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Abstract Auto-encoders have been proved to be powerful unsupervised learning methods
that able to extract useful features from input data or construct deep artificial neural networks
by recent studies. In such settings, the extracted features or the initialized networks only learn
the data structure while contain no class information which is a disadvantage in classification
tasks. In this paper, we aim to leverage the class information of input to learn a reconstructive
and discriminative auto-encoder. More specifically, we introduce a supervised auto-encoder
that combines the reconstruction error and the classification error to form a unified objective
function while taking the noisy concatenate data and label as input. The noisy concatenate
input is constructed in such a method that one third has only original data and zero labels,
one third has only label and zero data, the last one third has both original data and label.
We show that the representations learned by the proposed supervised auto-encoder are more
discriminative and more suitable for classification tasks. Experimental results demonstrate
that our model outperforms many existing learning algorithms.

Keywords Supervised learning · Auto-encoder · De-noising

1 Introduction

Auto-encoder (AE) which is also often called Autoassociator [1–3] is a very classical type
of neural network. It learns an encoder function from input to representation and a decoder
function back from representation to input space, such that the reconstruction (composition
of encoder and decoder) is good for training examples. As a result, the learned representation
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is supposed to retain as much as information of the input. Due to the particular structure, AEs
were classically used as a non-linear dimensionality reduction or data compression technique
in information processing applications such as speech recognition [4] and image compression
[5].

In the modern applications AEs are also employed in a so called over-complete setting
to extract a number of features larger than the input dimension, yielding a much higher
dimensional representation. To avoid simple identity function, some tricks are used by adding
prior constraints on the weights matrices or the hidden unit activations. The simplest form is
a regularized AEwith weight-decay that favors small L2 norm of the weight matrix [6]. Jia et
al. [7] proposes a Laplacian AE which regularizes the learned hidden representations to have
the locality-preserving property. Sparsity of the representation can also ensure meaningful
representation, Le et al. [8] employs KL divergence to penalize the deviation of the expected
activation of hidden units from a pre-given small target. Jiang et al. [9] ensures sparsity
representations by adding L1 regularization to penalize non-zeros activations. Liu et al. [10]
incorporates both Hessian regularization and sparsity constraints into the hidden units and
proposes Hessian regularized sparse AE. Besides, Glorot et al. [11] uses the rectified function
to replace the traditional sigmoid funtion as the activation function which also encourages
sparsity of the representations.

Deep learning has drawn higher and higher interest since deep belief network (DBN)
was proposed in 2006 [12]. Compared to the building block restricted Boltzmann machines
(RBMs) used in DBN, AE is easier to learn and can achieve similar representations. As a
result, Stacked Auto Encoders with AEs as building blocks have also become a widely used
deep network. In such deepmodels, the decoder processes are abandoned andonly the encoder
processes are stacked to form deep networks [13–15]. The key idea in deep learning is the use
of an additional unsupervised criterion to guide the learning at each layer. A proper unsuper-
vised criteria may lead to much better solution, therefore some variants of AE that can detect
important structure in the input patterns have been proposed. De-noising auto-encoder (DAE)
in [16] and contractive auto-encoder (CAE) in [17] are both designed to learn robust repre-
sentations of the input but through different methods. The DAE takes a corrupted version of
original training data as input and demands the reconstruction through the DAE to be a clean
version which can not only avoid simple identity mapping but also extract useful features. On
the other hand, CAE encourages the hidden representations to be robust to slight transforma-
tion of the input by adding a Frobenius norm of the Jacobianmatrix of the encoder activations
with respect to the input. Besides, Rifai et al. [18] combines CAE with DAE and proposes
contractive de-noising auto-encoder (CDAE), which is robust to both the original input and
the learned feature. These variants of basic AE have also been used to build deep networks.
Chen et al. [19] adds a nonnegativity constraint on the weight matrices of sparse AE and
proposed a nonnegativity-constrained AEwhich can detect part-based representation of data.

In all of the above applications, AE and its variants are firstly trained in an unsupervised
manner to detect the statistical structure of input data. Then, they are used in one of twoways:
either as a preprocessing of the input data by replacing it with the representation given by
the hidden layer, or an initialization for a feed-forward neural network with the parameters.
In both cases, AE and its variants are trained without using any label information so that
the learned models are blind to the nature of the supervised tasks that need to be solved
and provide no guarantees that the information extracted by hidden layers will be useful. In
order to take full advantage of the label information during representation learning, some
discriminative AEs have also been proposed in recent years. Hosseiniasl et al. [20] utilizes
the label information by considering the label as a part of the output and adding a logistic
loss function term to penalize the classification error. Rolfe and Lecun [21] introduces a
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discriminative AEs for small targets detection, in which the learned manifold satisfying
the constraint that the positive data should be better reconstructed than the negative data.
Razakarivony and Jurie [22] introduces a discriminative AEs for small targets detection, in
which the learned manifold satisfying the constraint that the positive data should be better
reconstructed than the negative data by adding a hinge loss regularization. Lee et al. [23]
extends the probabilistic linear discriminative analysis (PLDA) to a nonlinear version by
replacing the linear mapping with AE for speaker verification. Liu et al. [24] proposes a large
margin AE (LMAE) which boosts the discriminability by enforcing different class samples
to be large marginally distributed in hidden feature space.

In this paper, we dedicate to the problem of training AEwith label information and detect-
ing discriminative representations which are suitable for classification problems. Naturally,
we can concatenate the data and corresponding labels as the input of AE. But this method
is unfriendly to test data as test data does not have labels. In order to avoid this problem,
we employ the similar skill used in [25] where the model is designed to manage the case
that both modalities are available in training while only one modality is available in testing
for multi-modal learning. In [25], the proposed bimodal deep AE(BDAE) is trained in a de-
noising manner, where an augmented but noisy dataset with additional examples that have
only a single-modality is taken as input but both modalities are required to be reconstructed.
Inspired by BDAE, we treat the data and corresponding label like two modalities in [25],
take an augmented but noisy dataset as input and reconstruct both the data and label. To
be exact, one-third of the training data has only data as input, while another one-third of
the data has only label as input, and the last one-third of the data has both data and label
as input. Different from what does in [25], a hyper-parameter is added to adjust the ratios
between the data reconstruction and label reconstruction. We denote the proposed model as
Supervised-AE (Sv-AE), in which the detection of hidden representations is guided by data
and label information simultaneously. Consequently, the representations learned by Sv-AE
are not only reconstructive but also discriminative.

The rest of this paper is organized as follows. In Sect. 2, we present the related models
and learning algorithms. In Sect. 3, we describe the proposed Sv-AE, its relationship with
other models and the learning algorithms. In Sect. 4, the performance comparison between
Sv-AE and other algorithms are conducted over some frequently used data sets. In Sect. 5,
we give a conclusion of this paper and discuss future work.

2 Autoencoder (AE)

2.1 Basic AE

Autoencoder was introduced in the late 80s [1,2] which was considered as a dimensionality
reduction technique. It is formed by two parts, an encoder and a decoder. The encoder takes
an input x and maps it to a hidden representation h through a deterministic mapping and then
the latent representation h is mapped back into a reconstruction z of the same shape as x by
the decoder. Its typical form can be expressed by following formulas:

h = s(Wx + b) (1)

z = s(W ′h + b′) (2)

where s is a non-linear activation function, such as sigmoid function or rectified function
[12]. The encoder and decoder are parameterized by weight matrixW andW ′ respectively. b
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and b′ are biases vectors. AE can be divided into two kinds (tied-weight and untied-weight)
depends on whether W = W ′ or not.

The training of AE is a optimization problem that the parameters θ = (W,W ′, b, b′)
are optimized such that the average reconstruction error on a training set of examples Dn is
minimized. The corresponding objective function can be represented as following:

JAE (θ) = 1

n

∑

x∈Dn

L(x, z) (3)

where L represents the type of cost function, the most frequently used one is squared error
or cross-entropy error.

2.2 Denoising AE

DAE [17] is a very simple variant of basic AE described above. The main idea is to train
a network that can reconstruct a clean input from a corrupted version of it. Firstly, the
initial input x is corrupted into x̃ by a stochastic mapping and then the corrupted input x̃ is
mapped, like the basic AE, to a hidden representation from which we get a reconstruction z
as approximate as clean data x . The corresponding procedure can be expressed as following:

x̃ ∼ qD(x̃ |x), h = s(Wx̃ + b) (4)

z = s(W ′h + b′) (5)

The corruption processes can be chosen based on the data type. If the input data is con-
tinuous and real valued, Gaussian noise x̃ |x ∼ N (x, σ 2 I ) is an appropriate choice. The
salt-and-pepper noise where a fraction v of the elements of x is set to their minimum or
maximum possible value is suitable for input data which is interpretable as binary or near
binary. Besides, the masking noise where a fraction v of the elements of x is forced to 0 is
also frequently used.

The parameters are trained to minimize the average reconstruction error over a training
set, that is, to have z as close as possible to the uncorrupted input x , seem to be the same as
the training target of basic AE and the only difference is that z is a deterministic function of
x̃ instead of x . It thus forces the network to extract useful features that will constitute better
higher level representation.

Both the basic AE and DAE described above are studied in an unsupervisedmanner which
results in that the learned representations are blind to label information which would be a
disadvantage in classification problems. In the next part, we change the network architec-
ture slightly and introduce label information during representation learning and obtain a
more powerful representation extractor Sv-AE, in which the learned representations are both
reconstructive but also discriminative.

3 Supervised Auto-encoder

3.1 Proposed Model

In this section, we describe the proposed Sv-AE specifically. In order to take label information
into account during feature detection in AE, one of the most straightforward idea is training
an AE over the concatenated data and label. Although this approach can learn features using
both data and the corresponding label information, but it is not appropriate as it can’t handle
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Fig. 1 Illustration of the proposed model. a Preprocessing of input, b Sv-AE

test data that are not accompanied with labels. A suitable learning model must be able to deal
with both training data and testing data.

In order to satisfy such a requirement, we consider the skill used in [25]. The training
data is divided into three parts, one third training data has only attribute data and zero labels,
another one third training data has only label input and attribute part are zeros, the last
one third data has both original data and label input. By training the network in such a
method, the learned hidden representation can not only retain the structure information of
data but also integrate the class information. Besides, when given the data, we can infer the
corresponding label from the learned network, and when given the label, we can reconstruct
the corresponding data. The structure of this model can be showed in Fig. 1b. Given a training
data x = (x1, . . . , xD) and label vector y = (y1, . . . , yD), where yi has only one non-zero
element and yic = 1 denotes example xi belong to class c. The input is firstly preprocessed
as described above, and the obtained input is denoted as z = (x̃, ỹ), the encoder process of
Sv-AE can be expressed as following:

h = s(Wx̃ +U ỹ + b) (6)

and the decoder process is added with a label reconstruction requirement:

v = s(W ′h + b′) (7)

l = g(U ′h + c) (8)

where the active function s and the network parameters
{
W,W

′
, b, b

′}
are similar as

described in basic AE. In this paper, we use sigmoid active function that s(a) = 1
1+exp(−a)

and an untied training form without the requirement of W ′ = WT . Besides,
{
U,U

′
, c

}

are new parameters that are used to leverage label information, l denotes the distribution of
training data x belongs to each class, and the exact expression of l is:

li =
exp

(∑
j U ji h j + c j

)

∑
k exp

(∑
j U jkh j + ck

) (9)

li denotes the probability of data x belongs to class i .
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The model is trained by optimizing the following objective function:

JSv−AE (θ) = 1

n

∑

x∈Dn

L1(y, l) + λ
1

n

∑

x∈Dn

L2(x, v) (10)

where L1 and L2 denote the reconstruction error of label and data respectively. λ is a
hyper-parameter that controls the trade-off between data reconstruction and label recon-
struction. Based on the definition of y and l, here we adopt L1 as the cross-entropy loss
that L1(a, b) = −∑

i ai ∗ log(bi ). The form of L2 can vary depending on the type
of input data. For inputs with values in [0,1] we use the cross entropy loss L2(a, b) =
− (∑

i (ai ∗ log(bi ) + (1 − ai ) ∗ log(1 − bi ))
)
, and for other types of inputs, we use the

most frequently used squared error L2(a, b) = ‖a − b‖2.
As described in part II, DAE is a variant of AE that encourages robust features by recon-

structing the uncorrupted input from a corrupted version of the original input. It’s easy to
find that the proposed model can be viewed as a special DAE where the original input is the
concatenate data and label vector and the data is corrupted by setting one third of the label
parts to be zeros and another one third of data parts to be zeros.

3.2 Model Learning

Just like basic AE, the proposed model can be trained as an optimization problem that mini-
mizes objective function JSv−AE (θ)with respect to parameters θ = {

W,W ′,U,U ′, b, b′, c
}
.

The key step of model learning is computing the partial derivatives. We will compute the par-
tial derivatives in light of back-propagation algorithm. Firstly, we introduce three marks δ(1),
δ(2) and δ(3) to denote the input of hidden layer, data reconstruction layer and label recon-
struction layer respectively. That is δ(1) = Wx̃ +U ỹ + b, δ(2) = W ′h + b′, δ(3) = Uh + c.
Then we compute the derivatives of discriminative term:
Taking the marks described above into Eq. (9),we have:

lk = exp(δ(3)
k )

∑
i exp(δ

(3)
i )

(11)

and the discriminative term in the objective function turns into:

L1(y, l) = −
∑

k

yk ∗ loglk

= −
∑

k

yk ∗ δ
(3)
k +

∑

k

yk ∗ log

(
∑

i

exp(δ(3)
i )

)
(12)

The derivative of discriminative term L1 with respect to δ(3) is:

∂L1(y, l)

∂δ
(3)
k

= − yk +
∑

i

yi ∗ exp(δ(3)
k )

∑
i exp(δ

(3)
i )

= − yk + lk ∗
∑

i

yi = lk − yk (13)

Based on the chain rule, we can get the derivatives of discriminative term L1 with respect to
the weight U ′:
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∂L1(y, l)

∂U ′
jk

=
∑

i

∂L1(y, l)

∂δ
(3)
i

∗ ∂δ
(3)
i

∂U ′
jk

= ∂L1(y, l)

∂δ
(3)
k

∗ ∂δ
(3)
k

∂U ′
jk

= ∂L1(y, l)

∂δ
(3)
k

∗ h j (14)

and the derivatives with respect to bias c:

∂L1(y, l)

∂ck
=

∑

i

∂L1(y, l)

∂δ
(3)
i

∗ ∂δ
(3)
i

∂ck

= ∂L1(y, l)

∂δ
(3)
k

∗ ∂δ
(3)
k

∂ck
= ∂L1(y, l)

∂δ
(3)
k

(15)

Furthermore,we can get the derivative of discriminative term L1 with respect to δ(1):

∂L1(y, l)

∂δ
(1)
j

=
∑

k

∂L1(y, l)

∂δ
(3)
k

∗ ∂δ
(3)
k

∂δ j (3)

=
∑

k

(
∂L1(y, l)

∂δ
(3)
k

∗
∑

l

(
∂δ

(3)
k

∂hl
∗ ∂hl

∂δ
(1)
j

))

=
∑

k

(
∂L1(y, l)

∂δ
(3)
k

∗ ∂δ
(3)
k

∂h j
∗ ∂h j

∂δ
(1)
j

)

=
∑

k

∂L1(y, l)

∂δ
(3)
k

∗U ′
jk ∗ h j ∗ (1 − h j ) (16)

And then the derivatives with respect to parameters of the first layer can be expressed as
following:

∂L1(y, l)

∂Wi j
=

∑

p

∂L1(y, l)

∂δ
(1)
p

∗ ∂δ
(1)
p

∂Wi j

= ∂L1(y, l)

∂δ
(1)
j

∗ ∂δ
(1)
j

∂Wi j
= ∂L1(y, l)

∂δ
(1)
j

∗ xi (17)

∂L1(y, l)

∂b j
=

∑

p

∂L1(y, l)

∂δ
(1)
p

∗ ∂δ
(1)
p

∂b j

= ∂L1(y, l)

∂δ
(1)
j

∗ ∂δ
(1)
j

∂b j
= ∂L1(y, l)

∂δ
(1)
j

(18)

Using the same steps,we can get the derivatives of reconstructive term L2 with respect to
related parameters:

∂L2(x, v)

∂δ
(2)
q

= vq − xq (19)

∂L2(x, v)

∂W
′
jq

= ∂L2(x, v)

∂δ
(2)
q

∗ h j (20)
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∂L2(x, v)

∂b′
q

= ∂L2(x, v)

∂δ
(2)
q

(21)

∂L2(x, v)

∂δ
(1)
j

=
∑

q

(
∂L2(x, )

∂δ
(2)
q

∗ W
′
jq

)
∗ h j ∗ (1 − h j ) (22)

∂L2(x, v)

∂Wi j
= ∂L2(x, v)

∂δ
(1)
j

∗ x̃i (23)

∂L2(x, v)

∂Ukj
= ∂L2(x, v)

∂δ
(1)
j

∗ ỹk (24)

∂L2(x, v)

∂b j
= ∂L2(x, v)

∂δ
(1)
j

(25)

And the derivatives of the whole objective function is a linear combination of discriminative
derivatives and reconstructive derivatives:

∂ JSv−AE

∂θ
= 1

n

∑

x

∂L1(y, l)

∂θ
+ λ

1

n

∑

x

∂L2(x, v)

∂θ
(26)

With the partial derivatives derived above, the learning procedure of Sv-AE can be expressed
in Algorithm 1.

Algorithm 1 Proposed Sv-AE Framework Algorithm
Input: The training data: {xi }Di=1,{yi }Di=1, iterative times T and learning rate α;
Output: The learned network parameters {W,W ′,U,U ′, b, b′, c} and SVM classifier;
Step 1: (1) Preprocess the training data and obtain an augmented but noisy version z = (x̃, ỹ)
as described in above.

(2) Randomly initialize the network parameters θ0, t = 0.
Step 2: (1) while t ≤ T

(2) Compute partial derivatives ∂ JSv−AE
∂θ

using equation (13)-(26).

(3) Update parameters: θt+1 = θt − α ∗ ∂ JSv−AE
∂θt

(4) t = t + 1;
Step 3: Using the learned hidden representations of input data and the corresponding labels
to train a SVM classifier.

For a trainset {xi , yi }Ni=1, where xi ∈ R
m, yi ∈ I

c, if the number of hidden units is k, we
can find that the compute times in feed-forward process of Sv-AE are 2× N × (m + c) × k
via Eqs. (6)–(8), and the compute times of back-propagation process are 3× N × (m + c) ×
k + 2 × N × k via Eqs. (13)–(26). We can find out that the compute times in each step of
gradient update are 5×N (m+c)k+2×Nk. So the compute complex of proposed approach
is O(N (m + c)k).

Wehave introduced our proposedmodel and learning algorithms clearly in this section, and
in the next section we will take experiments on some frequently used datasets to demonstrate
the effectiveness of proposed methods.
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Table 1 Details of the UCI
datasets

Data sets Training Testing Attributes Classes

G50c 50 500 50 2

Coil20 40 1400 1024 20

Uspst 50 1957 256 10

Coil20 (b) 40 1400 1024 2

Uspst (b) 50 1957 256 2

Wine 15 163 13 3

Iris 60 90 4 3

Liver 230 115 6 2

Diabetes 512 256 8 2

Segment 1540 770 19 7

Satimage 4400 2035 36 6

4 Experiments and Results

In this section, the performances of proposed Sv-AE are evaluated and compared with some
benchmark classification algorithms on a wide range of classification tasks, such as classifi-
cation of UCI datasets, character recognition and document classification.

4.1 Classification of UCI Datasets

Eleven data sets from the UCI repository [26] are used to test the performance of the algo-
rithms. The characteristics of these data sets are summarized in Table 1. As done in the [27],
USPST(B) data set is a binary classification task created from USPST by grouping the first
five digits as Class 1 and the last five digits as Class 2, COIL20(B) data set is a binary clas-
sification task created from COIL20 by grouping the first ten objects as Class 1 and the last
ten objects as Class 2. The training sets and testing sets are divided randomly with the set
sizes fixed as Table 1 shows. The random data partitions are repeated 20 times and we show
average classification error and standard deviation of different algorithms on each data set.

The proposed method is compared with the following six baseline algorithms.

(1) SVM: libsvm toolbox is used.
(2) NNnet: a single hidden layer feed-forward network (SLFN) that are trained by back-

propagation.
(3) ELM [28]: a SLFN with random hidden units.
(4) AE+BP: a NNnet that the weight matrix is initialized by a basic AE.
(5) Nt+SVM: thehidden representations learnedbyNNnet are used to train aSVMclassifier.
(6) AE+SVM: the hidden representations learned by AE are used to train a SVM classifier.

For NNnet, ELM and AE, the number of hidden units are fixed to 50 for the first 9 data sets
and200 for the last 2 data sets. The learning rate and iterative steps are adjustedbasedon exper-
imental experience for the proposed method and other compared methods. Libsvm toolbox is
used to train SVM classifiers and the best hyper parameters are selected via cross validation.
In the proposed model, the hyper-parameter λ is varied among {10−6, 10−5, . . . , 106}, and
we evaluate the testing error for all of the 13 cases, then the lowest one is chosen as the final
testing error. Besides, in Sv-AE and AE, we use sigmoid decoder function and cross-entropy
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Table 2 Performance comparison on UCI datasets (classification error %)

Data sets SVM NNnet ELM AE+BP Nt+SVM AE+SVM Sv-AE

G50c Mean 8.71 10.88 8.28 8.79 10.41 9.91 7.40

Std 0.91 2.13 1.09 1.13 2.12 1.73 1.19

Coil20 Mean 28.57 28.44 29.48 27.39 27.64 28.83 27.56

Std 3.89 3.11 2.50 3.13 3.45 3.22 1.88

Coil20 (b) Mean 13.71 14.06 11.45 11.11 12.38 11.61 10.79

Std 1.65 3.47 2.52 2.67 3.23 1.77 1.35

USPST Mean 23.58 23.38 23.58 22.11 21.92 22.05 21.11

Std 2.21 2.67 2.21 2.73 2.16 2.34 1.94

USPST (b) Mean 15.18 23.17 21.19 20.26 15.62 15.47 14.49

Std 2.25 2.31 2.54 2.70 2.17 1.99 2.07

Wine Mean 5.43 6.81 5.74 5.37 6.60 6.99 5.25

Std 1.17 1.65 1.26 1.47 1.59 1.81 1.36

Iris Mean 5.78 5.33 9.64 2.83 4.5 9.22 3.11

Std 3.13 2.96 2.57 1.42 2.15 3.71 1.67

Liver Mean 31.65 31.26 29.84 27.13 32.96 41.87 22.39

Std 5.15 5.01 3.80 3.93 3.08 4.67 3.23

Diabetes Mean 23.75 25.72 22.41 21.68 23.52 23.01 21.64

Std 1.68 2.14 1.93 2.14 1.68 1.98 1.78

Segment Mean 8.08 3.71 3.81 5.81 4.88 12.38 2.14

Std 0.87 0.61 0.52 0.73 0.85 0.98 0.39

Satimage Mean 12.26 9.54 10.33 11.11 9.79 15.39 9.04

Std 0.65 0.62 0.78 0.69 0.65 0.55 0.65

Bold indicates the best performance on the dataset

loss error if the input data belongs to [0,1], identity function and mean square error for other
cases.

Table 2 shows the testing performance of the proposed Sv-AE and other benchmark meth-
ods described above on all of the eleven UCI data sets. It can be seen that Sv-AE outperforms
all the other algorithms on most of the data sets except for Iris. On Iris dataset, AE+BP per-
forms best and Sv-AE is second best that still better than Nt+SVM and AE+SVM. From
Table 1 we can see that Iris dataset has only 4 attributes which is very small, this may be
the reason why Sv-AE is slightly worse than AE+BP. The result indicates that the features
learned by Sv-AE is better than the discriminative only representations learned by NNnet
and reconstructive only representations learned by basic AE when managing classification
tasks. Learning both reconstructive and discriminative featureswill improve the classification
accuracy.

4.2 Character Recognition

In this part, we use more complicated data set with character images to verify the learning
performance of Sv-AE. TheMixed National Institute of Standards and Technology (MNIST)
handwriting data set and two variations (MNIST-basic and MNIST-BI) are used. MNIST
consists of 60,000 training images and 10,000 testing images of digits 0–9 with 28 × 28
pixels in gray-scale. MNIST-basic is a different partition version of MNIST and MNIST-BI
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Fig. 2 Illustration of datasets. a MNIST-basic, b MNIST-BI

Fig. 3 Comparison of the filters learned by basic-AE and Sv-AE. a filters learned by Sv-AE, b filters learned
by basic-AE

Table 3 Classification accuracy on MNIST-basic and MNIST-BI

Algorithms MNIST-basic MNIST-BI

Train accuracy Test accuracy Train accuracy Test accuracy

SVM 99.975 96.664 95.16 77.39

NNnet 100 95.342 88.22 71.99

AE+BP 100 95.45 79.32 73.17

AE+SVM 99.942 96.664 95.6583 79.07

NNnet+SVM 100 97.04 95.6083 77.12

Sv-AE 100 97.24 95.7667 79.20

is more complicated by adding background images to MNIST digit. Both of them consist of
12,000 training images and 50,000 testing images. Figure 2 gives an illustration of MNIST-
basic and MNIST-BI.

Firstly, we give an intuitional compare of the supervised representation learned by Sv-
AE and the traditional unsupervised feature learned by basic-AE by showing the receptive
fields learned on MNIST dataset. The receptive fields (the columns of the weight matrix W)
learned by the Sv-AE and Basic AE are displayed in Fig. 3 and it can be helpful for us to
understand the discriminative power of the corresponding models. The results show that the
filters learned by basic AE have no recognizable structure, looking entirely randomwhile the
filters learned by Sv-AE are spatially localized stroke detectors which are much meaningful.

Besides, we take experiments on MNIST-basic and MNIST-BI datasets to verify the clas-
sification ability of the learned hidden representations by showing the classification accuracy.
We also provide the performance of SVM, regular neural network, a neural network initial-
ized by basic AE, AE+SVM and NNnet+SVM. The results show that Sv-AE can achieve
higher classification accuracy than other algorithms on both training set and testing set.
The discriminability of the learned representations by Sv-AE has been proved once again
(Table3).
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Fig. 4 Data reconstructed from the label vectors via Sv-AE. a MNIST-basic, b MNIST-BI

Table 4 Classification accuracy
on 20 newsgroups

Algorithms Accuracy (%)

SVM 71.98

NNnet 73.96

NNnet+SVM 72.31

AE+BP 72.70

AE+SVM 70.53

Sv-AE 74.26

After the training of Sv-AE, we can use the network to reconstruct corresponding data
when given the label vector. As MNIST data has 10 classes, the label vector have 10 possible
values, that is (1, 0 . . . , 0) . . . (0, . . . , 0, 1). From such label vector, the reconstructed data
for MNIST-basic and MNIST-BI are shown in Fig. 4. We can see that the reconstructed data
only retain the structure information of digits and the backgrounds in MNIST-BI are filtered
out.

4.3 Document Classification

We also evaluate the proposed models on the problem of document classification with 20
Newsgroups dataset. The 20 Newsgroups dataset consists of 18,774 posts from 20 different
newsgroups. Some of the newsgroups are very closely related to each other, while others are
highly unrelated. The 11,269 training posts and 7,505 testing posts are collected at different
times that it is more reflective of a practical application. In our experiment, the training set
was divided into a smaller training set and a validation set, with 10,000 and 1269 examples
respectively. After removing stop-words and stemming, the most frequently used 5000words
in the training set were used to represent the documents.

Table 4 reports the classification accuracy of each algorithm. The results indicate that
Sv-AE still performs better than NN-net and AE+BP which demonstrate the superiority of
representations leaned by the proposed model.

In order to get a better understanding of how the Sv-AE solves this classification problem,
we give a look of the similaritymatrix S ofweights connected to each class neurons indicating
different newsgroups. S is calculated by function S(U ) = sigmoid(UTU ), Si j can reflect
the similarity between class i and class j to some degree, and the smaller of Si j the less
similar of class i and class j. The matrix is shown in Fig. 5, we see that S is not diagonal but
more like block diagonal, which means that Sv-AE doesn’t use strictly non-overlapping sets
of neurons for different newsgroups, but shares some of those neurons for newsgroups that
are semantically related. We see that the Sv-AE tends to share neurons represent the same
topics such as computer (comp.*) and science (sci.*), or secondary topics such as sports
(rec.sports.*) and politics (talk.politics.*).
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Fig. 5 Similarity matrix of the newsgroup weights vector U. j

5 Conclusion

In this paper, we proposed a novel model Sv-AE which takes concatenate but noisy data and
label as input and reconstructs both data and label. By doing this, the Sv-AE can take use
of label information during representation extraction. Experiments on UCI datasets, MNIST
and 20 newsgroups have shown that the representations extracted by our proposed model are
more discriminative. It can achieve higher classification precision when be used to train a
SVM classifier. Future work will extend this supervised model to a semi-supervised variant
of AE. Currently the model is used as a shallow classifier, but it can also be used to build
deep architectures which we will go on research in the future.
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