manifold clustering. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–6

10. Chen G, Lerman G (2009) Spectral curvature clustering (SCC). Int J Comput Vis 81(3):317–330
11. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans

Pattern Anal Mach Intell 35(11):2765–2781

123



Structural Reweight Sparse Subspace Clustering 977

12. Liu G, Lin Z, Yan S et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE
Trans Pattern Anal Mach Intell 35(1):171–184

13. DongW,WuX J (2017) Robust low rank subspace segmentation via joint L21-normminimization. Neural
Process Lett 1–14

14. Feng J, Lin Z, Xu H, et al (2014) Robust subspace segmentation with block-diagonal prior. In: IEEE
conference on computer vision and pattern recognition, pp 3818–3825

15. Candes E, Wakin M, Boyd S (2008) Enhancing sparsity by reweighted �1 minimization. J Fourier Anal
Appl 14(5):877–905

16. Xu J, Xu K, Chen K et al (2015) Reweighted sparse subspace clustering. Comput Vis Image Underst
138:25–37

17. Li CG, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 277–286

18. Wu Z, Yin M, Zhou Y, et al (2017) Robust spectral subspace clustering based on least square regression.
Neural Process Lett 1–14

19. Boyd S, Parikh N, Chu E et al (2011) Distributed optimization and statistical learning via the alternating
direction method of multipliers. Found Trends Mach Learn 3(1):1–122

20. Fazel M, Hindi H, Boyd S (2003) Log-det heuristic for matrix rank minimization with applications to
Hankel and Euclidean distance matrices. In: Proceedings of American control conference, pp 2156–2162

21. Xie Z, Hu J (2013) Reweighted L1-minimization for sparse solutions to underdetermined linear systems.
In: Proceedings of international congress on image and signal processing (CISP), pp 1660–1664

22. Chen X, ZhouW (2014) Convergence of the reweighted L1 minimization algorithm for L2-Lp minimiza-
tion. Comput Optim Appl 59(1–2):47–61

23. Li CG, You C, Vidal R (2017) Structured sparse subspace clustering: a joint affinity learning and subspace
clustering framework. IEEE Trans Image Process 26(6):2988–3001

24. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3918–3927

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Structural Reweight Sparse Subspace Clustering
	Abstract
	1 Introduction
	2 Related Works
	3 Structural Reweight Sparse Subspace Clustering
	3.1 The Weighted Z Minimization
	3.2 Spectral Clustering
	3.3 Convergence Analysis

	4 Experiments and Analysis
	5 Complexity Comparisions
	6 Conclusions
	Acknowledgements
	References




