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Abstract This paper is concerned with the global Mittag-Leffler synchronization schemes
for the Caputo type fractional-order BAMneural networks with multiple time-varying delays
and impulsive effects. Based on the delayed-feedback control strategy and Lyapunov func-
tional approach, the sufficient conditions are established to ensure the global Mittag-Leffler
synchronization, which are described as the algebraic inequalities associated with the net-
work parameters. The control gain constants can be searched in a wider range following the
proposed synchronization conditions. The obtained results are more general and less conser-
vative. A numerical example is also presented to illustrate the feasibility and effectiveness
of the theoretical results based on the modified predictor–corrector algorithm.

This work is jointly supported by the National Natural Science Fund of China (11301308, 61573096,
61272530, 61374183), the Fund of Jiangsu Provincial Key Laboratory of Networked Collective Intelligence
(BM2017002), the 333 Engineering Fund of Jiangsu Province of China (BRA2015286), the Natural Science
Fund of Anhui Province of China (1608085MA14), the Key Project of Natural Science Research of Anhui
Higher Education Institutions of China (gxyqZD2016205, KJ2015A152), and the Natural Science Youth
Fund of Jiangsu Province of China (BK20160660).

B Hai Zhang
zhanghai0121@163.com

Renyu Ye
yereny@163.com

Xinsheng Liu
xsliu@nuaa.edu.cn

Jinde Cao
jdcao@seu.edu.cn

1 State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nano
Science and Department of Mathematics, Nanjing University of Aeronautics and Astronautics,
Nanjing 210018, China

2 School of Mathematics and Computation Science, Anqing Normal University, Anqing 246133,
China

3 School of Mathematics, Southeast University, Nanjing 210096, China

4 School of Electrical Engineering, Nantong University, Nantong 226000, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-018-9801-0&domain=pdf
http://orcid.org/0000-0002-7183-9570
http://orcid.org/0000-0003-3133-7119


2 R. Ye et al.

Keywords Mittag-Leffler synchronization · Delayed-feedback control · Lyapunov
functionals · Fractional BAM neural networks · Time-varying delays · Impulsive effects

1 Introduction

Fractional calculus was firstly proposed by Leibniz in 1695 (see [1,2] and references therein).
As a natural generalization of the classical calculus, the subject of fractional calculus
has attracted much interest and attention from a lot of scholars and researchers. Because
the fractional-order operators have the nonlocal feature and weakly singular kernels, the
fractional-order models can provide a powerful tool to characterize the hereditary and mem-
ory properties of various phenomena and processes such as viscoelastic materials [3], market
dynamics [4], physics [5], diffusion [6], control systems [7] and biological systems [8] and
so on.

As we all know, the stability problem is a very important performance measure for any
dynamical system. Recently, the various kinds of stability problems for fractional-order
differential systems including Mittag-Leffler stability [9], asymptotic stability [10] and uni-
form stability [11] have been widely discussed. For example, Li et al. [9] investigated the
Mittag-Leffler stability and generalized Mittag-Leffler stability of nonlinear fractional-order
dynamic systems based on Lyapunov direct method andMittag-Leffler function. Li et al. [12]
discussed the global Mittag-Leffler stability of coupled system of fractional-order differen-
tial equations on network by using graph theory and the Lyapunov method. Wu et al. [13]
proposed linear state feedback control law and partial state feedback control law to Mittag-
Leffler stabilize the fractional-order BAM neural networks based on Lyapunov approach.
On the other hand, time delay phenomenon is almost an inevitable problem in the practi-
cal systems, which often has an important on the dynamics of systems [14]. Liu et al. [15]
investigated theMittag-Leffler stability of nonlinear fractional neutral singular systems under
Caputo and Riemann–Liouville derivatives.

In the past few decades, the neural networks were extensively applied to solve some
signal processing, image processing and optimal control problems including cellular neural
networks [16], Hopfield neural networks [17], recurrent neural networks [18,19], Cohen-
Grossberg neural networks [20], bidirectional associative memory (BAM) neural networks
[21], and complex-valued neural networks [19,22–24] and so on. In 1987, Kosko first intro-
duced the double layers BAM neural network models (see [25]). The remarkable feature of
BAM neural networks contains the close relation of the neurons between the U-layer and
V-layer. That is, the neurons in one layer are fully interconnected to the one in the other
layer, but there are not any interconnection among neurons in the same layer. Recently, we
note that the fractional-order operators have been introduced to neural networks to estab-
lish the fractional-order neural networks by many researchers in [26–32]. Compared with
the integer-order neural network models, the fractional-order ones could better describe the
dynamical behaviors of the neurons. Many important results have been presented with regard
to the various classes of stability analysis of fractional-order neural networks such as uni-
form stability [26,29], delay-independent stability [27], finite-time stability [28], asymptotic
stability [30,31] and Mittag-Leffler stability [32].

The synchronization of dynamical systems mainly refers to a dynamical process wherein
many chaotic systems modify a given property of their motion to a common behaviour due
to a coupling or to a forcing. In [33–41], the authors discussed the various synchroniza-
tion schemes for the integer-order network systems such as exponential synchronization
[33,34], adaptive synchronization [35], finite-time synchronization [36,37], fixed-time syn-

123



Global Mittag-Leffler Synchronization for Fractional-Order. . . 3

chronization [38], cluster synchronization [39], pinning-controlled synchronization [40] and
impulsive synchronization [41]. It is worth mentioning that many researchers have been
devoted to investigating the synchronization problems for fractional-order neural networks
[42–44] and fractional-order delayed neural networks [32,45–50]. The various effective con-
trol approaches have been applied to deal with synchronization problems concerning the
integer-order or fractional-order neural networks such as distributed control [39], impul-
sive control [40], linear feedback control [42,45], sliding model control [43,44], adaptive
feedback control [46,47], adaptive pinning control [48] and linear delay feedback control
[49]. Many real systems in physics, engineering, chemistry, biology, and information sci-
ence, may experience abrupt changes as certain instants. This kind of impulsive behaviors
can be modelled by impulsive systems [21,22,30,32,51]. For instance, Stamova [32] stud-
ied the global Mittag-Leffler synchronization of impulsive fractional-order neural networks
with time-varying delays, while the interconnection effects of the neurons between U -layer
and V -layer were not involved in the network model. Chen et al. [42] discussed the global
Mittag-Leffler stability and synchronization of memristor-based fractional-order neural net-
works, in which the impulsive effects and delay factor are not been considered. Rajivganthi
et al. [47] discussed the adaptive synchronization and finite-time synchronization of Caputo
fractional-order memristor-based BAM delayed neural networks, yet the impulsive effects
are not been taken into account.

Compared with the advances of the integer-order delayed neural networks [16–24,33–41],
the research on the dynamical behaviours of fractional-order delayed neural networks is still
at the stage of developing and exploiting [32,45–50]. To the best of our knowledge, there
are few results on the fractional-order BAM neural networks with multiple time-varying
delays and impulsive effects. Motivated by the above discussions, this paper will consider
the global Mittag-Leffler synchronization for Caputo fractional-order neural networks with
multiple time-varying delays and impulsive effects. The main challenges and contributions
of this paper are summarized as follows:

• The differentiability of the neuron activation functions and time-varying delay func-
tions in the addressed system are not necessarily required. The presented results are less
conservative and more general.

• The considered BAM network includes impulsive effects, multiple time-varying delays,
fractional-order derivative and the interconnection effects of the neurons between U -
layer and V -layer and so on. We sufficiently take into account the impact of these factors
on the synchronization schemes of the network systems.

• The delayed-feedback control strategy and Lyapunov functional approach are applied
to derive global Mittag-Leffler synchronization conditions between fractional master
system and slave system. The control gain constants can be searched in a wider range
following the Mittag-Leffler synchronization conditions.

• The global Mittag-Leffler synchronization conditions are described as the algebraic
inequalities, which are concise and easy to test. The numerical simulations of an illustra-
tive example are presented to show the validity and feasibility of the theoretical results
based on the modified predictor–corrector algorithm [52].

2 Preliminaries and Model Description

In this section, we recall some definitions and related properties of fractional calculus. More-
over, a class of Caputo type fractional-order bidirectional associative memory (BAM) neural
network models with multiple time-varying delays and impulsive effects is presented.
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Definition 2.1 [2] The Riemann–Liouville fractional integral of order q for a function f is
defined as:

t0D
−q
t f (t) = 1

�(q)

∫ t

t0
(t − s)q−1 f (s)ds,

where q > 0, t � t0. The Gamma function �(q) is defined by the integral

�(z) =
∫ +∞

0
sz−1e−sds, (Re(z) > 0).

The composition property with Riemann–Liouville fractional integral can be described
by

t0D
−p
t t0D

−q
t f (t) = t0D

−(p+q)
t f (t), p, q > 0.

TheCaputo fractional operator often plays a key role in the dynamics analysis of fractional-
order systems, and the expression form of the initial value problems is similar to integer-order
systems. Therefore, we deal with fractional-order BAMdelayed neural networkswith Caputo
derivative in this paper , whose definition and properties are given below.

Definition 2.2 [2] The Caputo fractional derivative of order q for a function f is defined as

C
t0D

q
t f (t) = 1

�(m − q)

∫ t

t0
(t − s)m−q−1 f (m)(s)ds,

where 0 � m − 1 < q < m,m ∈ Z
+. Particularly, for 0 < α < 1 case, one can get

C
t0D

α
t f (t) = 1

�(1 − α)

∫ t

t0
(t − s)−α f ′(s)ds.

According to Definition 2.2, for any constants L1 ∈ R and L2 ∈ R, the linearity of
Caputo’s fractional derivative is described by

C
t0D

q
t

(
L1 f (t) + L2g(t)

)
= L1

C
t0D

q
t f (t) + L2

C
t0D

q
t g(t).

In this paper, we are devoted to discussing a class of Caputo type fractional-order BAM
neural networks with multiple time-varying delays and impulsive effects described by the
states equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t xi (t) = −ai xi (t) +

m∑
j=1

bi j g j
(
y j (t)

)+
m∑
j=1

ci j g j

(
y j
(
t − τi j (t)

))+ Ii , t �= tk,

�xi (t) = γ
(1)
k

(
xi (t)

)
, t = tk, i = 1, 2, . . . , n; k = 1, 2, . . . ,

C
0 D

α
t y j (t) = −a j y j (t) +

n∑
i=1

b ji fi
(
xi (t)

)+
n∑

i=1

c ji fi
(
xi
(
t − σ j i (t)

))+ I j , t �= tk,

�y j (t) = γ
(2)
k

(
y j (t)

)
, t = tk, j = 1, 2, . . . ,m; k = 1, 2, . . . .

(1)
There are two layers U = {x1, x2, . . . , xn} and V = {y1, y2, . . . , ym} in the fractional
network system (1); xi (t) and y j (t) denote the membrane voltages of i-th neuron in the
U -layer and the membrane voltages of j-th neuron in the V -layer, respectively; C0 D

α
t xi (·)

denotes the order α Caputo type fractional derivatives of xi (·) with 0 < α < 1; ai > 0 and
a j > 0 mean the decay coefficients of signals from neurons xi to y j ; fi (·) and g j (·) are
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the activation functions for neurons; bi j , ci j , b ji and c ji represent the weight coefficients of
the neurons; Ii and I j denote external input ofU -layer and V -layer, respectively; τi j (t) and
σ j i (t) are the transmission time-varying delays at time t from neuron to another; Moreover,
the impulsive moments

{
tk |k = 1, 2, . . .

}
satisfy 0 = t0 < t1 < t2 < · · · < tk < · · · , tk →

+∞ as k → +∞, and
⎧⎨
⎩

�xi (tk) = xi (t
+
k ) − xi (t

−
k ), xi (t

+
k ) = lim

ε→0+ xi (tk + ε), xi (t
−
k ) = xi (tk),

�y j (tk) = y j (t
+
k ) − y j (t

−
k ), y j (t

+
k ) = lim

ε→0+ y j (tk + ε), y j (t
−
k ) = y j (tk),

(2)

xi (t
+
k ) and xi (t

−
k ) represent the right and left limits of xi (t) at t = tk , respectively; xi (t

−
k ) =

xi (tk) and y j (t
−
k ) = y j (tk) imply that xi (t) and y j (t) are both left continuous at t = tk .

Correspondingly, the state vector of fractional-order network system can be denoted by
(
x(t), y(t)

)
=
(
x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t)

)T ∈ R
n+m .

Throughout this paper, we make the following assumption conditions.
H1 The neuron activation functions fi (·) and g j (·) are Lipschitz continuous. That is, there
exist positive constants L f

i , Lg
j ∈ R

+ such that

∣∣ fi (x1) − fi (x2)
∣∣ � L f

i

∣∣x1 − x2
∣∣, i = 1, 2, . . . , n, ∀x1, x2 ∈ R∣∣g j (y1) − g j (y2)

∣∣ � Lg
j

∣∣y1 − y2
∣∣, j = 1, 2, . . . ,m, ∀y1, y2 ∈ R,

(3)

where L f
i , Lg

j ∈ R
+ are Lipschitz constants.

H2 The impulsive operators γ
(1)
k (·) and γ

(2)
k (·) satisfy

⎧⎪⎨
⎪⎩

γ
(1)
k

(
ei (tk)

)
= −λ

(1)
ik ei (tk), i = 1, 2, . . . , n; k = 1, 2, . . . ,

γ
(2)
k

(
e j (tk)

)
= −λ

(2)
jk e j (tk), j = 1, 2, . . . ,m; k = 1, 2, . . . ,

(4)

whereλ
(1)
ik ∈ (0, 2) (i = 1, 2, . . . , n; k = 1, 2, . . .), andλ

(2)
jk ∈ (0, 2) ( j = 1, 2, . . . ,m; k =

1, 2, . . .).
H3 The variable delay functions τi j (·) and σ j i (·) are continuous and bounded on the interval
[0,+∞). That is, there exists a positive constant τ>0 such that τi j (t), σ j i (t) ∈ [0, τ ].

Themain advantage ofCaputo derivative is that the initial conditions forCaputo fractional-
order differential equations take on the same expression form as the integer-order differential
equations (see [1,2]). Therefore, the initial conditions associated with Caputo type fractional-
order BAM network system (1) can be expressed as:

xi (t) = ϕi (t), y j (t) = φ j (t), t ∈ [−τ, 0], (5)

where ϕi (t), φ j (t) denote the real-valued piecewise continuous functions defined on [−τ, 0]
with the norm given by

‖ϕ‖ =
n∑

i=1

sup
θ∈[−τ,0]

{∣∣∣ϕi (θ)

∣∣∣
}
, ‖φ‖ =

m∑
j=1

sup
θ∈[−τ,0]

{∣∣∣φ j (θ)

∣∣∣
}
.

In order to realize the global Mittag-Leffler synchronization between fractional-order
master neural network and slave neural network, we refer to fractional-order network system
(1) as themaster system, and fractional-order slave system is described as the following form:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t x i (t) = −ai xi (t) +

m∑
j=1

bi j g j
(
y j (t)

)+
m∑
j=1

ci j g j
(
y j (t − τi j (t))

)+ ui (t) + Ii ,

	ei (tk) = γ
(1)
k

(
ei (tk)

)
, i = 1, 2, . . . , n; k = 1, 2, . . . ,

C
0 D

β
t y j (t) = −a j y j (t) +

n∑
i=1

b ji fi
(
xi (t)

)+
n∑

i=1

c ji fi
(
xi (t − σ j i (t))

)+ v j (t) + I j ,

	e j (tk) = γ
(2)
k

(
e j (tk)

)
, j = 1, 2, . . . ,m; k = 1, 2, . . . ,

(6)
with the initial conditions xi (t) = ϕi (t), y j (t) = φ j (t), t ∈ [−τ, 0].

Let ei (t) = xi (t) − xi (t), e j (t) = y j (t) − y j (t) (i = 1, 2, . . . , n; j = 1, 2, . . . ,m)

be the synchronization errors. From fractional master system (1) and fractional slave system
(6), we can obtain fractional error system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t

{
ei (t)

}
= −ai ei (t) +

m∑
j=1

bi j g j
(
e j (t)

)+
m∑
j=1

ci j g j
(
e j (t − τi j (t))

)+ ui (t),

	ei (tk) = γ
(1)
k

(
ei (tk)

)
, i = 1, 2, . . . , n; k = 1, 2, . . . ,

C
0 D

β
t

{
e j (t)

}
= −a j e j (t) +

n∑
i=1

b ji fi
(
ei (t)

)+
n∑

i=1

c ji fi
(
ei (t − σ j i (t))

)+ v j (t)

	e j (tk) = γ
(2)
k

(
e j (tk)

)
, j = 1, 2, . . . ,m; k = 1, 2, . . . ,

(7)

where g j
(
e j (t)

) = g j
(
y j (t)

)− g j
(
y j (t)

)
, fi

(
ei (t)

) = fi
(
xi (t)

)− fi
(
xi (t)

)
.

Similar to the discussions of the equilibrium solution to integer-order differential systems,
noting that Caputo fractional-order derivative of a nonzero constant is equal to zero, then we
can define the equilibrium solution of system (1) as follows:

Definition 2.3 A constant vector (x∗T , y∗T )T = (x∗
1 , x

∗
2 , . . . , x

∗
n , y

∗
1 , y

∗
2 , . . . , y

∗
m)T ∈

R
n+m is an equilibrium solution of system (1) if and only if x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n )

T and
y∗ = (y∗

1 , y
∗
2 , . . . , y

∗
m)T satisfy the following equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− ai x
∗
i +

m∑
j=1

bi j g j
(
y∗
j

)+
m∑
j=1

ci j g j
(
y∗
j

)+ Ii = 0, i = 1, 2, . . . , n,

− a j y
∗
j +

n∑
i=1

b ji fi
(
x∗
i

)+
n∑

i=1

c ji fi
(
x∗
i

)+ J j = 0, j = 1, 2, . . . ,m,

and the impulsive jumps γ
(1)
k

(
xi (tk)

)
and γ

(2)
k

(
y j (tk)

)
satisfy

γ
(1)
k

(
x∗
i

) = 0, γ
(2)
k

(
y∗
j

) = 0, i = 1, 2, . . . , n; j = 1, 2, . . . ,m; k = 1, 2, . . . .

In what follows, we introduce the definition of global Mittag-Leffler synchronization and
a basic lemma, which will be used to the proof of the main results.

Definition 2.4 Fractional master system (1) achieves global Mittag-Leffler synchronization
with fractional slave system (6) under the control inputs ui (t) and v j (t), if and only if there

123
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exist two positive constants λ > 0 and M � 1 such that fractional error system (7) satisfies
the following inequality

∥∥e(t)∥∥+ ∥∥e(t)∥∥ � M

{∥∥ϕ − ϕ
∥∥+ ∥∥φ − φ

∥∥
}
Eα(−λtα), 0 < α < 1, (8)

where (ϕ, φ) and (ϕ, φ) are different initial values of master system (1) and slave system (6),
respectively.

Lemma 2.1 [42] Let V (t) be a continuous function on [0,+∞) and satisfies

C
0 D

α
t V (t) � −λV (t), t > 0,

where 0 < α < 1 and λ is a constant. Then

V (t) � V (0)Eα

(− λtα
)
, t ∈ [0,+∞).

Remark 2.1 The main purpose of this paper is devoted to investigating the global Mittag-
Leffler synchronization problem for Caputo type fractional-order BAM delayed neural
networks. It should be pointed out that the differentiability of the neuron activation functions
fi (·), g j (·) and time-varying delay functions τi j (·), σ j i (·) in system (1) are not necessarily
required.

Remark 2.2 The remarkable feature of BAM neural networks includes the complex rela-
tions of the neurons between the U -layer and V -layer. Several factors such as the multiple
time-varying delays, impulsive effects and fractional order derivativeα ∈ (0, 1) bring the sig-
nificant challenge to the analysis of dynamical behaviours. In this paper, a delayed-feedback
control strategy will be designed to overcome these difficulties to achieve global Mittag-
Leffler synchronization between fractional master system (1) and fractional slave system (6).

3 Global Mittag-Leffler Synchronization Schemes

In this section, we discuss the global Mittag-Leffler synchronization schemes for fractional-
orderBAMneural networkswithmultiple variable delays and impulsive effects. By designing
a set of delayed feedback controllers, the global Mittag-Leffler synchronization between
fractional master system (1) and fractional slave system (6) is achieved based on fractional
calculus theory and Lyapunov functional approach.

Choosing the delay-feedback control strategy for fractional slave system (6) by the fol-
lowing forms:

ui (t) = −ηi ei (t) − βsgn
(
ei (t)

)∣∣ei (t − τ)
∣∣, i = 1, 2, . . . , n,

v j (t) = −η j e j (t) − βsgn
(
e j (t)

)∣∣e j (t − τ)
∣∣, j = 1, 2, . . . ,m,

(9)

where ηi > 0, η j > 0, β > 0 are all control gains to be determined, and sgn(·) denotes the
sign function.
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8 R. Ye et al.

Combining fractional error system (7) with the linear feedback controllers (9) and condi-
tion (H2) yields the following fractional error system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t

{
ei (t)

}
= −(ai + ηi )ei (t) +

m∑
j=1

bi j g j
(
e j (t)

)+
m∑
j=1

ci j g j
(
e j (t − τi j (t))

)

− βsgn
(
ei (t)

)∣∣ei (t − τ)
∣∣,

	ei (tk) = −λ
(1)
ik ei (tk), i = 1, 2, . . . , n; k = 1, 2, . . . ,

C
0 D

α
t

{
e j (t)

}
= −(a j + η j )e j (t) +

n∑
i=1

b ji fi
(
ei (t)

)+
n∑

i=1

c ji fi
(
ei (t − σ j i (t))

)

− βsgn
(
e j (t)

)∣∣e j (t − τ)
∣∣,

	e j (tk) = −λ
(2)
jk e j (tk), j = 1, 2, . . . ,m; k = 1, 2, . . . ,

(10)

where g j
(
e j (t)

) = g j
(
y j (t)

) − g j
(
y j (t)

)
, fi

(
ei (t)

) = fi
(
xi (t)

) − fi
(
xi (t)

)
, λ

(1)
ik ∈

(0, 2), λ
(2)
jk ∈ (0, 2).

According to Definition 2.3, we immediately know that (e ∗
i , e ∗

j )T = (0, 0, . . . , 0)T ∈
R
n+m is an equilibrium solution of error system (10). The impulsive operators also satisfy

γ
(1)
k

(
e ∗
i

) = 0, γ
(2)
k

(
e ∗
j

) = 0, i = 1, 2, . . . , n; j = 1, 2, . . . ,m; k = 1, 2, . . . .

In what follows, the global Mittag-Leffler synchronization results are derived between
fractional master system (1) and fractional slave system (6) based on the delayed feedback
controllers (9).

Theorem 3.1 Suppose that the conditions (H1)–(H3) hold, then fractional master system (1)
can achieveMittag-Leffler synchronization with fractional slave system (4) under the delayed
feedback controllers (9), if there exist two positive constants ω1, ω2 such that ω2 > ω1 > 0,
where

ω1 = max

{
max

1� j�m

n∑
i=1

∣∣c ji ∣∣L f
i − β, max

1�i�n

m∑
j=1

∣∣ci j ∣∣Lg
j − β

}
> 0,

ω2 = min

{
min

1�i�n

[
ai + ηi − L f

i

m∑
j=1

∣∣b ji
∣∣], min

1� j�m

[
a j + η j − Lg

j

n∑
i=1

∣∣bi j ∣∣
]}

> ω1.

(11)

Proof Suppose
(
xT (t), yT (t)

)T = (
x1(t), . . . , xn(t), y1(t), . . . , ym(t)

)T is a solution of

fractional master system (1) with the initial value
(
ϕT (0), φT (0)

)T = (
ϕ1(0), . . . , ϕn(0),

φ1(0), . . . , φm(0)
)T . Corresponding, let (xT (t), yT (t)

)T = (
x1(t), . . . , xn(t), y1(t), . . . ,

ym(t)
)T be a solution of slave system (4) with the initial value

(
ϕT (0), φ

T
(0)
)T =(

ϕ1(0), . . . , ϕn(0), φ1(0), . . . , φm(0)
)T satisfying ei (0) �= 0, e j (0) �= 0 for i =

1, 2, . . . , n; j = 1, 2, . . . ,m.

Obviously, (e ∗
i , e ∗

j )T = (0, 0, . . . , 0)T ∈ R
n+m is an equilibrium solution of fractional

error system (10). Choosing a piecewise continuous Lyapunov functional by the following
forms

V
(
t, e, e

) =
n∑

i=1

∣∣ei (t)∣∣+
m∑
j=1

∣∣e j (t)∣∣. (12)
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By carrying out the following discussions of two cases, we can obtain the time fractional
derivative of V

(
t, e, e

)
along the trajectories of fractional error system (10):

Case 1 For t = tk , from (2) and (H2), one has

V
(
t+k , e(t+k ), e(t+k )

)
=

n∑
i=1

∣∣∣ei (tk) + γ
(1)
k

(
ei (tk)

)∣∣∣+
m∑
j=1

∣∣e j (tk) + γ
(2)
k

(
e j (tk)

)∣∣∣

�
n∑

i=1

∣∣∣ei (tk) − λ
(1)
ik ei (tk)

∣∣∣+
m∑
j=1

∣∣e j (tk) − λ
(2)
jk e j (tk)

∣∣∣.

Note that λ
(1)
ik ∈ (0, 2), λ

(2)
jk ∈ (0, 2) (i = 1, 2, . . . , n; j = 1, 2, . . . ,m; k = 1, 2, . . .),

then ∣∣1 − λ
(1)
ik

∣∣ < 1,
∣∣1 − λ

(2)
jk

∣∣ < 1, i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

Therefore

V
(
t+k , e(t+k ), e(t+k )

)
�

n∑
i=1

∣∣∣1 − λ
(1)
ik

∣∣∣∣∣ei (t−k )
∣∣+

m∑
j=1

∣∣∣1 − λ
(2)
jk

∣∣∣∣∣e j (t−k )
∣∣ (13)

�
n∑

i=1

∣∣ei (t−k )
∣∣+

m∑
j=1

∣∣e j (t−k )
∣∣ (14)

= V
(
tk, e(tk), e(tk)

)
, k = 1, 2, . . . . (15)

Case 2For t �= tk , that is, t ∈ [tk−1, tk), similar to the discussions of the single layer fractional
neural networks in [32], from (12) we obtain the upper right Caputo fractional derivative

C
0 D

α
t V
(
t, e(t), e(t)

)
= C

0 D
α

t

[
n∑

i=1

∣∣ei (t)∣∣
]

+ C
0 D

α

t

⎡
⎣ m∑

j=1

∣∣e j (t)∣∣
⎤
⎦ (16)

The applications of Definition 2.2 yield that the following inequalities

C
0 D

α

t

∣∣∣ei (t)
∣∣∣ = sgn

(
ei (t)

) ·
(
C
0 D

α

t ei (t)

)
, C

0 D
α

t

∣∣∣e j (t)
∣∣∣ = sgn

(
e j (t)

) ·
(
C
0 D

α

t e j (t)

)
,

where sgn
(·) denotes the sign function. Then, we can obtain the fractional-order derivatives

along the solutions of first equation and third equation of system (10),
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t

∣∣ei (t)∣∣ � −(ai + ηi )
∣∣ei (t)∣∣+

m∑
j=1

|bi j |
∣∣g j
(
e j (t)

)∣∣

+
m∑
j=1

|ci j |
∣∣g j
(
e j (t − τi j (t))

)∣∣− β
∣∣ei (t − τ)

∣∣,

C
0 D

α
t

∣∣e j (t)∣∣ � −(a j + η j )
∣∣e j (t)∣∣+

n∑
i=1

|b ji |
∣∣ fi (ei (t))∣∣

+
n∑

i=1

|c ji |
∣∣ fi (ei (t − σ j i (t))

)∣∣− β
∣∣e j (t − τ)

∣∣.

(17)
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10 R. Ye et al.

It follows from (H1) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t

∣∣ei (t)∣∣ � −(ai + ηi )
∣∣ei (t)∣∣+

m∑
j=1

|bi j |Lg
j

∣∣e j (t)∣∣

+
m∑
j=1

|ci j |Lg
j

∣∣e j (t − τi j (t))
∣∣− β

∣∣ei (t − τ)
∣∣,

C
0 D

α
t

∣∣e j (t)∣∣ � −(a j + η j )
∣∣e j (t)∣∣+

n∑
i=1

|b ji |L f
i

∣∣ei (t)∣∣

+
n∑

i=1

|c ji |L f
i

∣∣ei (t − σ j i (t))
∣∣− β

∣∣e j (t − τ)
∣∣,

(18)

where i = 1, 2, . . . , n; j = 1, 2, . . . ,m. Combining (16) with (18) yields that

C
0 D

α
t

{
V
(
t, e(t), e(t)

)}
� −

n∑
i=1

[
ai + ηi − L f

i

m∑
j=1

∣∣b ji
∣∣
]∣∣ei (t)∣∣

−
m∑
j=1

[
ā j + η j − Lg

j

n∑
i=1

∣∣bi j ∣∣
]∣∣e j (t)∣∣

+
n∑

i=1

m∑
j=1

∣∣ci j ∣∣Lg
j

∣∣e j (t − τi j (t))
∣∣

+
m∑
j=1

n∑
i=1

∣∣c ji ∣∣L f
i

∣∣ei (t − σ j i (t))
∣∣

− β

n∑
i=1

∣∣ei (t − τ)
∣∣− β

m∑
j=1

∣∣e j (t − τ)
∣∣. (19)

By computations, from (19) one can get

C
0 D

α
t

{
V
(
t, e(t), e(t)

)}
� − min

1�i�n

{
ai + ηi − L f

i

m∑
j=1

∣∣b ji
∣∣
} n∑

i=1

∣∣ei (t)∣∣

− min
1� j�m

{
a j + η j − Lg

j

n∑
i=1

∣∣bi j ∣∣
} m∑

j=1

∣∣e j (t)∣∣

+ max
1� j�m

n∑
i=1

∣∣c ji ∣∣L f
i

n∑
i=1

∣∣ei (t − σ j i (t))
∣∣− β

n∑
i=1

∣∣ei (t − τ)
∣∣

+ max
1�i�n

m∑
j=1

∣∣ci j ∣∣Lg
j

m∑
j=1

∣∣e j (t − τi j (t))
∣∣− β

m∑
j=1

∣∣e j (t − τ)
∣∣

� − ω2V
(
t, e(t), e(t)

)+ ω1 sup
t−τ�s�t

V
(
s, e(s), e(s)

)
,

(20)
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where τi j (t), σ j i (t) ∈ [0, τ ] in (H3), and ω1, ω2 are defined in (11) as follows:

ω1 = max

{
max

1� j�m

n∑
i=1

∣∣c ji ∣∣L f
i − β, max

1�i�n

m∑
j=1

∣∣ci j ∣∣Lg
j − β

}
> 0,

ω2 = min

{
min

1�i�n

[
ai + ηi − L f

i

m∑
j=1

∣∣b ji
∣∣], min

1� j�m

[
a j + η j − Lg

j

n∑
i=1

∣∣bi j ∣∣
]}

> ω1.

According to the above estimate, we know that any solution (eT (t), eT (t))T of fractional
error system (10) satisfies the following Razumikhin condition (see [51])

V
(
s, e(s), e(s)

)
� V

(
t, e(t), e(t)

)
, t − τ � s � t.

Note thatω2 > ω1 > 0, then there exists a real positive number λ such that 0 < λ � ω2−ω1.
Thus, we have

C
0 D

α
t

{
V
(
t, e(t), e(t)

)}
� −λV

(
t, e(t), e(t)

)
, t > 0, t �= tk . (21)

Combining (13) and (21), it follows from Lemma 2.1 that

V
(
t, e(t), e(t)

)
� V

(
0, e(0), e(0)

)
Eα

(− λtα
)
, ∀t ∈ [0,+∞).

Hence

∥∥e(t)∥∥+ ∥∥e(t)∥∥ =
n∑

i=1

∣∣ei (t)∣∣+
m∑
j=1

∣∣e j (t)∣∣

� Eα(−λtα)

⎧⎨
⎩

n∑
i=1

∣∣ei (0)∣∣+
m∑
j=1

∣∣e j (0)∣∣
⎫⎬
⎭

= Eα(−λtα)

⎧⎨
⎩

n∑
i=1

∣∣ϕi (0) − ϕi (0)
∣∣+

m∑
j=1

∣∣φ j (0) − φ j (0)
∣∣
⎫⎬
⎭

� Eα(−λtα)

{∥∥ϕ − ϕ
∥∥+ ∥∥φ − φ

∥∥
}
, t > 0. (22)

According to Definition 2.4, fractional master system (1) achieves global Mittag-Leffler
synchronization with fractional slave system (6) under the delayed feedback controllers
ui (t) and v j (t) in (9). This completes the proof of Theorem 3.1. ��

Note that global Mittag-Leffler stability implies globally asymptotic stability (see [9]),
then we can get global asymptotical complete synchronization result between fractional
master system (1) and fractional slave system (6). Similar to the proof of Theorem 3.1, we
have the following result.

Theorem 3.2 Suppose that the conditions (H1)–(H3) hold, then fractional master system
(1) can achieve global asymptotic synchronization with fractional slave system (6) based on
the delayed feedback controllers (9), if there exist two positive constants ω1, ω2 such that
ω2 > ω1 > 0, where
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12 R. Ye et al.

ω1 = max

{
max

1� j�m

n∑
i=1

∣∣c ji ∣∣L f
i − β, max

1�i�n

m∑
j=1

∣∣ci j ∣∣Lg
j − β

}
> 0,

ω2 = min

{
min

1�i�n

[
ai + ηi − L f

i

m∑
j=1

∣∣b ji
∣∣], min

1� j�m

[
a j + η j − Lg

j

n∑
i=1

∣∣bi j ∣∣
]}

> 0.

(23)

Remark 3.1 Theorem 3.1 presents the global Mittag-Leffler synchronization conditions
between master system (1) and fractional slave system (6) under the delayed feedback
controllers (9), which reveals the close relations between the network coefficients, neuron
activation functions and delayed-feedback control gain constants. The global Mittag-Leffler
synchronization conditions are described as the algebraic inequalities, which are easy to
achieve global Mittag-Leffler synchronization by choosing the appropriate control gain con-
stants ηi , η j and β.

Remark 3.2 In [33–41], the authors focused on discussing the various synchronization
schemes for integer-order neural networks including exponential synchronization [33,34],
adaptive synchronization [35], finite-time synchronization [36,37], fixed-time synchro-
nization [38], cluster synchronization [39], pinning-controlled synchronization [40] and
impulsive synchronization [41]. As a generalization of exponential synchronization with
the integer-order derivative, this paper is devoted to investigating global Mittag-Leffler syn-
chronization scheme with the fractional-order derivative.

Remark 3.3 The various effective control approaches have been applied to deal with syn-
chronization problems concerning the integer-order or fractional-order neural networks such
as distributed control [39], impulsive control [40], linear feedback control [42,45], sliding
model control [43,44], adaptive feedback control [46,47], adaptive pinning control [48] and
linear delay feedback control [49]. In this paper, the delayed feedback controllers (9) are
designed to achieve global Mittag-Leffler synchronization between fractional master system
(1) and fractional slave system (6). The main advantage of the proposed strategy is that
the control gain parameters ηi , η j and β can be searched in a wider range following the
Mittag-Leffler synchronization conditions (11).

Remark 3.4 In the past few decades, the bidirectional associativememory (BAM) neural net-
works were extensively studied in [20,21,30,47]. For instance, Rajivganthi et al. [47] have
discussed the adaptive synchronization and finite-time synchronization of Caputo fractional-
order memristor-based BAM delayed neural networks, yet the impulsive effects are not been
taken into account. It should be pointed out that finite-time stability and global Mittag-
Leffler stability are mutually independent concepts, because finite-time stability does not
contain Mittag-Leffler synchronization, and vise versa (see [9,28]). Stamova [32] studied
the global Mittag-Leffler synchronization of impulsive fractional-order neural networks with
time-varying delays, while the interconnection effects of the neurons between U -layer and
V -layer were not involved in the networkmodel. Chen et al. [42] discussed the globalMittag-
Leffler stability and synchronization of memristor-based fractional-order neural networks, in
which the impulsive effects and delay factor are not been considered. In addition, the global
Mittag-Leffler stability implies global asymptotic stability, but global asymptotic stability
does not contain global Mittag-Leffler stability. Therefore, under the conditions of Theo-
rem 3.1, fractional master system (1) and fractional slave system (6) can achieve globally
asymptotic synchronization.
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4 An Numerical Example

In this section, a numerical example for Caputo type fractional-order BAM neural net-
works with multiple time-varying delays and impulsive effects is given to illustrate the
effectiveness and feasibility of the theoretical results. The MATLAB toolbox and modified
predictor–corrector algorithm (see [52]) will be applied to deal with the numerical simula-
tions.

Example 4.1 Consider the four-state Caputo fractional-order BAM neural network model
with multiple time-varying delays and impulsive effects described by the following state
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t xi (t) = −ai xi (t) +

2∑
j=1

bi j g j
(
y j (t)

)+
2∑
j=1

ci j g j

(
y j (t − τi j (t))

)
+ Ii , t �= tk,

�xi (tk) = −0.3
(
xi (tk)

)
, i = 1, 2; k ∈ N

+,

C
0 D

α
t y j (t) = −a j y j (t) +

2∑
i=1

b ji fi
(
xi (t)

)+
2∑

i=1

c ji fi
(
xi (t − σ j i (t))

)
+ I j , t �= tk,

�y j (tk) = −0.5
(
y j (tk)

)
, j = 1, 2; k ∈ N

+,

(24)
where α ∈ (0, 1) and

[
a1 0
0 a2

]
=
[
2 0
0 3

]
,

[
b11 b12
b21 b22

]
=
[
1 0.5
1 0.5

]
,

[
c11 c12
c21 c22

]
=
[

0.45 0.15
−0.35 0.25

]

[
τ11(t) τ12(t)
τ21(t) τ22(t)

]
=
[ | sin t | 0.5(1 + cos t)
1 + sin t | cos t |

]
,

[
σ11(t) σ12(t)
σ21(t) σ22(t)

]
=
[ | cos t | 2 sin t

sin t | cos t |
]

.

[
a1 0
0 a2

]
=
[
5 0
0 4

]
,

[
b11 b12
b21 b22

]
=
[
0.5 0.5
0.5 −1

]
,

[
c11 c12
c21 c22

]
=
[
0.15 −0.25
0.35 0.45

]
,

fi (xi ) = 1

2

(∣∣xi + 1
∣∣− ∣∣xi − 1

∣∣), i = 1, 2, g j (y j ) = 1

2

(∣∣y j + 1
∣∣− ∣∣y j − 1

∣∣),
j = 1, 2.

From above parameters, we know that τ = 2, λ(1)
ik = 0.3 ∈ (0, 2) (i = 1, 2), λ

(2)
jk = 0.5 ∈

(0, 2) ( j = 1, 2), and

L f
1 = L f

2 = Lg
1 = Lg

2 = 1, (τi j )2×2 =
[
1 1
2 1

]
, (σ j i )2×2 =

[
1 2
1 1

]
.

Choosing (24) as fractional master system, the corresponding slave system can be written as
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14 R. Ye et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t xi (t) = −ai xi (t) +

2∑
j=1

bi j g j
(
y j (t)

)+
2∑
j=1

ci j g j

(
y j (t − τi j (t))

)
+ ui (t) + Ii ,

t �= tk,

�xi (tk) = −0.3
(
xi (tk)

)
, i = 1, 2; k ∈ N

+,

C
0 D

α
t y j (t) = −a j y j (t) +

2∑
i=1

b ji fi
(
xi (t)

)+
2∑

i=1

c ji fi
(
xi (t − σ j i (t))

)
+ v j (t) + I j ,

t �= tk,

�y j (tk) = −0.5
(
y j (tk)

)
, j = 1, 2; k ∈ N

+,

(25)

In what follows, we will apply Theorems 3.1 and 3.2 to design the suitable delayed-
feedback controllers (9), such that fractional master system (24) and fractional slave system
(25) can achieve globalMittag-Leffler synchronization and globally asymptotic synchroniza-
tion.

In fact, we can choose the delayed-feedback controllers as follows:

u1(t) = −0.1e1(t) − 0.3sgn
(
e1(t)

)∣∣e1(t − 2)
∣∣,

u2(t) = −0.2e2(t) − 0.3sgn
(
e2(t)

)∣∣e2(t − 2)
∣∣,

v1(t) = −0.4e1(t) − 0.3sgn
(
e1(t)

)∣∣e1(t − 2)
∣∣,

v2(t) = −0.3e2(t) − 0.3sgn
(
e2(t)

)∣∣e2(t − 2)
∣∣.

(26)

Then, we can obtain the following fractional error system with the delayed-feedback con-
trollers (26)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t

{
ei (t)

}
= −(ai + ηi )ei (t) +

2∑
j=1

bi j g j
(
e j (t)

)+
2∑
j=1

ci j g j
(
e j (t − τi j (t))

)

− 0.3sgn
(
ei (t)

)∣∣ei (t − 2)
∣∣,

	ei (tk) = −0.3ei (tk), i = 1, 2, . . . , n; k = 1, 2, . . . ,

C
0 D

α
t

{
e j (t)

}
= −(a j + η j )e j (t) +

2∑
i=1

b ji fi
(
ei (t)

)+
2∑

i=1

c ji fi
(
ei (t − σ j i (t))

)

− 0.3sgn
(
e j (t)

)∣∣e j (t − 2)
∣∣,

	e j (tk) = −0.5e j (tk), j = 1, 2, . . . ,m; k = 1, 2, . . . ,

(27)

By computations, we get

ε1 = max
1� j�2

2∑
i=1

∣∣c ji ∣∣L f
i − β = 0.5, ε2 = max

1�i�2

2∑
j=1

∣∣ci j ∣∣Lg
j − β = 0.3,

ξ1 = min
1�i�2

⎡
⎣ai + ηi − L f

i

2∑
j=1

∣∣b ji
∣∣
⎤
⎦ = 1.1, ξ2= min

1� j�2

[
a j + η j − Lg

j

2∑
i=1

∣∣bi j ∣∣
]

= 3.3,

ω1 = max
{
ε1, ε2

}
= 0.5, ω2 = min

{
ξ1, ξ2

}
= 1.1.
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Fig. 1 Trajectories of state norm for system (27) with different fractional order. a α = 0.4. b α = 0.8

Fig. 2 State trajectories of error system (27) with different fractional order. a α = 0.4. b α = 0.8

Thus, the conditions ω2 > ω1 > 0 and (H1)–(H3) in Theorems 3.1 and 3.2 are satisfied.
For numerical simulations, the trajectories of state norm for fractional error system (27) are

depicted with different order α = 0.4 and α = 0.8 in Fig. 1, which shows that the state norm
‖e(t)‖ + ‖e(t)‖ asymptotically converges to zero. At the same time, we find an interesting
phenomenon that the convergence speed of the state norm ‖e(t)‖ + ‖e(t)‖ is faster and
faster with the increasing of the order α ∈ (0, 1) with regard to Caputo fractional derivative.
Furthermore, the asymptotic behaviors of system (27) are presented by the state trajectories
with different fractional order α = 0.4 and α = 0.8 in Fig. 2. It can be directly observed
that fractional master system (24) can achieve global Mittag-Leffler synchronization and
globally asymptotic synchronization with fractional slave system (25) under the delayed-
feedback controllers (26). Therefore, Theorems 3.1 and 3.2 are verified by means of the
numerical simulations in Figs. 1 and 2.

Remark 4.1 By choosing the suitable delayed-feedback controllers (25), we have achieved
globalMittag-Leffler synchronization andglobally asymptotic synchronization betweenmas-
ter system (24) and slave system (26). The control gain parameters can be flexibly chosen
in terms of (11). The modified predictor–corrector algorithm (see [52]) has been applied to
deal with the numerical simulations by the MATLAB toolbox. The numerical simulations in
Example 4.1 further confirm the feasibility and effectiveness of the theoretical results.
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5 Conclusions

In this paper, the globalMittag-Leffler synchronization and globally asymptotic synchroniza-
tion for a class of Caputo fractional BAM with multiple time-varying delays and impulsive
effects are investigated. The sufficient conditions are derived to ensure the global Mittag-
Leffler synchronization and globally asymptotic synchronization based on delayed-feedback
control strategy and Lyapunov functional approach, which are described as the algebraic
inequalities in terms of network parameters. The control gain constants can be searched in a
wider range following the proposed synchronization conditions. The differentiability of the
neuron activation functions and time-varying delay functions in the addressed fractional net-
work system are not necessarily required. Therefore, the proposed results are more general
and less conservative than the ones in the existing literature. A numerical example is also
presented to illustrate the feasibility and effectiveness of the theoretical results.
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