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Abstract Image segmentation using local region-based active contour models can segment
imageswith intensity inhomogeneity effectively, but their segmentation results are sensitive to
the initialization and easy to get incorrect resultswhen dealingwith texture images. This paper
presents a novel active contour model (ACM) for image segmentation. The proposed method
adopts local kernel mapping to enhance the discriminative ability to delineate nonlinear
decision boundaries between classes. In addition, we introduce a modified convex model
and propose a fast evolving scheme accordingly to deal with the minimization of the model
energy function. The proposed approach is validated by a comparative study over a large
number of experiments on synthetic and real images. The experiments demonstrate that our
method is more efficient and robust for segmenting different kinds of images compared with
the state-of-the-art image segmentation methods.
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1 Introduction

Image segmentation is a basic requirement in computer vision and image processing. The
purpose of image segmentation is to partition an image area into some meaningful regions.
However, it is still a challenging task as images are usually affected by various noise and
intensity inhomogeneity. In the past decades, a lot of methods have been proposed to improve
the image segmentation quality. Among them, the level set method as a member of active
contour family, which was first proposed by Osher and Sethian [1] has been widely used.
The advantage of this method is that it treats image segmentation as an energy minimization
problem and can get accurate boundary detection with sub-pixel precision. Moreover, the
method is convenient to the introduction of constraints on the solution for different tasks
[2–32].

Compared with the parametric active contour models (ACMS), level set methods repre-
sent the active contour as the zero level set of a higher dimensional function, the advantage
is to realize freedom of topological transformation. Existing level set methods can be clas-
sified into three classes: edge-based methods [8–10], region-based methods [7, 11–15], and
combined approaches [6, 16–22]. Edge-based models depend on gradient information of the
image to guide curve evolution. However, they are very sensitive to noise and weak boundary.
Therefore, some researchers proposed region-based models to overcome the problems, using
the global region statistical information inside and outside of curve to attract contour evolu-
tion. One of the most popular region-basedmodels is Chan–Vese (CV)model, Chan and Vese
[23] applied the level set method to solve the simplified variants of Mumford–Shah model,
which also called Piecewise Constant model. It does not depend on the edge information of
the image, but using statistical information of regions inside and outside evolving curves to
stop curves on the desired boundary. It gets satisfactory performance on images with weak
boundaries. However, it usually fails to segment images with intensity inhomogeneity since
the model assumes the image domain is composed of some homogenous regions. To over-
come this problem, the piecewise smooth (PS) segmentation model [24] is put forward to
segment images with gray uneven characteristics. Unfortunately, it’s very complex to calcu-
late and also sensitive to the initial position of the active contour. Then, Li et al. [25] presented
a local binary fitting (LBF) method to segment images with intensity inhomogeneity, using
localized image information to segment images with intensity inhomogeneity. In addition,
they proposed a regularize level set function by penalizing its deviation from a signed dis-
tance function. As a result, the costly re-initialization procedure has been eliminated. Next,
Wang et al. [26] described local image intensities by Gaussian distribution with local means
and variances as variables, it can be used to segment some simply texture images. Combining
region and edge information of the image characteristics, an active contour model integrated
boundary-based and region-based information was proposed by Paragios [27] to achieve
more robust and better performance in segmentation.

In recent years, some researchers introduced some classical classification methods to
segment images [3, 4, 6, 12, 14, 19, 21, 22]. Their methods are robust against noise to
some extent and have better segmentation performance compared with some famous level
set approaches [9, 23, 25]. For example, Wang et al. [6] proposed a level set method for
image segmentation by incorporating local approximating the non-homogeneity-free image
in a statistical analysis way which the local energy term and the Bhattacharyya coefficient
is used to measure the similarity between probability distribution functions for intensities of
inside and outside of the evolving contour. In general, the superiority of this method over
the local region-based methods has been shown through the comparisons with representative
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Fig. 1 Overall flowchart of the proposed model

LBF model, LIC model and LCV model [6]. However, the limitations of these models are
the complex mathematical description and high computation cost.

Therefore, more efficient methods are expected to be presented for image segmentation.
In this paper, we proposed a novel ACM model which is constructed by two groups—local
data energy term and constraint term. The local energy term is described in a local kernelized
way that could deal with image segmentation problem flexibly by kernel mapping the original
image data in each local regions. However, similar to most other local active contour models
[6, 7, 12, 15, 25, 33, 34], it is still sensitive to initialization of the contours. Then, we further
modified the aforementioned model and proposed the convex formulation of this model to
solve the initialization problem. Meanwhile, the alternating direction method of multipliers
(ADMM) iteration approach [35, 36]was utilized to quickly solve the numericalminimization
for the active contour propagation toward the boundaries of the images. Figure 1 shows the
overall flowchart of the proposed model. To validate the efficiency and robustness of our
methods, some experiments on medical images, images with intensity inhomogeneity and
noise, texture images are conducted. In addition, we also make a comparative study with
some state-of-the-art models to show the superiority of our methods.

The remainder of this paper is organized as follows. Section 2 reviews several major
region-based active contour models. Then the proposed models are presented in Sect. 3. In
Sect. 4, some experimental results are described and analyzed using a set of synthetic and
real images. Finally, this paper is summarized in Sect. 5.

2 Background

2.1 Chan–Vese Model

Mumford and Shah proposed a classic Mumford-Shah model, the model totally depends
on the data term of the image to drive the evolution of contour. Then, Chan and Vese [23]
presented an active contour model implemented via level set function to solve a simplified
Mumford–Shah model. They proposed to minimize the following energy functional:

ECV (C, c0, cb) � λ1

∫
outside(C)

(I − cb)
2dx

+ λ2

∫
inside(C)

(I − c0)
2dx + ν |C | (1)
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To minimize the energy function (1), the level set method is used. The curve C is repre-
sented by the zero level set. Then, the formulation of (1) can be reformulated as follows

ECV (u, c0, cb) � λ1

∫
(I − c0)

2H (φ(x))dx

+ λ2

∫
(I − cb)

2(1 − H (φ(x))dx

+ ν

∫
|∇H (φ(x))|dx (2)

where λ1, λ2, and μ are positive constants. φ is the level set function. c0 and cb represent the
intensity averages of the image I inside and outside φ, respectively. The average intensities
c0 and cb can be calculated by

c0 �
∫
�

I (x)H (φ(x))dx

∫
�

H (φ(x))dx
, cb �

∫
�

I (x)(1 − H (φ(x)))dx

∫
�

(1 − H (φ(x)))dx
(3)

where H is the Heaviside function. In practice, H is approximated by a smooth function Hε

which defined as

Hε(z) � 1

2

∣∣∣∣1 + 2

π
arctan

∣∣∣ z
ε

∣∣∣
∣∣∣∣ (4)

The derivative of Hε is written by the following function

δε � H ′
ε � 1

π
· ε

ε2 + z2
(5)

Keeping c0 and cb fixed, and minimizing the energy functional (2) with respect φ, we derive
the following gradient descent flow

∂φ

∂t
� δε(φ)

[
−λ1

∫
|I (y) − f1(x)|2dy +λ2

∫
|I (y) − f2(x)|2dy

]

+ νδε(φ)div

( ∇φ

|∇φ|
)

(6)

From the energy functional (2), we know that when the values c0 and cb are known, this
function is non-convex, it has a good segmentation performance on the image with weak
boundaries. However, the CV model assumes that the intensities in each area are constant it
might fail to segment images with heavy intensity difference in the same area.

2.2 The LBF Model

Through analysis of the local image information, Li et al. [9] proposed the local binary fitting
(LBF) model to segment images with intensity inhomogeneity. The energy function of LBF
model can be written as follows:

ELBF � λ1

∫ [∫
Kσ (x − y) |I (y) − f1(x)|2 H (φ(y))dy

]
dx

+ λ2

∫ [∫
Kσ (x − y) |I (y) − f2(x)|2 (1 − H (φ(y)))dy

]
dx

+ μP(φ(x)) + νL(φ(x)) (7)
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where λ1, λ2, μ and ν are positive constants. Kσ is a Gaussian kernel function with a
localization property that Kσ (ω) decreases and approaches zero as |ω| increase, and σ is a
standard deviation that controls the size of the local region, it can be expressed as.

Kσ (ω) �
{

1
a exp

(
−|ω|2

2σ 2

)
ω ≤ ρ

0 ω > ρ
(8)

where a is a constant such that
∫
Kσ (ω) � 1.

f1(x), f2(x) are two numbers that fit the image intensities near the point of x, they can be
obtained by

f1(x) � Kσ (x) ∗ [I (x)H (φ(x))]

Kσ (x) ∗ H (φ(x))
, f2(x) � Kσ (x) ∗ [I (x)(1 − H (φ(x)))]

Kσ (x) ∗ (1 − H (φ(x)))
(9)

P(φ) is the distance regularizing term to penalize the deviation of the level set function
from a signed distance function.

P(φ) �
∫

�

1

2
|∇φ − 1|2 dx (10)

L(φ) is the length of the contour.

L(φ) �
∫

�

δ (φ) |∇φ| dx (11)

Due to the utilization of the local image information, this model has the capability to
segment images with slight intensity inhomogeneity. However, the LBF model is sensitive
to the location of initial contour and has difficulty in coping with the image with heavy noise
and intensity inhomogeneity.

2.3 The LGDF Model

To effectively exploit information on local intensities, Wang et al. [7] proposed to utilize
the Gaussian distribution with different means and variances to describe the local image
intensities. In LGDF model, the local intensity means and variances are spatially varying
functions. Actually, it is a local statistic model, compared with the LBFmodel, the capability
in handling intensity inhomogeneity is more robust. The energy function of LGDF model
embedded level set function can be written as follows:

ELGDF � −
∫ [∫

Kσ (x − y)log p1,x (I (y))H (φ(y))dy

]
dx

−
∫ [∫

Kσ (x − y)log p2,x (I (y))(1 − H (φ(y)))dy

]
dx

+ μP(φ(x)) + νL(φ(x)) (12)

For each pixel x, the local intensities within its neighborhood are assumed to follow a
Gaussian distribution

pi,x ((I (y))) � 1√
2πσi (x)

exp

(
− (ui (x) − I (y))2

2σi (x)2

)
(13)

where ui (x) and σi (x) are local intensity means and stand deviations, respectively. By using
both the first-order and second-order statistics of local intensities, the LGDF model can not
only handle noise and intensity inhomogeneity but also different regionswith similar intensity
means but different intensity variances.However, from [22]weknow that the spatially varying
variance may be unstable due to its local property.
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2.4 The Kernelized Method

Mohamed et al. [4] proposed an effective level set image segmentation method by kernel
mapping the image data. A kernel function maps implicitly the original data onto a higher
dimension so that the piecewise constant model becomes applicable. It can express the com-
plex modeling of the image data in a flexible way. Let 
 be a nonlinear mapping from the
observation spaceM to a higher dimensional feature space N . Let C: [0, 1] → � be a closed
curve. TheC divides the image area into two regions: the interior of givenC by�1 � �C , the
exterior �2 � �c

C . The functional which measures a kernel-induced non-Euclidean distance
between the observations I(x) and the regions parameters f1, f2 as follows:

E(�1,�2, f1, f2) �
∫

�1

‖
(I (x)) − 
( f1)‖2dx

+
∫

�2

‖
(I (x)) − 
( f2)‖2dx + λ

∮
D
ds (14)

TheMercer’s theorem [37] shows that any finitely positive semi-definite kernel represents
the inner product in some higher-dimensional Hilbert space. Therefore, we do not have to
know the mapping 
 exactly. We can use a kernel function K (xi , x j ) expressed

K (xi , x j ) � 
(xi )
T · 
(x j ),∀(xi , x j ) ∈ M2 (15)

The kernel functions in the data term can be represented by the non-Euclidean distance
measure in original data space:

EK � ‖
(I (x)) − 
( fi )‖2
� 
(I (x))T · 
(I (x)) − 2
( fi )

T · 
(I (x)) + 
( fi )
T · 
( fi )

� K (I (x), I (x)) + K ( fi , fi ) − 2K (I (x), fi ) (16)

They adopt an iterative two-step algorithm to solve the EK function. Firstly, fixing the curve
and optimizing the regions parameters. Secondly, evolving the curve by the zero level set
function with the region parameters fixed (more details can be referred to [4]). This model
can obtain quantitative and comparative performance on synthetic complex images, but it
would generate poor results when segmenting images with intensity inhomogeneity.

2.5 Summary

It should be noted that the CV and LBF models both use the mean intensity value to char-
acterize either the global or local image region. Obviously, it will fail to segment the image
region with heavy noise and serious inhomogeneity due to the limited characterization ability
of the image region. In order to deal with this problem, some models, such as LGDF, employ
the mean and variance to represent the image in the local region. However, when the data
distribution dissatisfies the Gaussian distribution, it can hardly get the accurate segmentation
results.
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3 Proposed Method

3.1 Data Energy Term

Intensity inhomogeneity of images is caused by various factors, such as imaging devices,
human factors, strength of the natural light on objects. In particular, these adverse factors
usually happen in medical images, such as X-ray radiography andmagnetic (MR) images. To
overcome above problems, a local region-based energy term [7, 14, 15, 19, 25, 26, 28–30] has
been proposed by many researchers. Although these methods have shown the efficiency in
segmenting non-uniform intensity regions, they have difficulties in coping with heavy noise
and weak boundary regions in images. From [4], we know that a kernel function can map the
image data into a higher dimension which leads to a flexible and effective alternative to the
complex modeling of the image data.

Inspired by the kernel mapping function and local region-based energy term, we proposed
to combine the local image statistics and kernel mapping strategies, and defined the data
energy term as follows:

ED( f1, f2) � λ1

∫ [∫
Kσ |(
(I (y)) − 
( f1(x)))|2 dy

]
dx

+ λ2

∫ [∫
Kσ |(
(I (y)) − 
( f2(x)))|2 dy

]
dx (17)

where λ1, λ2, are fixed parameters, f1(x) and f2(x) are the regions parameters. Table 1 lists
some familiar kernel functions
, and we used the radial basis function [38, 39] (RBF) kernel
in our experiments.

We use the level set to implement the curve evolution in (17), it can be rewritten as:

ED � λ1

∫ [∫
Kσ |
(I (y) − 
( f1(x))|2 H (φ)dy

]
dx

+ λ2

∫ [∫
Kσ |
(I (y) − 
( f2(x))|2(1 − H (φ))dy

]
dx (18)

The constraint term can be written as follows:

EC � μP(φ) + νL(φ) (19)

where μ and ν are positive constants which control the penalization effect, respectively.

Table 1 Examples of prevalent kernel functions

RBF Kernel Perceptron Kernel Polynomial Kernel Perceptron Kernel

K (xi , x j ) � exp(− ∣∣xi − x j
∣∣2 /σ 2) K (xi , x j ) � (xi · x j + c)d K (xi , x j ) � tanh(βx j + b)
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3.2 Level Set Implementation

Now, the total energy functional is given by

ELKF � ED + EC

� λ1

∫ [∫
Kσ |
(I (y) − 
( f1(x))|2 H (φ)dy

]
dx

+ λ2

∫ [∫
Kσ |
(I (y) − 
( f2(x))|2 (1 − H (φ))dy

]
dx

+ μ

∫
�

1

2
|∇φ − 1|2 dx + ν

∫
�

δ (φ) |∇φ| dx (20)

It’s a novel ACM, which is called LKF model.

3.3 Gradient Descent Flow

To minimize the function ELKF, standard gradient descent is used. The solving process can
be divided into two steps: the first step is fixing the level set function φ to solve f1 and f2,
the second step is to update the level set function φ with the region parameters f1, f2 fixed.
Next, we will introduce the specific procedures.

(a) For a fixed level set function φ, the derivatives of ELKF with respect to fi , i ∈ {1, 2}
produce the following equations:

∂ELKF

∂ fi
� λi

¨
Kσ

∂(K (I, I ) + K ( fi , fi ) − 2K (I, fi ))

∂ fi
(21)

For RBF kernel, we know that K (I, I ) � K ( fi , fi ) � 1, the minimum of ELKF with
respect to f1, f2 is

f1 �
∫
Kσ I (x)K (I (x), f1)H (φ)dx∫
Kσ K (I (x), f1)H (φ)dx

,

f2 �
∫
Kσ I (x)K (I (x), f2)(1 − H (φ))dx∫
Kσ K (I (x), f2)(1 − H (φ))dx

. (22)

(b) With the f1, f2 fixed, the ELKF is minimized with φ and obtained the following gradient
flow equation:

∂φ

∂t
� δε(φ)

[
−λ1

∫
Kσ |
(I (y) − 
( f1(x))|2dy

+λ2

∫
Kσ |
(I (y) − 
( f2(x))|2dy

]

+ μ

(
∇2φ − div

( ∇φ

|∇φ|
))

+ νδε(φ)div

( ∇φ

|∇φ|
)

(23)

where∇ is the gradient operator, div(·) is the divergence operator.Weusefinite difference
scheme to implement the level set evolution in this paper. The spatial partial derivatives
can be approximated by using the central difference and the temporal partial derivatives
were approximated by the forward difference. Furthermore, the computational cost of
the level setmethod can be greatly reduced by only consider an inner and outer band, both
sides of the curve, that is, a narrow-band [40] around the zero level set, instead of dealing
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with the entire domain. The procedures of the proposed algorithm are summarized in
Algorithm 1.

Algorithm 1 Image segmentation with the proposed LKF model

Input: Place the initial contour C0 and initialize the level set function φ.

Repeat

Fixed level set function φ, and compute f1, f2 by solving Eq. (22). Update f1 and f2.

Fixed f1, f2, and compute the level set function φ according to the gradient flow (23). Update φ.

Until the level set evolution terminates at time t or reaches the largest number of iterations N .

Out: Extract the zero level set function from the level set function.

Similar to other local active contour models [33, 34], which are known to be sensitive to
initialization, the segmentation results of our model also depend on the initialization of the
contours. Actually, most of the global active contour models have the same problem, though
they are less sensitive than the local models. To obtain a steady solution of the LKF model,
convex formulation of it could be a reasonable direction. Next, we will talk about it.

3.4 Convex Formulation of the LKF Model

Since δε(φ) ≥ 0 in (23), we can remove this function from the gradient descent flow equation
of the LKF model, and the following one has the same stationary solution:

∂φ

∂t
� (−λ1e1(x) + λ2e2(x)) + ηdiv(

∇φ

|∇φ| ) (24)

where e1 and e2 are defined as follows:

ei (x) �
∫

Kσ |
(I (y) − 
( fi (x))|2dy (25)

Thus, the previous gradient descent flow equation is associated with the following energy:

E(φ, e1, e2) �
∫

h · φ(x)dx + η

∫
|∇φ(x)|dx (26)

The above energy function is homogeneous of degree 1 inφ, andh � λ1e1(x)−λ2e2(x).As
a result, it does not have a minimizer in general (do not have unique level set representations),
From [35, 36], we know that a global minimizer for the function of (26) can be found with
the constrained φ ∈ [0, 1]. Inspired by this, the GLKF model can be given as follows [we
change the notation φ into u to avoid any confusion with the level set method in (23) and
(24)]:

min
0≤u≤1

EGLK F �
∫

h · u(x)dx + η

∫
|∇u(x)|dx (27)

3.5 Numerical Minimization of the GLKF Based on ADMM

One of the most simple common schemes is the Euler–Lagrange equation techniques and
explicit gradient-descent methods to cope with the computation problem of active contour
evolution. Unfortunately, the regularization of the TV norm limits the speed of the numerical
minimization. In a recent study, a fast and accurate numerical scheme, i.e., ADMM iteration
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approach, is introduced to solve the energy minimization problem of (27). The ADMM
method is a technique for solving general L1-regularized problems of the form

argmin
u

|
u|1 + ‖Au − f ‖2 (28)

where 
 and A are linear operators. The ADMM method does not require regularization,
continuation, or enforcement of inequality constraints and has been demonstrated to be an
extremely efficient solver for L1 regularized problems.

In order to use the ADMM method to solve Eq. (27), firstly, we introduce the auxiliary
variable d, d � ∇u. The Eq. (27) becomes

min
0≤u≤1

EGLK F �
∫

h · u(x)dx + η

∫
|d|dx

s.t. d � ∇u. (29)

Then, we add a quadratic penalty function to weakly enforce the resulting equality con-
straint.

min
0≤u≤1

{∫
h · u(x)dx + η

∫
|d|dx +

λ

2
‖d − ∇u‖2

}
(30)

To strictly enforce the constraint d � ∇u, we apply ADMM iteration to the equation. The
optimization problem becomes

(uk+1, dk+1) � arg min
0≤u≤1,d

∫
h · u(x)dx + η

∫
|d|dx +

λ

2

∥∥∥d − ∇u − bk
∥∥∥2 (31)

bk+1 � bk + ∇uk − dk (32)

where λ ≥ 0, k ≥ 0, the optimal solution of u must satisfy the following equation:

�u � 1

λ
h + div(bk − dk), 0 ≤ u ≤ 1 (33)

A fast approximate solution can be obtained by using a Gauss–Seidel method since this
equation is strictly diagonally dominant (see [35] for more details), and uk+1 can be updated.

Then, the optimal solution dk+1 is updated using the following shrink operator:

dk+1 � bk + ∇uk+1∣∣bk + ∇uk+1
∣∣max

(∣∣∣bk + ∇uk+1
∣∣∣ − 1

λ
, 0

)
(34)

When theADMMsolver scheme is placed into algorithm1,we get the following algorithm
scheme for segmentation.
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Algorithm 2 ADMM method for the proposed GLKF model

Initialization: Set the initial condition of the iteration approach as u0 � d0 � b0 � 0, and k � 0, iG � 0.
The maxima of k and iG are represented N0 and N1, respectively.

Repeat until
∥∥∥uk+1 − uk

∥∥∥ ≤ ε1 or k ≥ N0

Let uold � unew � uk .

Repeat until ‖uold − unew‖ ≤ ε2 or iG ≥ N1

Update unew with the Gauss–Seidel method

Set iG � iG + 1.

End

Update uk+1 with uk+1 � unew.

Update dk+1 according to (34).

Update bk+1 according to (32).

Set k � k + 1.

End

4 Experimental Results and Discussions

The performance of our proposed models was evaluated on synthetic and real images. Our
models were implemented inMatlab R2014a on a computer with Intel Core i7-4770 3.4 GHz,
8 GBRAM, andWindows 7 operating system. Unless otherwise specified, we use the follow-
ing parameters setting in LKF model: λ1 � λ2 � 1.0, σ � 3.0, �t � 0.1, ∈� 1, μ � 1.0,
ν � 0.001 × 255 × 255, and λ � 1000, η � 0.2, ε1 � 10−5, ε2 � 10−2 in GLKF model.

4.1 Segmentation of Medical Images

Firstly, we evaluated LKF model on a set of medical images from different modalities. In
the first column of Fig. 2, from top to bottom, a magnetic resonance (MR) image of a left
ventricle, a heart computed tomography (CT) image, an ultrasound image, a brain MR image
with a tumor and an X-ray image of three fingers. Those images are all corrupted with at
least one degenerative factors, including the additive noise, low contrast, low signal-to-noise
ratio (SNR), weak boundaries and intensity inhomogeneity. Initial contours were overlaid
on each test image with yellow circles, the evolution of those contours was illustrated in the
second, third and fourth columns, and the final segmentation results were displayed in the
fifth column. It is clearly seen that the LKF model drives the contours to accurately converge
to the boundaries of all targeted objectives.

4.2 Segmentation of Inhomogeneity Images

Then, we tested LKF model on synthetic and real images with inhomogeneity, the segmen-
tation results were displayed in Fig. 3. In the first row of Fig. 3, from left to right, a synthetic
image with severe intensity inhomogeneity, a synthetic image with noise and intensity inho-
mogeneity, and three real images with intensity inhomogeneity and blurred interferents [41],
the initial contours were yellow circles overlaid on each test image. The final segmentation
results are presented in the second row. It shows that the LKF model can segment objectives
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Fig. 2 Segmentation of five medical images using the LKF model: (1st column) test images with initial
contours, (2nd–4th columns) evolution of the contours, and (5th column) final segmentation results

successfully in both synthetic images and real images with severe intensity inhomogeneity
or heavy noise by driving the contours accurately to the boundaries.

4.3 Comparative Evaluation

In the experiments, we gave the comparison of the LKF model with six famous methods
to demonstrate the performance improvement of our model, including the CV model [23],
KM model [4], LBF model [25], LIF model [33], LGDF model [7], LSACM model [34].
In Fig. 4, the same initial contours were used by all the models, and overlay on each text
images with yellow circles in the first row. From the second to the eighth rows were the
results of the seven methods tested on six images. In the first column, from left to right, the
first image is a real blood vessel with some blurred interferents around it. The second image
is a neonatal rat smooth muscle cell image with heavy interferents and weak boundaries. The
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Fig. 3 Segmentation of images with intensity inhomogeneity by using the LKF model. The first row: the
images with initial contours. The second row: final segmentation results

last four images were selected from the Berkeley segmentation dataset 500 (BSDS500), the
difficulty to segment these images was that the intensity probability distribution functions
of these images present multimodality. In each model, we set λ1 � λ2 � 1.0, �t � 0.1,
ν � 0.001 × 255 × 255 in CV model, set �t � 0.0001 in KM model, set λ1 � λ2 � 1.0,
σ � 3.0, �t � 0.1, μ � 1.0, ν � 0.001 × 255 × 255 in LBF model, set �t � 0.1 in LIF
model, set λ1 � 1.0, λ2 � 1.05, σ � 3.0, �t � 0.1, μ � 1.0, ν � 0.002 × 255 × 255 in
LGDF model, and set �t � 0.1 in the LSACM model. The final segmentation results of the
CV, KM, LBF, LIF, LGDF, LSACM and LKF were displayed from the second to the eighth
rows of the Fig. 4, it shows that our model obtains the most satisfactory segmentation results
among these models. Because of only using intensity means in the global region or local
region, the CV, LBF and LIF model can hardly distinguish complex texture structures, these
models can’t detect the real boundaries of the objects. For the KM model, it almost fails to
detect boundaries of the objects when dealing with these intensity inhomogeneity images,
it’s hard to accurately represent the category information of the global region of the images.
Both the LGDF and LSACM model own better distinguishability to tackle the information
of the image compared with the CV, LBF and LIF models, while they still fail to segment
the boundaries with abundant textures. By contrast, the LKF model can successfully extract
more true boundaries in all these images.

In order to quantitative analysis of the segmentation results, we used the Berkeley seg-
mentation dataset 500 (BSDS500) and Microsoft GrabCut database [42] to evaluate the
segmentation experiments. We first focus on the Berkeley data set and randomly selected 50
images from the BSDS500 which consists of a set of natural images and their ground truth
segmentation maps generated by multiple individuals [43]. The segmentation results can be
assessed quantitatively and objectively by using the Probabilistic Rand Index (PRI). When
K ground truths Sg � {S1, S2, . . . , SK } are available, the PRI of a segmentation result Ss
which is calculated as follows [44]:

PRI(Ss, Sg) � 2

N (N − 1)

∑
i, j
i< j

[
ci j pi j + (1 − ci j )(1 − pi j )

]
(35)
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Fig. 4 Comparisons of CV model, KM model, LBF model, LIF model, LGDF model, LSACM model, and
our method for segmenting texture images. The first row: original images with initial contours. The second to
the eighth rows: final segmentation results of the CVmodel, KMmodel, LBF model, LIF model, LGDmodel,
LSACM model, and LKF model

where ci j � 1 if pixels i and j belong to the same cluster and otherwise ci j � 0, and pi j is
the ground truth probability of pixels i and j belonging to the same cluster. The coefficient
pi j can be computed as the mean pixel pair relationship among all the ground truth images,
which implies a binary value true indicating whether the pixel pair belonging to the same
cluster or not [45]. The PRI takes a value between 0 and 1, with a higher value representing
a more accurate segmentation result. In our experiments, we compared the LKF model with
the CV, KM, LBF, LIF, LGDF, LSACM. The segmentation results of all the models obtained
on a set of real-world images were compared quantitatively by the PRI shown in Fig. 5. It
can be clearly seen that the proposed model achieves the highest PRI values in most images
and substantially outperforms other models on average.

Moreover, the obtained segmentation results were also quantitatively assessed by using
the well-known F-measure [46] which is mainly used in the boundary-based segmentation
evaluation. Specifically, a precision-recall framework is introduced for computing the F-
measure as follows:
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Fig. 5 PRI values of segmentation results in 50 Berkeley color images

Fig. 6 F-measure values of segmentation results on 50 Berkeley color images

F � PR

γ R + (1 − γ )P
(36)

Precision P is the fraction of detections that are true positives rather than false positives,
while recall R is the fraction of true positives that are detected rather than missed [47] and
γ is a relative cost between P and R, and was set to 0.5 in our experiments. The value of the
F-measure ranges from 0 to 1, with a higher value representing a more accurate segmentation
result. The F-measures of the segmentation results obtained by applying seven algorithms to
segment 50 Berkeley color images were depicted in Fig. 6. It also demonstrates that the LKF
outperforms the other models in most of the test images.

Then, we tested thesemodels on theMicrosoft GrabCut database to evaluate segmentation
quality. The error rate is used as an accuratemeasurement of the segmentation results,which is
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Fig. 7 The error rates for all the images in the Microsoft GrabCut database

defined as the ratio of the number of wrongly labeled pixels to the total number of unlabeled
pixels [42]. Figure 7 illustrates the error rates of various methods for all the images in
the Microsoft GrabCut database. Comparing the proposed method with other methods, we
can see that our method obtains the lowest error rate in most cases. Figure 8 shows some
segmentation examples of various methods in the Microsoft GrabCut database. Our method
effectively improves the segmentation quality and outperforms the other methods.

4.4 Initialization Sensitivity of the LKF Model

The LKF model has a greater sensitivity to initialization than global region-based methods
because the LKF model calculates local intensity inside and outside the active contour like
other local active contours. Figure 9 shows segmentation results in a larger array of initial
contours on a test image. The results (a)–(d) in Fig. 9 demonstrated that a quality segmenta-
tion when you can start the contour in almost the right place, including the number of pixels
belonging to the object region is larger than that of the background region. Three initial-
izations, shown in (e)-(g), resulted in an incorrect segmentation boundary of the foreground
since the initial contours were far away from the object region. The remaining five initial-
izations, shown in (h)-(l), resulted in an inaccurate segmentation since the initial contours
contain very little information about the object. In conclusion, the initial contour needs to be
placed on a region that is relatively close to the foreground, containing enough information
about the foreground to generate satisfying results.

4.5 Parameter Setting

The proposed LKF model has five parameters to be set manually, including the standard
deviation of Gaussian kernel σ , the time step�t , the constant∈ to approximate the Heaviside
function, and two weighting constants μ and ν for the signed distance function P(φ) and the
length of level set function L(φ), respectively.

In general, using larger time step can speed up the level set evolution, but may cause a
border demarcation error if the time step is too large. Therefore, it is a tradeoff between
a larger time step and boundary accuracy. Unfortunately, as far as we know, the choice of
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Fig. 8 Segmentation examples of CV model, KM model, LBF model, LIF model, LGDF model, LSACM
model, and our method in theMicrosoft GrabCut database. The first row: original images with initial contours.
The second to the eighth rows: final segmentation results of the CVmodel, KMmodel, LBFmodel, LIFmodel,
LGD model, LSACM model, and LKF model

time step for the level set evolution is still mainly based on the experimental results. So, as
an improved LBF model, we used the same time step �t � 0.1 for all the experiments in
our model. As in CV and LBF model, the constant ∈� 1 has been widely used for good
approximate of Heaviside function. We also fixed ∈� 1 in our experiments.

To evaluate the impact of parameter settings forσ ,μ and ν, the performanceswith different
parameters are evaluated on the Microsoft Grabcut database. The scale size of σ effects the
range of exploiting image information. Figure 10a shows the quantitative evaluation of the
average error rates (%) for σ ∈ [1, 20], we fixed μ � 1, ν � 0.001 × 255 × 255 in our
experiments. It can be seen that the average error rate of the proposed method decreases with
the increase of σ when σ ≤ 4 and gradually increases when σ > 4.

To eliminate the need of the re-initialization andmaintain the signed distance in traditional
level set methods, an internal energy term

∫
�

1
2 |∇φ − 1|2 dx has been introduced to penalize

the deviation of the level set function from a signed distance function. To quantitatively
evaluate the impact of μ, we fixed σ � 3, ν � 0.001 × 255 × 255. Figure 10b indicates
the average error rate of different μ for μ ∈ [0, 2]. It illustrates that the average error rate
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Fig. 9 Initialization sensitivity analysis of LKF model. a–l Initialization contours on the left side and final
segmentation results on the right side, respectively

of the proposed model slightly decreases with the increase of μ when μ ≤ 1 and gradually
increases when μ > 1, in particular, the average error rate dramatically increases when
μ ≥ 1.6. Therefore, μ � 1 is widely used in variational level set methods.

The parameter ν in the internal
∫
�

δ (φ) |∇φ| dx term controls the smoothness of the zero
level set curve. To quantitatively evaluate the impact of ν, we fixed σ � 3,μ � 1. Figure 10c
shows the average error rate of different ν for ν ∈ [0, 100]. It shows that the values of average
error rate have been slightly affected by the parameter ν, the minimum average error rate
is about 5.5%, and the maximum value is about 6.25%. The larger the ν is, the smoother
the segmentation boundaries are. In contrast, if we choose ν too small, the segmentation
boundaries may not be smooth enough and the corresponding segmentation results may not
be robust against noise. In terms of our experiments, a quality segmentation result may obtain
if we choose a value of ν from a range [40, 70].

4.6 The Evolution Contours of the GLKF Model

Since the nonconvex property of the LKFmodel, it inevitably needs the initialization contour
relatively close to the segmentation object. To address this problem, we proposed a modified
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Fig. 10 The average error rates over all 50 images on the MSRC data set with different values of a σ , b μ and
c ν, respectively

Fig. 11 Segmentation results of the GLKF model. The first row shows the evolution of the contours. The
second row displays the results of u in algorithm 2

LKF model called GLKF model was proposed. In order to get a better understanding, the
same test image (the image in Fig. 9) is used. Figure 11 shows the segmentation results of
the GLKF model, the first row displays the evolution of the contours and the second row
shows the corresponding results of u in the formulation (27). From Fig. 11, we can see that
the GLKF model can overcome contour initialization problem beautifully.
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Table 2 CPU time for the LKF model and the GLKF model to the images shown in Fig. 1 in the same order

Image Image 1 Image 2 Image 3 Image 4 Image 5

Size 128×125 65×65 100×87 109×119 150×150

LKF CPU
time(s)

7.2 3.1 5.0 5.6 12.7

GLKF CPU
time(s)

0.09 0.02 0.05 0.08 0.34

4.7 Computational Complexity Analysis

Theoretically, the proposed LKF model has computational complexity O(M0M1), where
M0 and M1 are the size of the image and kernel, respectively. In algorithm 2, the main
numerical computation is the iterationof k and iG , so theGLKFmodel has the time complexity
O(N0N1), where N0 and N1 are the maxima of k and iG , respectively. In fact, N0 and N1 are
usually much smaller than the size of the image M0. As a result, the GLKF model is much
faster than the LKFmodel. Table 2 shows the run-time performance on test images presented
in Fig. 2. It is worth mentioning that we can further reduce the complexity of our method
by using the generalized power method of sparse principal component analysis (GP-SPCA)
[48]. be mainly focused on it in the future work, which would be one of our focuses in the
future.

5 Conclusions

In this paper, we proposed a novel active contour model which is called LKF model. The
experiments on several real and synthetic images have demonstrated the efficiency of our
method on medical images, images with intensity inhomogeneity, nature images. In addition,
the superiority of it over the traditional region and local region-based methods has been
shown through the comparisons with the representative CV model, KM model, LBF model,
LIF model, LGDF model and LSACM model.

However, the LKF model is sensitive to the initialization of contours. To overcome this
problem, we further modified the LKF model and proposed the GLKF model. It is a convex
formulation, so it can avoid the initialization problem, meanwhile, a fast algorithm ADMM
is used to solve this model. In the future, we will focus on a new active contour model for
image segmentation and introducing GP-SPCA or other parallel optimization methods to
further accelerate the computation.
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