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Abstract In this paper, the pinning synchronization of coupled memristive recurrent neural
networks (MNNs) with mixed time-varying delays and perturbations is investigated. Pre-
cisely, the considered coupled MNNs include the non-delay, discrete time-varying delays,
distributed time delays, impulsive perturbations and stochastic perturbations. Comparing
with the existing results, the new and simple feedback controller and adaptive feedback con-
troller are designed to achieve exponential synchronization with pinning schemes. Based
on the suitable Lyapunov functional and the definition of pinning control, with the aid of
inequality techniques and differential inclusions theory, some effective and novel sufficient
conditions are obtained to guarantee the synchronization of our proposed model. Finally,
numerical examples are given to illustrate the effectiveness and reasonable of our theoretical
results.
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1 Introduction

Memristor as an ideal electronic circuit was predicted by Chua [1]. In 2008, HP researchers
had produced the memristor prototype for electronic circuits in their research contributions
[2]. Since then, on account of the memristor possesses performances and memory more
like biological synapses than the resistor [3], it has been substituted for resistor to construct
brain-like computer memory [4–8].

Recently, researchers present that we can obtain a new class of neural networks (NNs)
called memristive neural networks (MNNs) as long as replace the resistor to the memristor.
Synthesizes each kind of memoristor [9,10], MNNs will be more rational in the field of
emulating the human brain than the traditional NNs. Thus, it will be more meaningful to
study the various dynamical behavior of MNNs.

It is well known, synchronization has been an active topic in the area of nonlinear science
since Carroll and Pecora introduced chaos synchronization [11]. Recently, many researchers
paid their close attention to the study of synchronization ofMNNs. Up to now, there are many
kinds of synchronization ofMNNs such as lag synchronization [12,13], anti-synchronization
[14–17], finite time synchronization [18,19], exponential synchronization [20–25], and so
on. In [12], authors dealt with the exponential lag synchronization of a class of switched NNs
with time-varying delays via neural activation function and it can be applied to the image
encryption. Zhang et al. [20] investigated synchronization of an array of linearly coupled
MNNs with impulses and time-varying delays. In [24], adaptive synchronization of a class
of MNNs with time-varying delays was studied by designing a general adaptive controller.

However, the above mentioned synchronization demonstrate that the trajectories of the
slave system can catch the trajectories of the master system via all nodes be controlled. In
practice, it is extremely important that a small fraction of nodes can realize all nodes synchro-
nized according to the coupling configuration. For the past few years, many researchers have
shown their more interest to the investigation of pinning synchronization of MNNs and many
better results have been exhibited in the literatures [26,27]. Wang et al. [26] studied a class
of coupled MNNs of neutral type with mixed time varying delays via randomly occurring
control in order to achieve anti-synchronization. In [27], authors presented the theoretical
results on the master-slave synchronization of two MNNs in the presence adaptive noise.
From the above discussions, it is necessary and significant to develop some practical and
economical systems for coupled MNNs.

As we all known, during the process of electronic implementation of NNs, distribution
between neurons simulated by hardware, spatial and temporal characteristics of signal trans-
mission, various time-varying delays inevitably appear in signal communication [28–30].
Thus, various delays are one of important factors that result in oscillation or instability of
the MNNs [31–34]. So the synchronization problem of coupled NNs with time-delays has
received much attention [35–37]. Nevertheless, in these results, the type of time delay is rel-
atively simple. In [35], authors studied the problem of synchronization control for directed
networks with node balance. In [36], authors investigated the lag synchronization between
two coupled NNs via pinning control. In [37], according to the state-dependent Riccati equa-
tion (SDRE) technique, authors proposed a suboptimal pinning control scheme in order to
synchronize linearly coupled complex networks. To the best of our knowledge, in these excit-
ing papers, there are few researches with regard to the pinning synchronization problem of
coupledMNNswith complicated time-varying delays. Thus, it is more applicable to consider
the exponential synchronization to the MNNs with mixed time-varying delays via pinning
schemes.
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Another critical element is perturbation. Impulsive phenomena widely exists in our real
world system, a variety of random uncertainties (such as switching phenomenons, frequency
changes, etc.) make the instantaneous perturbations on the state of NNs, which lead to the
state instantaneous jump in a moment [38–43]. In addition, the stochastic perturbations also
should be taken into consideration. The actual communication between subsystems of cou-
pledMNNs is inevitably disturbed by the stochastic perturbations from various uncertainties,
which probably causes package loss or influences the signal transmission [44–46]. It should be
mentioned, the pinning synchronization results for coupled MNNs with mixed time-varying
delays and two kinds of perturbations has not been studied yet, this motivates our present
study. The main contributions of this paper are summarized as follows:

(1) We focus on the study of coupledMNNsmodels with stochastic perturbations, impulsive
perturbations and various time-varying delays, which including non-delayed, discrete
time-varying delays and distributed time delays. Many other coupled MNNs models
with delays are the special cases of our considered model.

(2) We first attempt to address the pinning synchronization control problem for a class of our
proposedMNNsmodels.By employingLyapunov functional and the definition of pinning
schemes, exponential synchronization of the considered coupled MNNs is achieved via
pinning control, which including the linear and adaptive feedback pinning schemes. We
consider and analysis the complex characters of the mixed time-varying delays rather
than treat them as constants. Some main results are derived by utilizing the stochastic
analysis theory, inequality techniques and differential inclusions theory.

(3) Finally, we provide the numerical examples to illustrated the effectiveness and rationality
of the proposed conclusions.

The rest of this paper is organized as follows. Some definitions, lemmas and assumptions
about the proposedmodel are presented in Sect. 2. In Sect. 3 derives some sufficient conditions
of pinning synchronization based our considered coupled MNNs. Numerical simulations
are demonstrated to verify the effectiveness of the obtained results in Sect. 4. Finally, the
conclusion is given in Sect. 5.

2 Preliminaries

2.1 Model Description

Based on the physical properties of memristor, the mathematical model of coupled MNNs
with mixed time-varying delays is introduced as follows

dxiq(t)

dt
= − dq xiq(t) +

n∑

l=1

aql(xiq(t)) fl(xil(t))

+
n∑

l=1

cql(xiq(t))
∫ t

−∞
kql(θ) fl(xil(t − θ))dθ

+
n∑

l=1

bql(xiq(t)) fl(xil(t − τql(t))) + α

N∑

j=1

ωi jΓ x jq(t) + Ii (t), (1)

where xi (t) = [xi1(t), . . . , xin(t)]T is the state variable of the i th neural at time t for q, l =
1, 2, . . . , n. W = (ωi j )N×N (i, j = 1, 2, . . . , N ) represents the coupling matrix of MNNs.
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If there is an edge from MNNs j to i , then ωi j = 1, otherwise, ωi j = 0(i �= j). And
ωi i = −∑N

j=1, j �=i ωi j , α represents the coupling strength.
The positive definite diagonal matrix Γ stands for the inner coupling between two con-

nected MNNs. aql(·), bql(·) and cql(·) denote the inner connection matrix of non-delayed,
discrete time-varying delayed and distributively time-delayed, respectively. They can be
described by the following functions

aql(xiq(t)) =
{

âql , |xiq(t)| ≤ Φi ,

ǎql , |xiq(t)| > Φi ,

bql(xiq(t)) =
{

b̂ql , |xiq(t)| ≤ Φi ,

b̌ql , |xiq(t)| > Φi ,

cql(xiq(t)) =
{

ĉql , |xiq(t)| ≤ Φi ,

čql , |xiq(t)| > Φi ,

where the switching jump Φi > 0, for i = 1, 2, · · · , N . Then âql , ǎql , b̂ql , b̌ql , ĉql , čql are
known constants relating to memristances.

Remark 1 According to the discussions above, the inner connection matrixes aql(xiq(t)),
bql(xiq(t)) and cql(xiq(t)) of system (1) with the change of the memristance . Therefore, the
coupled MNNs are considered as the time-varying systems with state-dependent switching.
When aql(xiq(t)), bql(xiq(t)) and cql(xiq(t)) are all constants, system (1) becomes a general
class of recurrent coupled NNs.

The delay kernel kql(θ) : [0,+∞) → [0,+∞) is bounded, piecewise and satisfies∫ +∞
0 kql(θ)eμθ dθ = 1 ,

∫ +∞
0 kql(θ)eμθ dθ < +∞ , where μ is known constant [51]. Self-

feedback connection matrix D = diag(d1, d2, . . . , dn) is a positive definite matrix. fl(xil(t))
is a bounded feedback function without time delay. In addition, fl(xil(t − τql(t))) and∫ t
−∞ kql(θ) fl(xil(t − θ))dθ are bounded feedback functions with discrete and distributed
time delays.

According to the solution of Fillppov’s and the theory of differential inclusion to this
system. Let aql = max{âql , ǎql}, aql = min{âql , ǎql}, bql = max{b̂ql , b̌ql}, bql =
min{b̂ql , b̌ql}, cql = max{ĉql , čql}, cql = min{ĉql , čql}. co[u, v] indicates closure of the
convex hull generated by real numbers u and v. In view of system (1), we define the follow-
ing set-valued maps

co(aql(xiq(t))) =

⎧
⎪⎨

⎪⎩

âql , |xiq(t)| < Φi ,

co{âql , ǎql}, |xiq(t)| = Φi ,

ǎql , |xiq(t)| > Φi ,

co(bql(xiq(t))) =

⎧
⎪⎨

⎪⎩

b̂ql , |xiq(t)| < Φi ,

co{b̂ql , b̌ql}, |xiq(t)| = Φi ,

b̌ql , |xiq(t)| > Φi ,

co(cql(xiq(t))) =

⎧
⎪⎨

⎪⎩

ĉql , |xiq(t)| < Φi ,

co{ĉql , čql}, |xiq(t)| = Φi ,

čql , |xiq(t)| > Φi .
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Clearly, co{âql , ǎql} = [aql , aql ], co{b̂ql , b̌ql} = [bql , bql ] and co{ĉql , čql} = [cql , cql ],
for i, j = 1, 2, . . . , N , q, l = 1, 2, . . . , n. By the theory of differential inclusions, the
system (1) can be written as follows

dxiq(t)

dt
∈ − dq xiq(t) +

n∑

l=1

co(aql(xiq(t))) fl(xil(t))

+
n∑

l=1

co(bql(xiq(t))) fl(xil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ) fl(xil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ x jq(t) + Ii (t), (2)

or equivalently, for i, j = 1, 2, . . . , N , q, l = 1, 2, . . . , n, there exist ăql(xiq(t)) ∈
co(aql(xiq(t))), b̆ql(xiq(t)) ∈ co(bql(xiq(t))), c̆ql(xiq(t)) ∈ co(cql(xiq(t))), by utilizing
the the theories of set-valued maps and differential inclusions above, the system (2) can be
regarded as a state-dependent switching system shown by

dxiq(t)

dt
= − dq xiq(t) +

n∑

l=1

ăql(xiq(t)) fl(xil(t))

+
n∑

l=1

b̆ql(xiq(t)) fl(xil(t − τql(t))) + α

N∑

j=1

ωi jΓ x jq(t)

+
n∑

l=1

c̆ql(xiq(t))
∫ +∞

0
kql(θ) fl(xil(t − θ))dθ + Ii (t). (3)

Thus, the coupled MNNs with mixed time-varying delays and impulsive perturbations
can be written as follows

dxiq(t)

dt
∈ − dq xiq(t) +

n∑

l=1

co(aql(xiq(t))) fl(xil(t))

+
n∑

l=1

co(bql(xiq(t))) fl(xil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ) fl(xil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ x jq(t) + Ii (t), t �= tk,

Δxiq(tk) = xiq(t+k ) − xiq(t−k ) = −rik xiq(tk), t = tk,

xiq(t) = φiq(t), t ∈ (−∞, 0], (4)

where initial values x(θ) = φ(θ), φ(θ) ∈ C([−τ, 0], Rn) for i, j = 1, 2, . . . , N , q, l =
1, 2, . . . , n, k = 1, 2, . . . ,. φiq(t) is the initial value of xiq(t), rik is the impulsive gain
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constant. Actually, the radio of state variable ẋiq(t) at t = tk is rik , so we choose 0 < rik < 1.
xiq(t−k ) = limt→t−k

xiq(tk) = xiq(tk), xiq(t+k ) = limt→t+k
xiq(tk).

Similarly, the coupledMNNswithmixed time-varying delays and stochastic perturbations
can be written as follows

dxiq(t) ∈
{

− dq xiq(t) +
n∑

l=1

co(aql(xiq(t))) fl(xil(t))

+
n∑

l=1

co(bql(xiq(t))) fl(xil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ) fl(xil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ x jq(t) + Ii (t)

}
dt + σi (t, xil(t), xil(t − τql(t)))dωi (t). (5)

Remark 2 The solution siq(t) of an isolated node satisfies [25]:

ṡiq(t) = f (sil(t), t),

ṡiq(t − τql(t)) = f (sil(t − τql(t)), t − τql(t)),

ṡiq(t − θ) = f (sil(t − θ), t − θ), (6)

where siq(t) may be an equilibrium point or an orbit of a chaotic attractor. This paper aims
to find some appropriate systems such that the solutions of networks (4) and (5) synchronize
with the solution of system (6), in the sense that for i = 1, . . . , N ,q = 1, . . . , n.

Definition 1 (see [46]) Suppose E ⊂ �n . Then x 	→ F(x) is called as a set-valued map
defined on E , if for each point x of E , there exists a corresponding nonempty set F(x) ⊂ �n .
A set-valued map F with nonempty values is said to be upper-semicontinuous at x0εE , if for
any open set N containing F(x0), there exits a neighborhood M of x0 such that F(M) ⊂ N .
Then F(x) is said to have a closed image if for each xεE , F(x) is closed.

Definition 2 (see [9]) The equilibriumpoint x∗ or an orbit of a chaotic attractor of system (5),
which is said to be globally exponentially stable, for any t ≥ 0 and initial values x(θ) = φ(θ),
φ(θ) ∈ C([−τ, 0], Rn). Such that ‖ x(t;φ) − x∗ ‖≤ β ‖ φ − x∗ ‖ e−αt , where constants
α > 0 and β > 0 represent the decay coefficient and decay rate.

Assumption 1 The activation function fl(·) is globally Lipschitz continuous in R, i.e there
exist constant zl > 0 for x, y ∈ R, such that

| fl(x) − fl(y)| ≤ zl |x − y|, l = 1, 2, . . . , n.

Assumption 2 The time-varying delay τql(t) in this paper is a differential function, where
0 < τql(t) < τql , for all t ≥ 0, and q, l ∈ 1, 2, . . . , n.

Assumption 3 The activation function fl(·) is bounded, i.e. there exists a constant ml > 0,
such that | fl(x)| ≤ ml , ∀x ∈ R, l = 1, 2, . . . , n.

Lemma 1 There exist constants R1 � 0 and R2 � 0, such that

Trace[σT(t, x(t), x(t − ξ(t)))σ (t, x(t), x(t − ξ(t)))] ≤ xT(t)R1x(t)

+ xT(t − ξ(t))R2x(t − ξ(t)).
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For the stochastic system [47]:

dy(t) = g(t, y(t))dt + σ(t, y(t))dω(t), (7)

where ω(t) is the Brownian motion and it is truely Eω(t) = 0. L is the operator designed
as following:

L V (t, y) = Vt (t, y) + Vy g(t, y)

+ 1

2
Trace[σT(t, y(t))Vyyσ(t, y(t))], (8)

where

Vt (t, y) = ∂Vt (t, y)

∂t
,

Vyy(t, y) =
(∂2Vt (t, y)

∂yi∂y j

)

Vy(t, y) =
(∂Vt (t, y)

∂y1
,
∂Vt (t, y)

∂y2
, · · · ,

∂Vt (t, y)

∂yn

)T
.

Let eiq(t) = xiq(t) − siq(t) denotes the error variable. From the Definitions 1–2, theoriy
of set-valued maps and Assumption 1, thus the error dynamics of the systems (4) and (5) can
be expressed as follows

deiq(t)

dt
∈ − dqeiq(t) +

n∑

l=1

co(aql(xiq(t)))Fl(eil(t))

+
n∑

l=1

co(bql(xiq(t)))Fl(eil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t) + Uiq(t), t �= tk,

Δeiq(tk) = eiq(t+k ) − eiq(t−k ) = −rikeiq(tk), t = tk,

eiq(t) = ψiq(t) t ∈ (−∞, 0], (9)

and

deiq(t) ∈
{

− dqeiq(t) +
n∑

l=1

co(aql(xiq(t)))Fl(eil(t))

+
n∑

l=1

co(bql(xiq(t)))Fl(eil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t) + Uiq(t)

}
dt
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+ σ(t, eil(t), eil(t − τql(t)))dωi (t), (10)

or equivalently, there exist ăql(xiq(t)) ∈ co(aql(xiq(t))), b̆ql(xiq(t)) ∈ co(bql(xiq(t))),
c̆ql(xiq(t)) ∈ co(cql(xiq(t))), with the similar process of system (2), we get the following
equalities

deiq(t)

dt
= − dq eiq(t) +

n∑

l=1

ăql(xiq(t))Fl(eil(t))

+
n∑

l=1

b̆ql(xiq(t))Fl(eil(t − τql(t)))

+
n∑

l=1

c̆ql(xiq(t))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t) + Uiq(t), t �= tk,

Δeiq(tk) = eiq(t+k ) − eiq(t−k ) = −rikeiq(tk), t = tk,

eiq(t) = ψiq(t) t ∈ (−∞, 0], (11)

and

deiq(t) =
{

− dqeiq(t) +
n∑

l=1

ăql(xiq(t))Fl(eil(t))

+
n∑

l=1

b̆ql(xiq(t))Fl(eil(t − τql(t)))

+
n∑

l=1

c̆ql(xiq(t))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t) + Uiq(t)

}
dt

+ σ(t, eil(t), eil(t − τql(t)))dωi (t), (12)

where ψiq(t) = φiq(t) − siq(t) is the initial conditions, Fl(ei j (t)) = fl(xil(t)) − fl(sil(t)),
Fl(ei j (t − τql(t))) = fl(xil(t − τql(t))− fl(sil(t − τql(t)), Fl(ei j (t − θ)) = fl(xil(t − θ))−
fl(sil(t −θ). rik is the radio of the error state variable ėiq(t) at t = tk ,Uiq(t) is the controller
to be designed.

Remark 3 Comparewith the exciting literatures for researching the exceptional synchroniza-
tion of coupled MNNs [35–37], the proposed system contains not only non-delayed, discrete
time-varying delay τql(t) but also distributed delay. Therefore, the obtained results are more
reasonable and practical.

3 Main Results

In this section, we obtain some sufficient conditions to achieve the exceptional synchro-
nization of the coupled MNNs with mixed time-varying delays, impulsive perturbations and
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stochastic perturbations, respectively. Then two kinds of feedback and adaptive feedback
controller with pinning schemes are designed.

We investigate pinning synchronization of the impulsive coupledMNNs with mixed time-
varying delays under the feedback controller Uiq . Suppose there exist m(1 ≤ m ≤ N ) nodes
of system (4) are controlled. Then the appropriate feedback control input Uiq with pinning
schemes is designed as

Uiq = −pi eiq(t), i = 1, 2, . . . , m, q = i = 1, 2, . . . , n,

Uiq = 0, i = m + 1 . . . , N , (13)

where the synchronization error eiq(t) is defined as eiq(t) = xiq(t)−siq(t). And pi > 0(i =
1, 2, . . . , m) is feedback gains.

Notations Before starting the main results, some annotations should be given. Let
ãql = max{|âql |, |ǎql |}, b̃ql = max{|b̂ql |, |b̌ql |} and c̃ql = max{|ĉql |, |čql |}, for i, j =
1, 2, . . . , N , q, l = 1, 2, . . . , n, k = 1, 2, . . ..

According to (9), we get the following synchronization errors of system (5). When t �= tk ,
one finds that when i = 1, 2, . . . , m

deiq(t)

dt
∈ − dq eiq(t) +

n∑

l=1

co(aql(xiq(t)))Fl(eil(t))

+
n∑

l=1

co(bql(xiq(t)))Fl(eil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t) −
m∑

i=1

pi eiq(t). (14)

When i = m + 1 . . . , N .

deiq(t)

dt
∈ −dqeiq(t) +

n∑

l=1

co(aql(xiq(t)))Fl(eil(t))

+
n∑

l=1

co(bql(xiq(t)))Fl(eil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t). (15)

When t = tk ,
Δeiq(tk) = eiq(t+k ) − eiq(t−k ) = −rikeiq(tk). (16)
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Theorem 1 Suppose that Assumption 1 holds and if there exists a constant ζ , such that

Hi (ζ ) =
N∑

i=1

n∑

q=1

[
dq − ζ −

n∑

l=1

zl |ãql | −
n∑

l=1

zl |b̃ql |eζ τql

−
n∑

l=1

|c̃ql |
∫ +∞

0
zlkql(θ)eζθ dθ + α

N∑

j=1

Γ |ωi j |
]

+
m∑

i=1

n∑

q=1

pi

> 0. (17)

Then, the error system (11) will be converged to zero by means of pinning schemes.

Proof Construct the following Lyapunov functional

V (t) =
N∑

i=1

n∑

q=1

eλt |eiq(t)|. (18)

Then we have

V̇ (t) =
N∑

i=1

n∑

q=1

λeλt |eiq(t)| +
N∑

i=1

n∑

q=1

eλt |ėiq(t)|. (19)

According to Eq. (14), we obtain the following inequality among Eq. (19)

N∑

i=1

n∑

q=1

eλt |ėiq(t)| =
N∑

i=1

n∑

q=1

sgn(eiq(t))ėiq(t)

≤ sgn(ei (t))
n∑

q=1

{ N∑

i=1

[
− dqeiq(t) +

n∑

l=1

ãql Fl(eil(t))

+
n∑

l=1

b̃ql Fl(eil(t − τql(t))) +
n∑

l=1

c̃ql

∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t)
]

−
m∑

i=1

pi eiq(t)

}
. (20)

Under Assumptions 1–2, we obtain that

Fl(eil(t)) ≤ zleil(t)

Fl(eil(t − τql(t))) ≤ zleil(t − τql(t))

Fl(eil(t − θ)) ≤ zleil(t − θ) (21)

Combining with Eq. (21), we calculate the upper right derivation of the error system (11)

N∑

i=1

n∑

q=1

|ėiq(t)| ≤ sgn(eiq(t))
N∑

i=1

n∑

q=1

[
− dqeiq(t) +

n∑

l=1

zl ãqleil(t)

+
n∑

l=1

zl b̃qleil(t − τql(t)) +
n∑

l=1

c̃ql

∫ +∞

0
zlkql(θ)eil(t − θ)dθ

+ α

N∑

j=1

ωi jΓ e jq(t)
]

− sgn(eiq(t))
m∑

i=1

n∑

q=1

pi eiq(t). (22)
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Then we deduce
N∑

i=1

n∑

q=1

|ėiq(t)| ≤
N∑

i=1

n∑

q=1

[
− dq |eiq(t)| +

n∑

l=1

zl |ãql ||eil(t)|

+
n∑

l=1

zl |b̃ql ||eil(t − τql(t))|

+
n∑

l=1

|c̃ql |
∫ +∞

0
zlkql(θ)|eil(t − θ)|dθ

+ α

N∑

j=1

|ωi j |Γ |e jq(t)|
]

−
m∑

i=1

n∑

q=1

pi |eiq(t)|. (23)

Then
N∑

i=1

n∑

q=1

eλt |ėiq(t)| ≤
N∑

i=1

n∑

q=1

[
− dqeλt |eiq(t)| +

n∑

l=1

zl |ãql |eλt |eil(t)|

+
n∑

l=1

zl |b̃ql |eλt−τql |eil(t − τql)|eλτql

+
n∑

l=1

|c̃ql |
∫ +∞

0
zlkqle

λ(t−θ)(θ)|eil(t − θ)|eλθ dθ

+ α

N∑

j=1

|ωi j |Γ eλt |e jq(t)|
]

−
m∑

i=1

n∑

q=1

pi e
λt |eiq(t)|. (24)

Consider viq(t) = eλt |eiq(t)| ([9]). Let δ > 1 and P = max1≤i≤N supθ∈(−∞,0] |φiq(θ) −
siq(t)| > 0. Therefore, viq(t) < Pδ for t ∈ [0,+∞). Hence

N∑

i=1

n∑

q=1

eλt |ėiq(t)| ≤
N∑

i=1

n∑

q=1

[
|ãql | |zl |

n∑

l=1

V (t) + dq V (t)

+ |b̃ql ||zl |
n∑

l=1

eλ(t−τql )V (t − τql)

+ |c̃ql |
n∑

l=1

∫ +∞

0
|zl |kql(θ)V (t − θ)eλθ dθ

+ α|ωi j |
N∑

j=1

Γ V (t)
]

− pi

m∑

i=1

n∑

q=1

V (t). (25)

From all above the calculations, we conclude that

V̇ (t) =
N∑

i=1

n∑

q=1

λeλt |ei (t)| +
N∑

i=1

n∑

q=1

eλt |ėiq(t)|

≤
{ N∑

i=1

n∑

q=1

[
− dq + λ +

n∑

l=1

|ãql ||zl | +
n∑

l=1

|b̃ql ||zl |eλ(t−τql )
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+α

N∑

j=1

Γ |ωi j | + |c̃ql |
n∑

l=1

∫ +∞

0
|zl |kql(θ)eλθ dθ

]

−
m∑

i=1

n∑

q=1

pi

}
Pδ

< 0. (26)

We get viq(t) < Pδ which leads to

|xiq(t) − siq(t)| ≤ eλtmax1≤i≤N

{
sup

θ∈(−∞,0] |φiq(θ) − siq(t)|
}
,

for any t > 0.
Therefore, xiq(t) converges to siq(t).
When t = tk , one finds that

V (t+k ) =
N∑

i=1

n∑

q=1

eλt+k |eiq(t+k )| =
N∑

i=1

n∑

q=1

eλtk
[
(1 − rik)|eiq(tk)|

]

≤
N∑

i=1

n∑

q=1

eλtk |eiq(tk)| = V (tk). (27)

We can select ζ to satisfy

Hi (ζ ) =
N∑

i=1

n∑

q=1

[
dq − ζ −

n∑

l=1

zl |ãql | −
n∑

l=1

zl |b̃ql |eζ τql

−
n∑

l=1

|c̃ql |
∫ +∞

0
zlkql(θ)eζθ dθ + α

N∑

j=1

Γ |ωi j |
]

+
m∑

i=1

n∑

q=1

pi

> 0. (28)

Then V̇ (t) ≤ 0, The proof is completed. ��
Corollary 1 Under Assumptions 1–2, for given constant ζ > 0. If the following inequality
holds, the coupled MNNs without impulsive perturbation will achieve exponential synchro-
nization with pinning rules.

Hi (ζ ) =
N∑

i=1

n∑

q=1

[
dq − ζ −

n∑

l=1

|zl ||ãql | −
n∑

l=1

|zl ||b̃ql |eζ τql

−
n∑

l=1

|c̃ql |
∫ +∞

0
|zl |kql(θ)eζθ dθ + α

N∑

j=1

Γ |ωi j |
]

+
m∑

i=1

n∑

q=1

|pi |

> 0. (29)

Proof Let the error system (11) without impulsive perturbation in Theorem 1. The proof can
be followed, thus it is omitted here. ��
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Remark 4 Usually, the linear feedback controller is indispensable in a synchronization of the
system. We observe that the actual communication between subsystems of coupled MNNs is
inevitably disturbed by the stochastic perturbations from various uncertainties. Thus, using
an appropriate Lyapunovmethod, a simple adaptive controller is designed for the exponential
synchronization of the system (5).

In this subsection, we investigate pinning synchronization of the coupled MNNs with
mixed time-varying delay and stochastic perturbations under the considered adaptive feed-
back controller Uiq(t). Suppose there exist m (1 ≤ m < N ) nodes of system (5) will
be controlled. Then the adaptive feedback controller Uiq with pinning laws is designed as
follows

Uiq(t) = −pi (t)eiq(t),

ṗi (t) = hi e
T
iq(t)eiq(t), i = 1, 2, . . . , m, q = 1, 2, . . . , n,

Uiq(t) = 0, i = m + 1 . . . , N , (30)

where hi is a positive constant.
According to the definition of pinning scheme and the system (10), we get the following

synchronization error system.
When i = 1, 2, . . . , m.

deiq(t) ∈
{

− dqeiq(t) +
n∑

l=1

co(aql(xiq(t)))Fl(eil(t))

+
n∑

l=1

co(bql(xiq(t)))Fl(eil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t) −
m∑

i=1

pi (t)eiq(t)

}
dt

+ σ(t, eil(t), eil(t − τql(t)))dωi (t). (31)

When i = m + 1 . . . N .

deiq(t) ∈
{

− dqeiq(t) +
n∑

l=1

co(aql(xiq(t)))Fl(eil(t))

+
n∑

l=1

co(bql(xiq(t)))Fl(eil(t − τql(t)))

+
n∑

l=1

co(cql(xiq(t)))
∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t)

}
dt

+ σ(t, eil(t), eil(t − τql(t)))dωi (t). (32)
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Theorem 2 Suppose Assumptions 1–2 are satisfied, then the error systems (31) and (32) are
exponentially stable via the adaptive controller (30), if there exists a gain constant ζ , such
that

Hi (ζ ) =
N∑

i=1

n∑

q=1,l=1

[
dq − ζ − ρ1R1 − ρ2R2eζ τql − zl |ãql | − zl |b̃ql |eζ τql

− |c̃ql |
∫ +∞

0
zlkql(θ)eζθ dθ + α

N∑

j=1

Γ |ωi j |
]

+
m∑

i=1

n∑

q=1

L

> 0. (33)

Then, the pinning synchronization of system (5) is achieved.

Proof Construct a Lyapunov functional as follows

V (t) = 1

2
e2λt

N∑

i=1

n∑

q=1

∣∣∣eTiq(t)eiq(t) − (pi (t) + L)2

hi

∣∣∣, (34)

where L is a positive constant to be determined below.
Then, the upper right derivative of V (t) along the trajectories of (5) gives

V̇ (t) =
N∑

i=1

n∑

q=1

λe2λt
∣∣∣eTiq(t)eiq(t) − (pi (t) + L)2

hi

∣∣∣

+
N∑

i=1

n∑

q=1

e2λt sgn(eiq(t))

[
eTiq(t)ėiq(t) − (pi (t) + L)2

hi
ṗi (t)

]
. (35)

After that, the system (35) is decomposed into two parts as follows

V̇ (t) = V̇1(t) + V̇2(t). (36)

Combining systems (35) and (36), we get

V̇1(t) =
N∑

i=1

n∑

q=1

e2λt sgn(eiq(t))

[
eTiq(t)ėiq(t) − (pi (t) + L)2

hi
ṗi (t)

]
, (37)

and

V̇2(t) =
N∑

i=1

n∑

q=1

λe2λt
∣∣∣eTiq(t)eiq(t) − (pi (t) + L)2

hi

∣∣∣. (38)

Integrated the error systems (31) and (32) into account, we get the following equality

V̇1(t) ≤
N∑

i=1

n∑

q=1

e2λt sgn(eiq(t))eTiq(t)

{
− dqeiq(t) +

n∑

l=1

ãql Fl(eil(t))

+
n∑

l=1

b̃ql Fl(eil(t − τql(t))) +
n∑

l=1

c̃ql

∫ +∞

0
kql(θ)Fl(eil(t − θ))dθ

+ α

N∑

j=1

ωi jΓ e jq(t)

}
+

N∑

i=1

n∑

q=1

e2λt sgn(eiq(t))
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×Trace

[
σT(t, xil(t), xil(t − τql(t)))Pσ(t, xil(t), xil(t − τql(t)))

]

−
m∑

i=1

n∑

q=1

e2λt sgn(eiq(t))LeTiq(t)eiq(t). (39)

Taken Eq. (21) and Lemma 1 into consideration, by calculating the upper right derivation
of V1(t) along with the solution of system (6), we obtain

V̇1(t) ≤
N∑

i=1

n∑

q=1

e2λt sgn(eiq(t))eTiq(t)

{
− dqeiq(t) +

n∑

l=1

ãql zleil(t)

+
n∑

l=1

b̃qleil zl((t − τql(t))) +
n∑

l=1

c̃ql

∫ +∞

0
zlkql(θ)eil(t − θ)dθ

+ α

N∑

j=1

ωi jΓ e jq(t)

}
+

N∑

i=1

n∑

q=1

e2λt sgn(eiq(t))

×
[
ρ1eTil(t)R1eil(t) + ρ2eTil(t − τql(t))R1eil(t − τql(t))

]

−
m∑

i=1

n∑

q=1

e2λt sgn(eiq(t))LeTiq(t)eiq(t). (40)

According to the above discussions, we get

V̇1(t) ≤ eλt |eTiq(t)|
{ N∑

i=1

n∑

q=1

[
− dqeλt |eiq(t)| +

n∑

l=1

zl |ãql |eλt |eil(t)|

+
n∑

l=1

zl |b̃ql |eλ(t−τql )|eil((t − τql))|eλτql

+
n∑

l=1

zl |c̃ql |
∫ +∞

0
kql(θ)eλ(t−θ)|eil(t − θ)|eλθ dθ

+ α

N∑

j=1

|ωi j |Γ |e jq(t)|
]

−
m∑

i=1

n∑

q=1

eλt L|eiq(t)|
}

+
N∑

i=1

n∑

q=1

[
ρ1eλt |eTil(t)|R1eλt |eil(t)|

+ ρ2eλ(t−τql )|eTil(t − τql)|eλ(t−τql ) R2|eil(t − τql)|e2λτql
]
. (41)

Consider viq(t) = eλt |eiq(t)| ([9]). Let δ > 1, K = max1≤i≤N supθ∈(−∞,0] |φiq(θ) −
siq(t)| > 0. Therefore, viq(t) < K δ for t ∈ [0,+∞).

Then we conclude
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V̇1(t) ≤ K 2δ2
{ N∑

i=1

n∑

q=1,l=1

[
− dq + zl |ãql | + zl |b̃ql |eλτql

+ zl |c̃ql |
∫ +∞

0
kql(θ)eλθ dθ + α

N∑

j=1

|ωi j |Γ

+ ρ1R1 + ρ2R2e2λτql
]

−
m∑

i=1

n∑

q=1

L

}
. (42)

From (38) we deduce the equality as follows

V̇2(t) =
N∑

i=1

n∑

q=1

λe2λt
∣∣∣eTiq(t)eiq(t) − (pi (t) + L)2

hi

∣∣∣. (43)

Then we get

eλt |eiq(t)| < K δ

V̇2(t) ≤
N∑

i=1

n∑

q=1

λ
[
eλt |eiq(t)|eλt |eTiq(t)|

]
<

N∑

i=1

n∑

q=1

λK 2δ2. (44)

According to (42) and (44), we obtain the following theorem to guarantee the synchro-
nization of system (5).

V̇ (t) ≤ K 2δ2
{ N∑

i=1

n∑

q=1,l=1

[
λ − dq + zl |ãql | + zl |b̃ql |eλτql

+ zl |c̃ql |
∫ +∞

0
kql(θ)eλθ dθ + α

N∑

j=1

|ωi j |Γ

+ ρ1R1 + ρ2R2e2λτql
]

−
m∑

i=1

n∑

q=1

L

}
. (45)

We can select ζ to satisfy

Hi (ζ ) =
N∑

i=1

n∑

q=1,l=1

[
dq − ζ − ρ1R1 − ρ2R2eζ τql − zl |ãql |

− zl |b̃ql |eζ τql − |c̃ql |
∫ +∞

0
zlkql(θ)eζθ dθ

+ α

N∑

j=1

Γ |ωi j |
]

+
m∑

i=1

n∑

q=1

L

> 0. (46)

Then V̇ (t) ≤ 0, The proof is completed. ��
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Corollary 2 Due to Assumptions 1–2, for given constant ζ > 0, if the following inequality
holds, the considered coupled MNNs without stochastic perturbations will achieve exponen-
tial synchronization under pinning control.

Hi (ζ ) =
N∑

i=1

n∑

q=1,l=1

[
dq − ζ − zl |ãql | − zl |b̃ql |eζ τql

− |c̃ql |
∫ +∞

0
zlkql(θ)eζθ dθ + α

N∑

j=1

Γ |ωi j |
]

+
m∑

i=1

n∑

q=1

L

> 0. (47)

Proof Let the error system (12) without impulsive perturbations in Theorem 2. The proof
can be followed, thus it is omitted here.

Remark 5 Due to the condition of time-varying delay τql(t) and the property of stochastic
perturbations, Theorem 2 provides a suitable adaptive controller. It’s worth pointing out
that no redundant numerical calculation such as computing complex algebraic conditions
([48]) or solving linear matrix inequality (LMIs) ([49,50]) are needed in the synchronization
conditions. Thus, our synchronization consequences have a stronger adaptive capability and
more powerful application.

Remark 6 There is no extra restraint on activation functions but demanding they are bounded
and the time-varying delays are mixed. Furthermore, overall consideration of our obtained
results with pinning schemes, which can be expected to have a powerful potential application
in areas such as associative memory, image encryption, digital processing, and so on.

4 Illustrative Example

In this section, wewill give numerical examples to verify the effectiveness of our conclusions.
Consider a coupled two-dimensional MNNs as follows

dx1(t)

dt
= − d1x1(t) + a11(x1(t)) f (x1(t)) + a12(x1(t)) f (x2(t))

+ b11(x1(t)) f (x1(t − τ11(t))) + b12(x1(t)) f (x2(t − τ12(t)))

+ c11(x1(t))
∫ +∞

0
k11(θ) f (x1(t − θ))dθ

+ c12(x1(t))
∫ +∞

0
k12(θ) f (x2(t − θ))dθ

+ αω12Γ x2(t) + αω13Γ x3(t) + I1(t), (48)
dx2(t)

dt
= − d2x2(t) + a21(x2(t)) f (x1(t)) + a22(x2(t)) f (x2(t))

+ b21(x2(t)) f (x2(t − τ21(t))) + b22(x2(t)) f (x2(t − τ22(t)))

+ c21(x2(t))
∫ +∞

0
k21(θ) f (x1(t − θ))dθ

+ c22(x2(t))
∫ +∞

0
k22(θ) f (x2(t − θ))dθ

+αω21Γ x1(t) + αω23Γ x3(t) + I2(t), (49)
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dx3(t)

dt
= − d3x3(t) + a31(x3(t)) f (x1(t)) + a32(x3(t)) f (x2(t))

+ b31(x3(t)) f (x1(t − τ31(t))) + b32(x3(t)) f (x2(t − τ32(t)))

+ c31(x3(t))
∫ +∞

0
k31(θ) f (x1(t − θ))dθ

+ c32(x3(t))
∫ +∞

0
k32(θ) f (x2(t − θ))dθ

+αω31Γ x1(t) + αω32Γ x2(t) + I3(t), (50)

where

a11(x1(t)) =
{−0.9, ḟ (x1(t)) − ẋ1(t) ≤ 0,

0.9, ḟ (x1(t)) − ẋ1(t) > 0,

a12(x1(t)) =
{

0.4, ḟ (x2(t)) − ẋ1(t) ≤ 0,
−0.4, ḟ (x2(t)) − ẋ1(t) > 0,

a21(x2(t)) =
{−1.2, ḟ (x1(t)) − ẋ2(t) ≤ 0,

1.2, ḟ (x1(t)) − ẋ2(t) > 0,

a22(x2(t)) =
{

0.8, − ḟ (x2(t)) − ẋ2(t) ≤ 0,
−0.8, − ḟ (x2(t)) − ẋ2(t) > 0,

a31(x3(t)) =
{

0.3, − ḟ (x1(t)) − ẋ3(t) ≤ 0,
−0.3, − ḟ (x1(t)) − ẋ3(t) > 0,

a32(x3(t)) =
{

0.4, − ḟ (x2(t)) − ẋ3(t) ≤ 0,
−0.4, − ḟ (x2(t)) − ẋ3(t) > 0,

b11(x1(t)) =
{

1, − ḟ (x1(t − τ11(t))) − ẋ1(t) ≤ 0,
−1, − ḟ (x1(t − τ11(t))) − ẋ1(t) > 0,

b12(x1(t)) =
{−5, − ḟ (x2(t − τ12(t))) − ẋ1(t) ≤ 0,

5, − ḟ (x2(t − τ12(t))) − ẋ1(t) > 0,

b21(x2(t)) =
{−1.2, ḟ (x1(t − τ21(t))) − ẋ2(t) ≤ 0,

1.2, ḟ (x1(t − τ21(t))) − ẋ2(t) > 0,

b22(x2(t)) =
{−1, ḟ (x2(t − τ22(t))) − ẋ2(t) ≤ 0,

1, ḟ (x2(t − τ22(t))) − ẋ2(t) > 0,

b31(x3(t)) =
{

0.9, ḟ (x1(t − τ31(t))) − ẋ3(t) ≤ 0,
−0.9, ḟ (x1(t − τ31(t))) − ẋ3(t) > 0,

b32(x3(t)) =
{

0.7, ḟ (x2(t − τ32(t))) − ẋ3(t) ≤ 0,
−0.7, ḟ (x2(t − τ32(t))) − ẋ3(t) > 0,

c11(x1(t)) =
{

3, ḟ
( ∫ +∞

0 e−θ f (x1(t − θ)dθ)
) − ẋ1(t) ≤ 0,

−3, ḟ
( ∫ +∞

0 e−θ f (x1(t − θ)dθ)
) − ẋ1(t) > 0,

c12(x1(t)) =
{

1, ḟ
( ∫ +∞

0 e−θ f (x2(t − θ)dθ)
) − ẋ1(t) ≤ 0,

−1, ḟ
( ∫ +∞

0 e−θ f (x2(t − θ)dθ)
) − ẋ1(t) > 0,

c21(x2(t)) =
{−2, ḟ

( ∫ +∞
0 e−θ f (x1(t − θ)dθ)

) − ẋ2(t) ≤ 0,
2, ḟ

( ∫ +∞
0 e−θ f (x1(t − θ)dθ)

) − ẋ2(t) > 0,

c22(x2(t)) =
{

2, ḟ
( ∫ +∞

0 e−θ f (x2(t − θ)dθ)
) − ẋ2(t) ≤ 0,

−2, ḟ
( ∫ +∞

0 e−θ f (x2(t − θ)dθ)
) − ẋ2(t) > 0,
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c31(x3(t)) =
{−1, ḟ

( ∫ +∞
0 e−θ f (x1(t − θ)dθ)

) − ẋ3(t) ≤ 0,
1, ḟ

( ∫ +∞
0 e−θ f (x1(t − θ)dθ)

) − ẋ3(t) > 0,

c32(x3(t)) =
{−1, ḟ

( ∫ +∞
0 e−θ f (x2(t − θ)dθ)

) − ẋ3(t) ≤ 0,
1, ḟ

( ∫ +∞
0 e−θ f (x2(t − θ)dθ)

) − ẋ3(t) > 0.

Let J (t) = [J1(t), J2(t), J3(t)]T = [0, 0, 0]T, τ11(t) = τ12(t) = τ21(t) = τ22(t) =
τ31(t) = τ32(t) = 2 sin(t), let f (x) = 1

2 (|1 + x | + |1 − x |) be the activation function.
Obviously, we have d1 = 8, d2 = 6, d3 = 5, a11 = 0.9, a12 = 0.4, a21 = 1.2, a22 = 0.8,
a31 = 0.3, a32 = 0.4, b11 = 1, b12 = 5, b21 = 2, b22 = 1, b31 = 0.9, b32 = 0.7, c11 = 3,
c12 = 1, c21 = 2, c22 = 2, c31 = 1, c32 = 1, kql(θ) = e−2θ , μ = −1.

The phase trajectories x1(t), x2(t) and x3(t) of system (1) are shown in Fig. 1. The state
trajectories xi1(t), xi2(t) and xi3(t)with 15 initial values of such systemwithout the effective
control are shown in Fig. 2, it indicates the state of system (1) cannot keep stable without
controller. And the following simulations conduct on the basis of this situation.

The parameters are selected as α = 1, P = 1 and ζ = 1. We assume that the inner
matrix Γ = I and these nodes are connected with weighted zero-row-sum. For example, the
weighed outer-coupling configuration matrix is given by
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Fig. 1 a Phase trajectories of the x1(t) of system (1); b Phase trajectories of the x2(t) of system (1); c Phase
trajectories of the x3(t) of system (1)
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Fig. 2 State trajectories xi1(t), xi2(t) and xi3(t) of system (1) with 15 initial values
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W =
⎡

⎣
− 2 1 1
1 −2 1
1 1 − 2

⎤

⎦ .

According to Theorem 1, we add impulsive perturbations on such system, it is easily to
see that the states are quickly converged to stable from Fig. 3. It is clear that the error system
(11) is converged to zero by means of pinning schemes. Hence, it can be concluded that, the
results shown the feedback control inputs contribute to the chaos exceptional synchronization
under the pinning control mechanism.

The system (4) has chaotic attractors with the initial values which can be seen in Fig. 1. It
follows from Corollary 1, the system (4) without impulsive perturbations has reached excep-
tionally synchronized by means of pinning control. Figure 4 depict the synchronization error
of the state variables ei1(t), ei2(t), and ei3(t) without impulsive perturbations, respectively.
Figure 4a illustrated that the synchronization error under controller (13) with unsuitable
parameters, and Fig. 4b shown that the synchronization error under controller (13) with suit-
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Fig. 3 Synchronization errors ei1(t), ei2(t), and ei3(t) of system (4) under controller (13)
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Fig. 4 a The synchronization error of system (4) without impulsive perturbations and control; b The syn-
chronization error of system (4) without impulsive perturbations but under control
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able parameters. The results indicate the suitable parameters of controller (13) is critical to
the synchronization. Thus, the synchronization conditions from Theorem 2 is reasonable and
resultful.

Based on Theorem 2, we select stochastic system (5) as an example. The Brownianmotion
satisfies Eω(t) = 0, Dω(t) = 1. And

σ1(t, x11(t), x11(t − τ12(t))) = 0.2 × x11(t) + 0.4 × x11(t − τ12(t)),

σ1(t, x12(t), x12(t − τ21(t))) = 0.2 × x12(t) + 0.4 × x12(t − τ21(t)),

σ2(t, x21(t), x21(t − τ12(t))) = −0.5 × x21(t) + 0.3 × x21(t − τ12(t)),

σ2(t, x22(t), x22(t − τ21(t))) = −0.5 × x22(t) + 0.3 × x22(t − τ21(t)),

σ3(t, x31(t), x31(t − τ12(t))) = 0.1 × x31(t) + 0.1 × x31(t − τ12(t)),

σ3(t, x32(t), x32(t − τ21(t))) = 0.1 × x32(t) + 0.3 × x32(t − τ21(t)).

It is shown that the system (5) is exponentially synchronized with the pinning schemes.
Figure 5 illustrated the synchronization error of the state variables of system (12). It is obvi-
ously that the states are quickly converged to stable according to controller (30). Figure 5a
indicated that the synchronization error under controller (13)with unsuitable parameters. Fig-
ure 5b illustrated that the synchronization error under controller (13)with suitable parameters.
It can be seen, the parameters of the controller which unsatisfied the rule of synchronization
will lead to instability and oscillation. Thus, it can be resulted that, the considered coupled
MNNs system (5) can be exceptionally synchronized based on the pinning control due to
Theorem 2.

In order to verify Corollary 2, we choose system (5) without Brownian motion as an
example. We add the adaptive controller (30) on such system. Figure 6 demonstrated the
synchronization errors of system (5) without stochastic perturbations under different param-
eters of controller. Figure 6a presented the synchronization error under controller (30) with
unsuitable parameters. Figure 6b demonstrated the synchronization error under controller
(30) with suitable parameters. The simulation experiments demonstrate that the proposed
control laws are effective.

In order to show the validity of the pinning method, we choose system (5) as an example.
Figure 7a illustrated the synchronization error of system (5) which selected only one node to
be controlled under controller (30), Fig. 7b demonstrate the synchronization error of system
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Fig. 5 a The synchronization error of system (5) without control; b The synchronization error of system (5)
under control
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Fig. 6 a The synchronization error of system (5) without stochastic perturbations and control; b The syn-
chronization error of system (5) without stochastic perturbations but under control
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Fig. 7 a The synchronization error of system (5) with one controller node; b The synchronization error of
system (5) with three controller nodes

(5) which selected all nodes to be controlled under controller (30). It can be seen that the
rate of convergence and the accuracy between Fig. 7a, b are basically the same. Thus, the
results proved that our mechanism is effective and reasonable. Especially for the practical
application [52,53] our proposed scheme can maximize energy savings.

5 Conclusion

We have committed to research the pinning synchronization of coupled MNNs. The pro-
posed coupledMNNsmodels including the stochastic perturbations, impulsive perturbations,
non-delay, discrete time-varying delays and distributed time delays. Based on the suit-
able Lyapunov functional and the definition of pinning control, with the aid of inequality
techniques and differential inclusions theory, two kinds of controllers are designed. And suf-
ficient conditions which depend on the mixed time-varying delays are derived to guarantee
the coupled MNNs achieve pinning synchronization. Numerical examples are provided to
demonstrate the usefulness and effectiveness of the proposed control strategy.
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