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Abstract Variational approximation method finds wide applicability in approximating
difficult-to-compute probability distributions, a problem that is especially important in
Bayesian inference to estimate posterior distributions. Latent factor model is a classical
model-based collaborative filtering approach that explains the user-item association by char-
acterizing both items and users on latent factors inferred from rating patterns. Due to the
sparsity of the rating matrix, the latent factor model usually encounters the overfitting prob-
lem in practice. In order to avoid overfitting, it is necessary to use additional techniques such
as regularizing the model parameters or adding Bayesian priors on parameters. In this paper,
two generative processes of ratings are formulated by probabilistic graphical models with
corresponding latent factors, respectively. The full Bayesian frameworks of such graphical
models are proposed as well as the variational inference approaches for the parameter esti-
mation. The experimental results show the superior performance of the proposed Bayesian
approaches compared with the classical regularized matrix factorization methods.

Keywords Collaborative filtering · Latent factor model · Variational inference

1 Introduction

Recommender systems have become increasingly popular in big data era, and are utilized
in a variety of areas including e-commerce, movies, music, video, news, books, research
articles, search queries, social tags, etc. [1,2]. Recommender systems typically produce a
list of recommendations through content-based filtering and collaborative filtering [3,4].
Collaborative filtering is a method of making automatic predictions about the interests of
a user by collecting references information from many other users, which is a technique
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widely used by recommender systems [5]. Therefore, the goal of collaborative filtering is
to generalize those existing ratings in a way that predicts the unknown ratings. This is the
task of filling in the missing entries into a partially observed matrix, which is also known
as matrix completion [6]. In addition to collaborative filtering, the matrix completion is also
applied to system identification and global positioning [7].

Collaborative filtering is first applied for user mail filtering and document filtering that
the recommendation lists are produced based on the similarity of users or items in the rat-
ing matrix, which is also known as neighborhood methods [8,9]. The sparsity of the rating
matrix leads to the poor recommendation performance since the distance between different
items or, alternatively, between users are almost zero when rating matrix is sparse in practice
[10,11]. An alternative approach, latent factor model (LFM), is introduced that explains the
relationship between items and users by characterizing both items and users on latent factors
inferred from rating patterns. LFM is highly related to the matrix factorization technique, sin-
gular value decomposition (SVD), which has many useful applications in signal processing,
statistics and information retrieval [12].

SVD is a well-known matrix factorization technique, which is a generalization of the
eigenvalue decomposition of symmetric matrix to arbitrary matrices. By ignoring the smaller
singular values, the factorized matrix can be approximated by a lower rank matrix, which is
called low-rank approximation. In mathematics, low-rank approximation is a minimization
problem, in which the cost function measures the fit between a given matrix (the data)
and an approximating matrix (the optimization variable), subject to a constraint that the
approximating matrix has reduced rank. This approximation process can be formulated as a
latent factor model, in which the dimension of the latent factor is the reduced rank [13].

Some of the successful realizations for LFM decompose the rating matrix into a user
preference matrix and an item preference matrix by using SVD [10,14]. The rating scores in
the rating matrix can be interpreted as the relationship between the user and the item, which
explains the user-item association by characterizing both items and users on latent factors
inferred from rating patterns. Compared with the SVD method, the LFM can describe the
more complex relationship between the users and the items [15]. More features for both users
and items can be formulated as the latent variable in the models [15,16].

Due to the sparsity of rating matrix, the latent factor model usually encounters the over-
fitting problem in practice. In order to avoid overfitting, it is necessary to use additional
techniques such as regularizing the model parameters or adding Bayesian priors on parame-
ters. It can be proven that the different regularization methods of parameters are equivalent to
the different priors selection. Compared with the regularization methods, Bayesian method
is more flexible and has uniform framework to solve in many applications [17,18]. The
Bayesian frameworks of LFM are based on the probabilistic graphical representation of the
generative processes of rating scores in the rating matrix [19]. By introducing the latent
factors, the rating scores are generated by the interaction between the attributes of the user
and the item [20]. In the Bayesian framework, LFM not only can avoid overfitting, but also
makes the model more explanatory through generative process of the probabilistic graphical
model. The model parameters of LFM are inferred from the posterior distribution of the
probabilistic graphical model. Since the posterior distribution is difficult to calculate in most
applications, the variational inference is proposed for the estimation of model’s parameters
[21,22]. Variational Inference (VI) approximates the posterior distributions through opti-
mization. The idea behind VI is to find a distribution, which is close to the target, form the
candidate distributions. The closeness is measured by Kullback–Leibler.

In this paper, two latent factormodels, partial latent factormodel (PLFM) and biased latent
factor model (BLFM), are considered. In the PLFM, the personalized information can be
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added into the model, which is advantageous over LFMwithout content-specific information
and user-specific information as well [16]. In the BLFM, biases of users or items are added to
reduce the impacts of subjective factors on ratings [15]. Two different generative processes
of ratings are proposed for the previous LFMs by probabilistic graphical model theory with
corresponding latent factors. The full Bayesian frameworks of such graphical models are
proposed as well as the VI approaches for the parameter estimation. The performance of
the traditional matrix decomposition methods and the Bayesian methods are investigated
on the benchmark datasets, MovieLens 100k and MovieLens 1M. The experimental results
show that the Bayesian method is better than the matrix decomposition method on these two
models.

The rest of this paper is organized as follows. In Sect. 2, two latent factor models for
collaborative filtering in the recommended system are investigated. In Sect. 3, the VI for the
investigated latent factor models are proposed. Experiment results are presented in Sect. 4 to
show the performance of our method. Concluding remarks are made in Sect. 5.

2 Latent Factor Models for Collaborative Filtering

Given an observation rating matrix R = (ri j )M×N with i j th element ri j which measures the
i th user’s preference on the j th item. R is only partially observed over subset Ω of indices,
which is composed of observed entries (i, j). We are interested in the problem of finding an
approximation r̂i j of rating ri j .

Latent factor model is an alternative approach that approximates the rating ri j by the user
i and item j interaction which is modeled as inner product, leading to the estimation:

r̂i j = aTi b j , (1)

where ai = (ai1, . . . , aiK )T and b j = (b j1, . . . , b jK )T are K -dimensional unobserved
latent vectors, respectively governing user i’s preference over items and item j’s preference
by users.

2.1 Partial Latent Factor Model

The personalized recommender system adds feature vectors of the users and the items to
latent factor model [16]. Assuming that each ri j associates the i th user’s feature vector
xi = (xi1, xi2, . . . , xiM0) and the j th item’s feature vector y j = (y j1, y j2, . . . , y j N0),we
obtain PLFM,

r̂i j = xi
Tα + βT y j + aTi b j (2)

where α = (α1, . . . , αM0)
T , β = (β1, . . . , βN0)

T are vectors of regression parameters,
respectively for xi and y j .M0 and N0 are dimensions of user’s feature vector and item’s feature
vector, respectively. ai and b j represent K-dimensional user-specific and item-specific latent
feature vectors respectively. To prevent overfitting, we regularize PLFM through L2-norm:

min
a∗,b∗,α,β

∑

(i, j)∈Ω

(
ri j −

(
xi

Tα + βT y j + aTi b j

))2 + λ
(‖ ai ‖2 + ‖ b j ‖2) . (3)

This minimization problem is solved by block-coordinate descent method, which is denoted
as P-SVD [16].
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Fig. 1 The left panel shows the probabilistic graphical model for PLFM. The right panel shows the the
probabilistic graphical model for BLFM

2.2 Biased Latent Factor Models

Biased Latent Factor Models (BLFM) try to explain rating value by adding biases of users
and items, denoted as qi and p j respectively [15],

r̂i j = aTi b j + μ + qi + p j . (4)

The observed rating is divided into four components: global averageμ, item bias qi , user bias
p j and user-item interaction aTi b j . q = (q1, . . . , qM ), p = (p1, . . . , pN ) represent user bias
vector and item bias vector. Similarly, it is necessary to minimize regularized square error:

min
a∗,b∗,q∗,p∗

∑

(i, j)∈Ω

(
ri j −

(
aTi b j + μ + qi + p j

))2 + λ
(
‖ ai ‖2 + ‖ b j ‖2 +q2i + p2j

)
.

(5)
This minimization problem is solved by stochastic gradient descent, which is denoted as
B-SVD [15].

3 Variation Inference for Latent Factor Models

The generative processes of ratings are proposed by probabilistic graphical models with
corresponding latent factors of LFM in this section. The probabilistic graphical models for
both PLFM and BLFM are shown in Fig. 1. The full Bayesian frameworks of such graphical
models are proposed. In the Bayesian anlaysis, three types of information are particularly
important, which are the sample information, the loss function and the prior information. The
prior information is non-sample information and derived from historical experience about
unknown parameters in the similar situation, which cannot be ignored [23]. Given the priors
and likelihood of the unknown parameters, the posterior distribution is obtained by the Bayes
rule [24]. However, since the posterior distribution is difficult to calculate, we usually use
approximate inference or Markov chain Monte Carlo to estimate the posterior distribution
[19]. In this paper, we propose the variational inference method for estimating the unknown
parameters for both investigated latent factor models.
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3.1 Bayesian Inference for LFM with Additive Linear Term

In the PLFM and BLFM, we have r̂i j = aTi b j + xTi α + yTj β and r̂i j = aTi b j + qi +
p j +μ. Both models contain the interaction between useri and item j and the additive linear
combination with unknown parameters. Without loss of generality, we denote the l(w) as
the linear combination xTi α + yTj β and qi + p j + μ, where l(·) is a linear function about
unknown parameter vector w. We get:

r̂i j = aTi b j + l(w), (6)

where the unknown parameters vector w represents the regression vectors α, β and bias
vectors p, q in PLFM and BLFM, respectively. Assuming that the length of the unknown
parameter vector w is Lw. Denote the user feature matrix and item feature matrix as A =
(a1, a2, . . . , aM ) and B = (b1, b2, . . . , bN ), respectively.
In variation inference, each Q(A, B, w) is a candidate distribution for approximating the
posterior p(A, B, w|R). Assuming that {A, B, w} are independent, i.e., Q(A, B, w) =
Q(A)Q(B)Q(w). We need to maximize the evidence lower bound which is defined as [21]:

ELBO(Q) = EQ(A,B,w)[log p(R, A, B, w) − log Q(A, B, w)]
Lemma 1 Assuming that the unknown parameters {ai , b j , w} are independent random vari-
ables. The likelihood of the observed ratings R and priors distribution over {A, B, w} are
given by:

p(R|A, B, w) =
M∏

i=1

N∏

j=1

[N (ri j |ai T b j + l(w), τ 2)]Ii j , (7)

p(A|σ) =
M∏

i=1

K∏

k=1

N (aik |0, σk2), (8)

p(B|ρ) =
N∏

j=1

K∏

k=1

N (b jk |0, ρk2), (9)

p(w) =
Lw∏

l=1

N (wl |0, 1), (10)

where Ii j is the indicator variable that is equal to 1 if ri j is observed. Therefore, the
factorized form of the optimal approximated distribution of posterior, i.e., Q(A, B, w) =
Q(A)Q(B)Q(w), can be obtained by coordinate ascent variational inference (CAVI).

The proof of Lemma 1 is shown in the “Appendix”. Lemma 1 shows the local optimal approx-
imation of posterior distribution p(A, B, w|R) and the rating matrix R can be estimated by
the approximated posterior distribution.

3.2 Variation Inference for PLFM

We apply Bayesian framework to the PLFM.Assuming that aik , b jk and α, β are independent
random variables. The likelihood and priors distribution over A, B, α, β can be given by (7)–
(9) and:

p(α) =
M0∏

m=1

N (αm |0, 1), p(β) =
N0∏

n=1

N (βn |0, 1) (11)
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So, the joint distribution is given by:

P(A, B, α, β, R) = p(R|A, B, α, β)p(A)p(B)p(α)p(β) (12)

This completes the model which can be presented by the probabilistic graphical model for
PLFM as shown in Fig. 1 (left panel). In addition, we need to calculate the posterior distri-
bution,

p(A, B, α, β|R) = p(R|A, B, α, β)p(A)p(B)p(α)p(β)

p(R)
(13)

It is always impossible to achieve the optimum which can be achieved at Q(A, B, α, β) =
p(A, B, α, β|R)due to the difficulty in calculating the joint distribution.According toLemma
1, Q(A), Q(B), Q(α) and Q(β) can be obtained as follows.

Q (A) ∝
M∏

j=1

exp

(
−1

2
(ai − āi )

T Φ−1
i (ai − āi )

)
(14)

Λ1 =

⎛

⎜⎜⎝

1
σ 2
1

0

. . .

0 1
σ 2
K

⎞

⎟⎟⎠ , Φi =
⎛

⎝Λ1 +
∑

j∈N (i)

Ψ j + b̄ j b̄Tj
τ 2

⎞

⎠
−1

, (15)

āi = Φi

∑

j∈N (i)

b̄ j

(
ri j − xTi ᾱ − yTj β̄

)

τ 2
, (16)

where N (i) is the set of j’s such that ri j is observed. Φi and āi are the covariance the mean
of ai respectively. Ψ j and b̄ j are the covariance and the mean of b j respectively. ᾱ and β̄ are
the mean of α and β respectively.

Q (B) ∝
N∏

j=1

exp

(
−1

2

(
bi − b̄ j

)T
Ψ −1
i

(
b j − b̄ j

))
(17)

Λ2 =

⎛

⎜⎜⎝

1
ρ2
1

0

. . .

0 1
ρ2
K

⎞

⎟⎟⎠ , Ψ j =
⎛

⎝Λ2 +
∑

i∈N ( j)

Φi + āi āTi
τ 2

⎞

⎠
−1

, (18)

b̄ j = Ψ j

∑

i∈N ( j)

āi
(
ri j − xTi ᾱ − yTj β̄

)

τ 2
(19)

Q (α) ∝ exp

(
1

2
(α − ᾱ)T Δ−1

1 (α − ᾱ)

)
(20)

Δ1 =
⎛

⎝I +
∑

(i, j)∈Ω

xi xTi
τ 2

⎞

⎠
−1

, ᾱ = Δ1

∑

(i, j)∈Ω

xi
(
ri j − āTi b̄ j − yTj β̄

)

τ 2
(21)

Q (β) ∝ exp

(
1

2

(
β − β̄

)T
Δ−1

2

(
β − β̄

))
(22)

Δ2 =
⎛

⎝I +
∑

(i, j)∈Ω

y j yTj
τ 2

⎞

⎠
−1

, β̄ = Δ2

∑

(i, j)∈Ω

y j
(
ri j − āTi b̄ j − xTi ᾱ

)

τ 2
(23)
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This completes the algorithm presented as Algorithm 1. We iterates the variational factors
Q(A),Q(B),Q(α) and Q(β), updating themusing (11), (14), (17) and (19) until convergence.
Finally, we predict a unobserved rating by:

r̂i j = āTi b̄ j + xTi ᾱ + yTj β̄ (24)

Algorithm 1 CAVI for PLFM
Input:

A observed preference matrix R
user-feature matrix X = (x1, . . . , xM0)
item-feature matrix Y = (y1, . . . , yN0)

Output:
A complete observed preference matrix R̂

1: (Initialization) Initial value for (Λ1,Λ2, B)

2: For each user i , updating Φi and āi by equation (15) (16)
3: For each item j , updating Ψ j and b̄ j by equation (18) (19)
4: Updating ᾱ and β̄ by equation (21) (23)
5: If the ELBO(Q) has not converged, go to step 2. Otherwise, stop and return

(Q(A), Q(B), Q(α), Q(β))

6: return r̂i j = āTi b̄ j + xTi ᾱ + yTj β̄

3.3 Variation Inference for BLFM

The Bayesian framework also can be applied to BLFM. Assuming that aik ,b jk and pi , q j are
independent random variables. Supposing that the likelihood and priors over A, B, p, q can
be given by (7), (8), (9),qi ∼ N (0, 1) and p j ∼ N (0, 1). Similarly, the posterior is give by:

p(A, B, q, p|R) = p(R|A, B, q, p)p(A)p(B)p(p)p(q)

p(R)

The probabilistic graphical model for BLFM is shown in Fig. 1 (right panel). Assum-
ing that the factorized form of VI approximation of the posterior is Q(A, B, q, p) =
Q(A)Q(B)Q(p)Q(q). According to Lemma 1, Q(A), Q(B), Q(p) and Q(q) can be
obtained as follows

Q (A) ∝
M∏

i=1

exp

(
−1

2
(ai − āi )

T Φ−1
i (ai − āi )

)
(25)

Λ1 =

⎛

⎜⎜⎝

1
σ 2
1

0

. . .

0 1
σ 2
K

⎞

⎟⎟⎠ , Φi =
⎛

⎝Λ1 +
∑

j∈N (i)

Ψ j + b̄ j b̄Tj
τ 2

⎞

⎠
−1

, (26)

āi = Φi

∑

j∈N (i)

b̄ j
(
ri j − μ − q̄i − p̄ j

)

τ 2
, (27)

where Φi and āi are the covariance and the mean of ai , respectively. Ψ jand b̄ j are the
covariance and the mean of b j , respectively. q̄i and p̄ j are mean of qi and p j .
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Q (B) ∝
N∏

j=1

exp

(
−1

2

(
b j − b̄ j

)T
Ψ −1
i

(
b j − b̄ j

))
(28)

Λ2 =

⎛

⎜⎜⎝

1
ρ2
1

0

. . .

0 1
ρ2
K

⎞

⎟⎟⎠ , Ψ j =
⎛

⎝Λ2 +
∑

i∈N ( j)

Φi + āi āTi
τ 2

⎞

⎠
−1

, (29)

b̄ j = Ψ j

∑

i∈N ( j)

āi
(
ri j − μ − q̄i − p̄ j

)

τ 2
(30)

Q (q) ∝ exp(
1

2
(q − q̄)T Δ−1

1 (q − q̄) (31)

Δ1 =
⎛

⎝1 +
∑

(i, j)∈Ω

1

τ 2

⎞

⎠
−1

I, q̄ = Δ1

∑

(i, j)∈Ω

e
(
ri j − μ − āTi b̄ j − p̄ j

)

τ 2
(32)

Q (p) ∝ exp

(
1

2
(p − p̄)T Δ−1

2 (p − p̄)

)
(33)

Δ2 =
⎛

⎝1 +
∑

(i, j)∈Ω

1

τ 2

⎞

⎠
−1

I, p̄ = Δ2

∑

(i, j)∈Ω

e
(
ri j − μ − āTi b̄ j − q̄i

)

τ 2
(34)

where e = (1, 1, . . . , 1).

Algorithm 2 CAVI for BLFM
Input:

A observed preference matrix R
Output:

A complete observed preference matrix R̂
1: (Initialization) Initial value for (Λ1,Λ2, B)

2: For each user i , updating Φi and āi by equation(26)(27)
3: For each item j , updating Ψ j and b̄ j by equation(29)(30)
4: Updating q̄ and p̄ by equation(32)(34)
5: If the ELBO(Q) has not converged, go to step 2. Otherwise, stop and return

(Q(A), Q(B), Q(q), Q(p))
6: return r̂i j = āTi b̄ j + q̄i + p̄ j + μ

Finally, we obtain an algorithm that CAVI applies to BLFM by updating Q(A), Q(B),

Q(q) and Q(p), as shown Algorithm 2. We can predict observed matrix R by:

r̂i j = μ + q̄i + p̄ j + āTi b̄ j (35)

4 Experiments

Several experiments are implemented for the proposed methods through real data in this
section. We use movie score data sets—MovieLens 100K and MovieLens 1M as bench-
mark. MovieLens 100K data contains 100,000 ratings on a five-star scale from 943 users
on 1082 movies and features of users and movies, whereas the MovieLens 1M data consist
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Fig. 2 The left panel shows the comparison between rank 3, 5 and 8 on training data when using VB for
BLFM. The right panel shows RMSE on training and testing data when using VB for BLFM on rank 5 matrix
decomposition. The X-axis shows the number of iterations, and the Y-axis shows the RMSE

of 1,000,209 ratings from 6040 users on 3900 movies. For prediction, We divided the data
into training set and test set, 80% of the Movielens data for training and the remaining 20%
for testing. Root mean square error (RMSE) [16] is the most widely used criterion, which is
given by

RMSE =
√

1

| Ω |
∑

(i, j)∈Ω

(
ri j − r̂i j

)2
,

where ri j and r̂i j are the observed and predicted ratings over user i and movie j .
According to those algorithms, we compare Bayesian methods with the classical reg-

ularized matrix factorization methods for different models and test the results of L2
norm-regularized SVD(L2-SVD), B-SVD, PSVD, Bayes for LFM, Bayes for PLFM and
Bayes for BLFM, respectively. As Bayes for BLFM and Bayes for PLFM are based on VI
to approximate posteriors, we keep the variance ρ2

k of b jk fixed with values ρ2
k = 1

K while
the variance σ 2

k of aik fixed with values σ 2
k = 1, where K is the reduced rank in matrix

decomposition and τ 2 is initialized to 1. The regression parameters α and β are initialized to
the solution of P-SVD while bias vectors p and q are initialized to the solution of B-SVD.
For regularized matrix factorization methods, we use cross-validation to select the tuning
parameters λ.

4.1 Results of MovieLens 100K

For MovieLens 100K data, we compared the performance of Bayesian methods for BLFM
for rank 3, 5 and 8 matrix decompositions as shown in Fig. 2 (left panel). We can see that
RMSE is minimum at rank 5 in BLFM. Figure 2 (right panel) shows RMSE is decreasing
monotonically on both the training and the testing data at rank 5. For PLFM, the number of
iterations is set to 190 times because this algorithm converges relatively slowly compared
to BLFM. Similarly, we compared the performance of Bayes methods for PLFM for rank
3, 5 and 8 matrix decompositions as shown in Fig. 3 (left panel), which demonstrated that
RMSE is minimum at rank 5 in PLFM. Fig. 3 (right panel) shows RMSE is decreasing while
it increases a little in the middle of the iterates because the algorithm guarantees that the
ELBO rises monotonously.

Table 1 shows the results for various algorithms at convergence on rank 5 for 100k data.
We see that the Bayesian method for LFM outperforms its L2 regularized SVD by over 3.7%
for BLFM. The VB for PLFM achieves an test-RMSE of 0.9251, compared to an test-RMSE
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Fig. 3 The left panel shows the comparison between rank 3, 5 and 8 on training data when using VB for
PLFM. The right panel shows RMSE on training and testing data when using VB for PLFM on rank 5 matrix
decomposition

Table 1 Comparisons of prediction performance for Bayesian method and the classical regularized matrix
factorization method for MovieLens 100K

Algorithm Train-RMSE Test-RMSE Test-improvement (%)

B-SVD 0.6108 0.9266

Bayes-PLFM 0.8819 0.9142 1.3

L2-SVD 0.6227 0.9501

Bayes-LFM 0.9026 0.9147 3.7

P-SVD 0.7730 0.9696

Bayes-BLFM 0.8909 0.9251 4.5
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Fig. 4 The left panel shows the comparison between rank 10, 20 and 30 on training data when using VB
for BLFM. The right panel shows RMSE on training and testing data when using VB for BLFM on rank 30
matrix decomposition

of 0.9696 on regularized matrix factorization method, with an improvement 4.5%. VB for
BLFM is also better than B-SVD in spite of an improvement 1.3%.

4.2 Results of MovieLens 1M

For MovieLens 1M data, the number of iterations is set to 40 times. We compared the
performance of Bayesian methods for BLFM and Bayesian methods for PLFM for rank 10,
20 and 30 matrix decompositions as shown in Figs. 4 (left panel) and 5 (left panel). We can
see that RMSE is minimum at rank 30 in both BLFM and PLFM. Figures 4 (right panel) and
5 (right panel) show that RMSE is decreasing rapidly on both BLFM and PLFM at rank 30,
although the data size becomes bigger.
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Fig. 5 The left panel shows the comparison between rank 10, 20 and 30 on training data when using VB for
PLFM. The right panel shows RMSE on training and testing data when using VB for PLFM on rank 30 matrix
decomposition

Table 2 Comparisons of prediction performance for Bayesian method and the classical regularized matrix
factorization method on MovieLens 1M

Algorithm Train-RMSE Test-RMSE Test-improvement (%)

L2-SVD 0.6410 0.9172

Bayes-LFM 0.5161 0.8042 12.3

B-SVD 0.6119 0.9779

Bayes-PLFM 0.5195 0.7237 25.9

P-SVD 0.6086 1.0396

Bayes-BLFM 0.5250 0.7507 27.8

Table 2 shows results for various algorithms at convergence on rank 30 for 1M data.
The variational Bayesian method outperforms the classical regularized matrix factoriza-
tion method, with the amount of improvement 12.3, 25.9, 27.5% for LFM, BLFM and
PLFM. Overall, for those considered models, the results show the superior performance
of the Bayesian approaches compared with the classical regularized matrix factorization
methods.

5 Conclusions

In this paper, two popular latent factormodels for collaborative filtering have been considered.
The generative processes of ratings have been proposed by probabilistic graphical model
theory with corresponding latent factors. The full Bayesian frameworks of such graphical
models have been proposed as well the variational inference approaches for the parameter
estimation. Comparisons of the prediction performance of traditional matrix decomposition
methods and the Bayesian methods on the MovieLens-100k and the MovieLens-1M have
been investigated. The experimental results show the superior performance of the proposed
Bayesian approaches compared with the classical regularized matrix factorization methods.
In particular, the best VB improvement is 27.8%over regularizedmatrix factorizationmethod
for BLFM on 1M data.
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Appendix

Proof of Lemma 1 Noting that the ELBO can be written as:

ELBO (Q) = EQ(A),Q(B),w[log P (A, B, w, R)] − EQ(A),Q(B),w[log Q (A, B, w)]

= EQ(A,B,w)
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⎣−1

2

M∑

i=1

K∑

k=1

(
log

(
2πσk

2) + a2ik
σk2

)
− 1

2

N∑

j=1

K∑

k=1

(
log

(
2πρk

2) + b2jk
ρk2

)

− 1

2

Lw∑

l=1

(
log 2π + w2

l

) − 1

2

∑

(i, j)∈Ω

(
log

(
2πτ 2

) +
(
ri j − r̂i j

)2

τ 2

)⎤

⎦

− EQ(A) (log Q (A)) − EQ(B) (log Q (B)) − EQ(w) (log Q (w))

= −M

2

K∑

k=1

log
(
2πσk

2) − N

2

K∑

k=1

log
(
2πρk

2) − Lw log (2π)

2
− |Ω|

2
log

(
2πτ 2

)

− 1

2

K∑

k=1

⎛

⎝
∑M

i=1 EQ(A)

(
a2ik

)

σk2
+

∑N
j=1 EQ(B)

(
b2jk

)

ρk2

⎞

⎠ − 1

2

Lw∑

l

EQ(w)

(
w2
l

)

− 1

2

∑

(i, j)∈Ω

EQ(A)Q(B)Q(w)

(
ri j − r̂i j

)2

τ 2

− EQ(A) (log Q (A)) − EQ(B) (log Q (B)) − EQ(w) (log Q (w)))

To achieve the optimal Q(A), we can maximize ELBO by fixing Q(B), Q(α) and Q(β).
This gives,

logQ (A) = EQ(B)Q(w)[log p (R, A, B, w)] ∝ EQ(B)Q(w)[log p (R|A, B, w) + logp (A)]

= −1
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)

123



Bayesian Inference for Collaborative Filtering 1053
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. . .
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,

where N (i) is the set of j’s such that ri j is observed. Φi and āi are the covariance and the
mean of ai respectively. Ψ j and b̄ j are the covariance and the mean of b j respectively. w̄ is
the mean of w. Similarly, the optimal Q(B) is gained by the same method.
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Assume the linear function l(w) = xTw, where x represents the known sample.

log Q (w) = EQ(A)Q(B)[log p (R, A, B, w)] ∝ EQ(A)Q(B)[log p (R|A, B, w) + log p (w)]
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ri j − āi b̄ j

) + wT xxTw

τ2

= −1

2

Lw∑

l=1

(wl − w̄l )
T Δ−1 (wl − w̄l ) Q (w) ∝ exp−

(
−1

2
(w − w̄)T Δ−1 (w − w̄)

)

123



1054 Yang Weng et al.
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⎛
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Therefore, the local optimal Q(A, B, w) = Q(A)Q(B)Q(w) is given. ��
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