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Abstract Recently, sparse representation models have attracted considerable interests in the
field of feature extraction. In this paper, we propose a novel supervised feature extraction
method called sparsity regularization discriminant projection (SRDP), which aims to pre-
serve the sparse representation structure of the data and simultaneously maximize the ratio
of nonlocal scatter to local scatter. More specifically, SRDP first constructs a concatenated
dictionary through the class-wise principal component analysis decompositions. Second, the
sparse representation structure of each sample is quickly learned with the constructed dictio-
nary by matrix–vector multiplications. Then SRDP regards the learned sparse representation
structure as an additional regularization term of unsupervised discriminant projection so as
to construct a new discriminant function. Finally, SRDP is transformed into a generalized
eigenvalue problem. Experimental results on five representative image databases demonstrate
the effectiveness of our proposed method.

Keywords Sparse representation · Feature extraction · Manifold learning · Unsupervised
discriminant projection · Face recognition

1 Introduction

Feature extraction is a fundamental and challenging problem in the area of computer vision
and pattern recognition [1–3]. In many existing feature extraction algorithms, principal com-
ponents analysis (PCA) [4] and linear discriminant analysis (LDA) [5] are the two classical
linear feature extraction methods and have been widely used in many practical applications.
PCAattempts to project the data along anoptimal direction bymaximizing the variancematrix
of data. Unlike PCA, LDA is a supervised method that seeks to find a projection direction by
maximizing the inter-class scatter when minimizing the inner-class scatter. Because the label
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information is fully exploited, LDA has been proven more efficient than PCA for the classifi-
cation tasks [5]. To further improve the discriminant ability of feature extraction, some LDA
variants have also been proposed, such as Enhanced Fisher Discriminant Criterion (EFDC)
[6], Maximum Margin Criterion (MMC) [7], EMKFDA [8], and Orthogonal LDA (OLDA)
[9].

To our best knowledge, linear feature extraction methods may fail to discover the under-
lying nonlinear structure hidden in high-dimensional data. To remedy this deficiency, a large
number of manifold learning algorithms have been proposed. The representative manifold
learning algorithms include locally linear embedding (LLE) [10], isometric feature mapping
(ISOMAP) [11], and Laplacian eigenmaps (LE) [12]. Unfortunately, these manifold learn-
ing methods usually suffer from the out-of-sample problem [13]. This is because they fail to
construct explicit maps over newmeasurements. To address this problem, locality preserving
projection (LPP) [14] tries to seek a linear approximation to the eigen-functions of Laplace—
Beltrami operator on the manifold derived from LE. Neighborhood preserving embedding
(NPE) [15] tries to find a linear subspace which preserves the local structure based on the
same principle of LLE. To construct an optimal graph for the later feature extraction, dis-
criminative unsupervised dimensionality reduction (DUDR) [16] was proposed. Yan et al.
[17] introduced a general framework for feature extraction, called graph embedding. A large
number of methods, e.g., LPP, DUDR and OLMGMP [3] can all be considered as the special
cases within this framework. Recently, many other methods have been explored in [18–20],
and as expected, they have achieved good performance in the classification tasks.

However, a common problem with current subspace learning methods is that they only
character the locality of samples such that they cannot guarantee a good projection for the
classification purposes. To address this problem, Yang et al. [21] proposed unsupervised
discriminant projection (UDP). UDP introduces the concept of non-locality and learns the
low-dimensional representation of data by maximizing the ratio of nonlocal scatter to local
scatter. Nie et al. [22] proposed neighborhood min–max projections (NMMP) by introducing
discriminant information into the local structure. Zhang et al. [23] proposed complete glob-
al–local LDA (CGLDA) to incorporate three kinds of local information into LDA. Gao et al.
[24] proposed joint global and local structure discriminant analysis (JGLDA), which used
two quadratic functions to characterize the geometric properties of similarity and diversity of
data. In the literature [25], the authors proposed elastic preserving projections (EPP) which
considers both the local structure and the global information of data. Luo et al. [26] added
the discriminant information and orthogonal constraint into EPP, and proposed discriminant
orthogonal elastic preserving projections (DOEPP). To overcome the singular problem of
EPP, exponential EPP (EEPP) [27] was proposed. These methods usually share underly-
ing commonality that they integrate both the nonlocal (global) and local structure into the
objective function of feature extraction.

Sparse representation has received considerable interest in recent years, especially in
image recognition [28–30]. The main idea of sparse representation is that a given sample
can be represented as a linear combination of the others. The coefficients obtained by sparse
representation reflect the contributions of the samples to reconstruct the given sample. The
most popular feature extraction methods based on sparse representation include sparsity
preserving projection (SPP) [31], discriminant sparse neighborhood preserving embedding
(DSNPE) [32], and discriminant sparse local spline embedding (D-SLSE) [33]. In general,
they have achieved better performance than the conditional methods. But, all of them must
solve the L1-norm minimization problem to construct the sparse weight matrix, so that their
computational complexity is excessively high [34]. Recently, objective functions based on
complex-norm have been explored, and they are widely used in different fields [35–38].
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Motivated by the above works, we propose a novel supervised feature extraction algo-
rithm called sparsity regularization discriminant projection (SRDP). Specially, SRDP first
constructs a concatenated dictionary through the class-wise PCA decompositions and learns
the sparse representation structure of each sample. Then SRDP utilizes the learned sparse
representation structure as an additional regularization term of UDP so as to construct a new
discriminant function. Finally, SRDP is transformed into a generalized eigenvalue problem.
Our primary contributions can be summarized as follows:

1. We proposed a novel feature extraction algorithm, called SRDP, to learn the discriminant
features of data. SRDP considers both the nonlocal and local structure of data, and
simultaneously preserves the sparse representation structure.

2. Compared to UDP, SRDP is a supervised method and can alleviate the small sample size
problem (SSS) by introducing the sparse regularization term.

3. Under the concatenated dictionary constructed by class-wise PCA decom-positions, the
sparse coefficient in SRDP can be obtained quckly via matrix–vector multiplication. So,
its computational complexity is significantly less than other algorithms based on sparse
representation via L1-norm optimization, such as SPP and DSNPE.

4. Unlike LPP, EPP, and DOEPP, SRDP considers the local structure twice. The first time
is in learning the sparse representation. This is because the sparse representation can
implicitly discover the local structure of data. The second time is in constructing the
adjacency graph by K nearest neighbors. This adjacency graph also characterizes the
locality of samples.

The rest of this paper is organized as follows.Webriefly review theSPP andUDPalgorithm
in Sect. 2. In Sect. 3, we introduce the proposed SRDP algorithm in detail. In Sect. 4, extensive
experiments are carried out to demonstrate the effectiveness of the proposed method. Finally,
Sect. 5 concludes the paper.

2 Review of the Related Work

2.1 Sparsity Preserving Projections

SPP [31] attempts to preserve the sparse reconstruction relationship of samples. Given a
sample set X � {x1, x2, . . . , xN } ∈ R

D×N , where D is the number of features and N is the
number of samples. SPP first learns the sparse coefficient vector si for each sample xi by
solving the following L1-norm minimization problem:

min ‖si‖1
s.t. xi � Xsi , 1� 1Tsi (1)

where ‖·‖1 is the L1-norm and 1 ∈ R
N is a vector of all ones. Once all the coefficient vectors

si(i � 1, 2, . . . ,N) are computed, the sparse reconstruction weight matrix S can be obtained
by

S � [s1, s2, . . . , sN] (2)
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Finally, based on the weight matrix S, the objective function of SPP can be represented
as:

minw

wTX
(
I − S − ST + ST S

)
XTw

wTXXTw
(3)

The optimal projection vector w can be obtained by solving for the eigenvector corre-
sponding to the smallest eigenvalue in the generalized eigenvalue equation:

X
(
I − S − ST + ST S

)
XTw � λXXTw (4)

Seen from Eqs. (1) and (2), SPP has to resolve N time-consuming L1-norm minimization
problems to obtain the sparseweightmatrix S, such that its computational complexity reaches
up to O

(
N 4

)
, which is excessively high in real applications. Besides, the matrix XXT is

always singular since the training sample size is much smaller than the feature dimensions.

2.2 Unsupervised Discriminant Projection

UDP [21] incorporates the advantage of both the locality and nonlocality of samples. A
concise criterion for feature extraction can be obtained by maximizing the ratio of nonlocal
scatter to local scatter. The local scatter matrix is defined by

SL � 1

2

∑

i, j

(
xi − x j

) (
xi − x j

)T
Hi j (5)

where Hi j is defined as

Hi j �
{
1, i f x j ∈ O (K , xi )
0, otherwise

(6)

where O (K , xi ) denotes the set of K nearest neighbors of xi .
Similarly, the nonlocal scatter matrix can be defined by

SN � 1

2

∑

i, j

(
xi − x j

) (
xi − x j

)T (1 − Hi j ) (7)

UDP then optimizes:

maxw
wTSNw
wTSLw

(8)

Generally, the number of training samples is always less than their features. This results
in that UDP suffers from the SSS problem. In addition, UDP does not exploit the sparse
representation structure of data, which is important for improving classification tasks.

3 Sparsity Regularization Discriminant Projection

In this section, we introduce the proposed SRDP in detail. SRDP can be regarded as the
combiner of sparse representation and UDP. But differing from UDP, it considers the sparse
representation structure of data, and avoids the SSS problem by introducing the sparse reg-
ularization term. And differing from sparse representation based methods, such as SPP and
DSNPE, SRDP significantly reduces the computational complexity of learning the sparse
representation structure via a concatenated dictionary rather than solving the L1-norm opti-
mization.
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3.1 Constructing the Concatenated Dictionary and Learning the Sparse
Representation Structure

Given a set of training samples X � [x1, x2, . . . , xN ], where xi ∈ R
D . Now, we categorize

the samples as X � [X1, X2, . . . , XC ], where C is the number of classes, and X i ∈ R
D×Ni

contains the samples from class i. For the convenience of relevant calculations, we first
center the samples from each class at the origin, X̄ i � [

x1 − μi , x2 − μi , . . . , xNi − μi
]

(i=1, 2,…,C), where μi is mean of samples belonging to class i. Then we conduct PCA
decomposition for each class X i , whose objective function is

max‖d‖�1 dT�id (9)

where�i is the covariancematrix of X̄ i. For each class i, Ni principal components are selected
to construct Di � [

d1, d2, . . . , dNi

]
. Thus, a sample x from class i can be represented by

x � Di si � [
D1, D2, . . . ,Di−1,Di ,Di+1, . . . , DC

]
s̃ � Ds̃ (10)

where D is the concatenated dictionary constructed by PCA decompositions, and it consists

of all Di (i � 1, 2, . . . ,C). s̃ � [
0T , 0T , . . . , 0T , sTi , 0T , . . . , 0T

]T
is the sparse co-efficient

vector under the concatenated dictionary D.
According to the previous procedure, each sample corresponds to a sparse coefficient

vector. From Eq. (10), we find that the computation of s̃ involves only Di , which is also
column orthogonal, so that the sparse coefficient vector s̃ of any training sample from class
i can be quickly learned by matrix–vector multiplication, i.e.

s̃ �
[
0T , 0T , . . . , 0T ,

(
DT
i x

)T
, 0T , . . . , 0T

]T

(11)

3.2 Preserving Sparse Representation Structure

As can be seen from Sect. 3.1, the sparse representation structure well encodes the local
information of the training samples. It is expected that the sparse representation structure
in the original high-dimensional space can be preserved in the low-dimensional projective
subspace. Thus, the following objective function is defined to seek a projection that preserves
the sparse representation structure:

Js (w) � minw

∑

i

wT xi − wT Ds̃‖2iF (12)

where s̃i is the sparse coefficient vector corresponding to xi . With some algebraic operations,
Eq. (12) can be rewritten as

Js (w) � minw

∑

i

wT xi − wTDs̃2iF

� minwwT

(
N∑

i�1

(xi − Ds̃i) (xi − Ds̃i)
T

)

w

� minwwT
(
XXT − XSTDT − DSXT + DSSTDT

)
w (13)

where S � [
s̃1, s̃2, . . . , s̃N

]
.
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3.3 Sparsity Regularization Discriminant Projection

The goal of proposed SRDP aims to find the optimal projections that can, on the one hand,
preserve the sparse representation structure, on the other hand, maximize the ratio of nonlocal
scatter to local scatter. To this end, we choose to maximize the following criterion:

maxw
wTSNw

αwTSLw + (1 − α) Js (w)
(14)

where α(0 < α < 1) is a parameter that controls the trade-off between the two terms in
numerator, and it can be adjusted if balancing is needed. SN and SL are the nonlocal scatter
matrix and the local scatter matrix, respectively.

Substituting Eq. (13) into (14), we have

maxw
wTSNw

αwTSLw + (1 − α) Js (w)

� maxw
wTSNw

αwTSLw + (1 − α)wT
(
XXT − XSTDT − DSXT + DSSTDT

)
w

� maxw
wTXSNXTw

wT
[
αSL + (1 − α)

(
XXT − XSTDT − DSXT + DSSTDT

)]
w

(15)

Let

� � αSL + (1 − α)
(
XXT − XSTDT − DSXT + DSSTDT

)

Then the optimization problem in Eq. (15) can be converted to the following generalized
eigenvalue problem:

SNw � λ�w (16)

The projection matrix W � [w1,w2, . . . ,wd ] consists of the eigenvectors corresponding
to the d largest eigenvalues.

The algorithmic procedure of SRDP can be formally summarized as follows:

Input: Training set X � [x1, x2, . . . , xN ] , xi ∈ R
D (i � 1, 2, . . . , N ) and the balance

parameter α.
Output: The projection matrix W
Step 1: Calculate SL and SN by Eq. (5) and Eq. (7), respectively;
Step 2:Conduct PCAdecompositions to construct the concatenated dictionaryDbyEq. (9);
Step 3: Learn the sparse coefficient vector s̃ for every sample by Eq. (11), and then calculate
the sparse reconstruction weight matrix S;
Step 4: Calculate �, and solve the generalized eigenvalue problem in Eq. (16).

3.4 Computational Complexity Analysis

The computational complexity of SRDP includes four parts: the scatter matrices, concate-
nated dictionary, sparse coefficient vector, and generalized eigenvalue. The computation of
scatter matrices requires O

(
N 2 ∗ D + D2 ∗ N

)
. The complexity to construct concatenated

dictionary via PCA decompositions is O
(
D2 ∗ ∑C

i mi

)
. The complexity of calculating the

sparse coefficient vectors for all samples is O
(
D*

∑C
i mi Ni

)
, where Ni denotes the num-

ber of samples in class i. In general,C � N ,mi � N, Ni � N , so O
(
D*

∑C
i mi Ni

)
�
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Fig. 1 Ten sample images of one person in ORL database

O
(
N 4

)
. This means that the computational complexity of learning the sparse weight matrix

in SRDP is much less than that in the algorithms based on sparse representation via L1-norm
optimization, such as SPP, DSNPE, and D-SLSE. The complexity for solving the generalized
eigenvalue is O

(
D3

)
. Finally, we can conclude that the computational complexity of SRDP

is O
(
N2 ∗ D + D2 ∗ N + D2 ∗ ∑C

i mi + D*
∑C

i mi Ni + D3
)
.

4 Experimental Results

In this section, we make a set of experiments to evaluate the effectiveness of the proposed
SRDP for feature extraction, and compare it with several popular algorithms, including LPP,
UDP, EPP, DOEPP, and SPP. Five benchmark databases are used in our experiments: ORL
database [39], Yale database, CMU PIE database [40], FERET database [41] and LFW
database [42]. Note that, to overcome the SSS problem, LPP, UDP, EPP, and SPP all involve
a PCA phase. In this phase, we keep 98% data energy. For LPP, UDP, EPP, DOEPP, and
SRDP, the K-nearest neighborhood parameter K is set to l−1, where l denotes the number
of training samples per class. In DOEPP, we set α=0.5 and β=1, respectively. The value of
α in SRDP is empirically set to be 0.1 in all experiments. After all the methods have been
adopted to extract low-dimensional feature, the nearest neighbor classifier with Euclidean
matrix is employed to perform classification task.

4.1 Experiments on ORL Database

TheORL database contains 400 images of 40 individuals, and each individual has ten images.
The face images are captured at different times and have different variations including illumi-
nation, expressions (open or closed eyes, smiling or non-smiling) and facial details (glasses
or no glasses). In our experiments, each image was resized to 32×32. Some samples from
this database are shown in Fig. 1.

First, in order to demonstrate the performance of each method with varying number of
training samples, we randomly selected l (l =4, 5, 6, 7) images per person for training, and
the rest images for testing. For each giving l, the experiments are independently performed 20
times. Table 1 presents the best average recognition results and the corresponding dimensions
for each method. As can be seen from Table 1, SRDP can get the best recognition rates in all
experiments.

Second, to report the computational time (C-T) of different methods on ORL database, the
first five images per person are selected for training and the remaining images are used for
testing. The C-T is represented by the whole operation time for training and classification.
The results are shown in Table 2. From the results, we can see three main points. First,
LPP is the fastest in all methods. Second, SPP is slower than all other methods. This is
probably because it needs to learn the sparse weight matrix by L1-norm optimization, which
is time-consuming. Third, SRDP and UDP are comparable in C-T.
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Table 1 The best average recognition accuracy (%) and the corresponding dimension on ORL database

Train LPP EPP DOEPP SPP UDP SRDP

4 86.00 (55) 85.42 (60) 86.75 (57) 80.71 (79) 83.96 (60) 88.67 (60)

5 88.75 (42) 89.35 (50) 89.85 (52) 87.20 (100) 86.55 (51) 91.00 (59)

6 91.81 (46) 90.00 (48) 91.06 (59) 90.13 (119) 89.31 (47) 92.69 (39)

7 92.50 (50) 93.33 (58) 93.50 (53) 93.08 (140) 91.83 (53) 93.67 (48)

Table 2 Comparison of computational time (s) on ORL database

LPP EPP DOEPP SPP UDP SRDP

C-T 7.9687 8.4294 12.4046 15.8103 10.1901 10.2271

Fig. 2 Sample images of one individual in Yale database

4.2 Experiments on Yale Database

The Yale database contains 165 gray scale face images from 15 individuals. The images
demonstrate variations in lighting condition and facial expression (happy, normal, sad, sleepy,
surprised, and wink). In the experiments, each image was resized to 32× 32. Figure 2 shows
the sample images of one individual.

First, the projected subspaces learned by LPP, EPP, DOEPP, SPP, UDP, and SRDP are
different. Thus, all images in the Yale database are used to learn such spaces spanned by
the eigenvectors of the corresponding algorithms. The first eight basis vectors of different
algorithms are presented in Fig. 3. It can be seen that SRDP learns a set of basis images that
are different from those of the other algorithms.

In the next experiments, we randomly select l (l =5, 8) images per person to form the
training set, and the rest are used for testing. Note that there is no overlap between the training
and test sets. For each l, we average the results over 20 random splits. The performances of
each method are shown in Table 3. The recognition curves versus the dimension of reduced
space for each algorithm are shown in Fig. 4. From Fig. 4, we find that, when the dimension
is very low, DOEPP performs better than SRDP. This is because forcing an orthogonal
relationship between the projection vectors is useful for preserving the structure of data. But
with the increase of dimension, SRDP becomes superior to DOEPP. This is probably due to
the fact that when the number of projection vector turns to be larger, sparsity representation
has an apparent advantage over orthogonal relationship. In general, SRDP can obtain the best
recognition rates in the recognition tasks.

4.3 Experiments on CMU PIE Database

The CMU PIE face database contains more than 40,000 face images of 68 individuals.
The face images were captured under varying pose, illumination and expression. In our
experiments, a subset (C27) which contains about 3329 images of 68 individuals was used.
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Fig. 3 First eight basis images of different methods: a LPP, b EPP, c DOEPP, d SPP, e UDP, and f SRDP

Table 3 The optimal recognition
accuracy (%) and the
corresponding dimension on Yale
database

Methods 5 train 8 train

Accuracy Dimension Accuracy Dimension

LPP 82.33 36 84.22 56

EPP 82.78 47 83.33 59

DOEPP 84.11 30 89.78 45

SPP 83.33 36 84.44 40

UDP 77.22 39 83.33 38

SRDP 85.56 39 91.33 28

Similarly, all the images were cropped to the solution of 32 × 32 in our experiments. Some
image samples are shown in Fig. 5.

In the experiments, l (l =5, 10) images per person are selected for training and the rest
are used for testing. For each l, we average the results over 20 random splits. To be fair, the
reduced feature dimension is searched from 1 to 40. The best average recognition results and
the corresponding dimensions for each method are shown in Table 4. The recognition curves
versus the dimension of reduced space for each algorithm are shown in Fig. 6. It can be found
that, SRDP and SPP perform better than other methods. This is because sparse representation
can improve the robustness to illumination. On the other hand, with the increase of dimension,
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Fig. 4 Recognition accuracy versus feature dimension on Yale database for (left) 5 train and (right) 8 train

Fig. 5 Sample images of one person in CMU PIE database

Table 4 The optimal recognition
accuracy (%) and the
corresponding dimension on
CMU PIE database

Methods 5 train 10 train

Accuracy Dimension Accuracy Dimension

LPP 83.73 40 92.50 39

EPP 87.25 40 95.14 40

DOEPP 82.84 39 94.12 40

SPP 95.10 39 97.06 39

UDP 85.69 40 93.09 40

SRDP 92.54 38 99.41 35

SRDP tends to bemore stable than SPP. This is induced by considering the local and non-local
structure of data.

4.4 Experiments on FERET Database

The FERET database comprises a total of 11,338 facial images of 994 distinct individuals.
The size of the images is of 512×768 pixels. In our experiments, we select a subset which
includes 1200 images of 200 different subjects from the FERET face database. Figure 7
shows the samples of two subjects in the FERET subset. The images named “a” are frontal
view. The images named “b”, “c”, “d”, and “e”, denote the variation of face in view. The
images named “f” are smiling and frontal view. For the sake of efficient computation, each
image was manually cropped and scaled to 40 × 40 pixels.
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Fig. 6 Average recognition rate versus the dimension of reduced space on CMU PIE database for (left) 5 train
and (right) 10 train

Fig. 7 Sample images of two subjects in the FERET subset

Table 5 The optimal recognition
accuracy (%) and the
corresponding dimension on
FERET database

Methods Test #1 Test #2

Accuracy Dimension Accuracy Dimension

LPP 65.33 76 47.50 63

EPP 63.33 73 54.75 79

DOEPP 65.83 65 58.25 76

SPP 46.33 80 41.00 78

UDP 60.00 66 41.75 49

SRDP 67.50 38 60.25 38

To evaluate the performance of different methods, we design two tests called Test #1 and
Test #2. In Test #1, the training set contains “a”, “b”, and “d”, and the test set contains “c”,
“e”, and “f”. In Test #2, the training set contains “b”, “c”, “d”, and “e”, and the test set
contains “a” and “f”. Table 5 gives the optimal correct recognition rates of each method in
two tests.

123



550 S. Yuan et al.

Fig. 8 Sample images in LWF database and the face area is in the red bounding box

Table 6 Performance of different
methods on LFW database

LPP EPP DOEPP SPP UDP SRDP

Accuracy
(%)

61.4 63.4 64.8 66.1 63.6 66.4

Dimension 80 45 110 120 88 76

4.5 Experiments on LFW Database

The LFW (Labeled faces in the Wild) database is designed for studying the problem of the
unconstrained face verification task. It contains more than 13,000 images from 5749 people.
All the images are collected from web, and the image number of each subject is different.
Our experiments are made on a set of 600 images referring to 60 subjects (10 images for
each subject). For each image, we first extract the face area, and then resize it to 32×32
pixels. Figure 8 shows some sample images and the extracted face area from LFW database.
In the experiments, 50% of the images of each subject are used for training and the rest for
testing. Table 6 gives the recognition accuracy and the corresponding dimension of different
methods. As shown in Table 6, the recognition accuracies of all methods are relatively low.
This is because the images have great variations in age, pose, lighting and expression. But
SRDP has an apparent advantage.

4.6 Discussion

To further explore the influence of α in SRDP, we conduct experiments on ORL and Yale
databases. To be fair, the reduced dimension is set to 40.α is searched from 0.1 to 0.9. Figure 9
presents the recognition accuracy of SRDP under different values of α. As seen from Fig. 9,
the value of α takes influence on the performance of SRDP. Moreover, it can be seen that the
results in the case of α � 0.1 is usually comparable to the best result among other values.

From the experiments above, the following observations are obtained:

1. Seen fromTable 2, SRDP is faster than SPP. This is because SRDP learns the sparse struc-
ture through matrix–vector multiplication rather than solving the L1-norm optimization.

2. From Table 4, it can be found that, sparse representation based feature extraction meth-
ods, i.e. SPP and SRDP, performs better than other methods in the experiments on CMU
PIE database, where there are variations in illumination. This is because the sparse rep-
resentation structure can improve the robustness to illumination.

3. SRDP can obtain the best results in most experiments. This is probably because SRDP
well encodes the local, non-local, and sparse representation structure.
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Fig. 9 Recognition accuracy of
SRDP for varying α on ORL and
Yale databases

5 Conclusions

In this paper, we propose a novel feature extraction algorithm, called sparsity regulariza-
tion discriminant projection (SRDP). SRDP first uses the class-wise PCA decompositions
to construct a concatenated dictionary under which the sparse representation structure of
each sample can be learned. Then SRDP regards the sparse representation structure as an
additional regularization term so as to construct a new discriminant function. Finally, SRDP
is transformed into a generalized eigenvalue problem. The experimental results on five real
datasets have demonstrated the effectiveness of the proposed method.
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