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Abstract In this article, we investigate the problem of finite time stabilization (FTS) of
neutral Hopfield neural networks (NHNNs) with mixed delays including infinite distributed
time delays. Firstly, general conditions on the control law are established to ensure the FTS of
a neutral class of NN investigated here. Then, some specific conditions in the form of linear
matrix inequalities which can be numerically checked are derived by constructing different
kinds of controllers which include the delay-dependent and delay-free controller. Secondly,
for practical applications, based on the Lyapunov–Krasovskii-functional analysis, we design
a continuous controller able to stabilize in finite time theNHNNs and overcome the chattering
phenomena simultaneously. Thirdly, the restriction of the boundedness of activation functions
is removed. Finally, three numerical examples accompanied by graphical illustrations are
given to illuminate our main results.

Keywords Hopfield neural networks · Finite time stabilization · Time delay systems · LMI ·
Neutral systems · Delay-free controller · Lyapunov function

1 Introduction

The neural network (NN) is a model inspired by biological mechanisms. It is currently
considered as oneof the bestmethods of sequential treatment and this explains its usefulness in
many areas such that memory design, pattern recognition problems, generalized optimization
problems, associative memories [4,5,20,27,34,59]. Theoretical considerations have shown
that NN should be regarded as an information processing system [49]. Furthermore, Michel
et al. reported in [49] that a detailed study of the stability of large-scale dynamical systems is
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required for the design of NN-based computer systems. Therefore, the study of the stability
of NNs is of major interest for many applications such as the traveling salesman problem
[26], the parallel-operating A/D converter [64] or the security of communications [61]. It is
well known that the time delay often occurs in the implementation of NNs and causes a high
complexity in their dynamical behaviors. It can create some oscillations and bifurcations
which explain the intensity of research around the effect of the delays on the stability of NNs
[2,6,7,9,35,37,39,80].

The usual stability analysis of NNs requires the asymptotic convergence. It can imply a
large time for obtaining the desired precisionwhich can exceed the scale of human operations.
So, it can be interesting that the physical process achieves the convergence in a specific time
for real applications. In this context, the concept of finite time stability (FTS) occurs naturally.
The FTSmeans that the solutions of the system reach the equilibrium point in finite time. The
time function indicating when the trajectories reach the equilibrium point, variously known
as the settling-time, has a great importance in practice. Historically, Haimo was the first to
publish an article about the stability in finite time in [23]. It was not until the late 90’s that
this theory developed by Bhat and Bernstein [12–14] has reached a certain maturity. The
above results have been extended to a general class of systems, namely the non-autonomous
class of differential equations, in [51]. In practice, this concept of FTS is encountered in
control problems such that fixed-time observer [46,47], secure communication [53], finite-
time output feedback stabilization of the double integrator [11] or the finite time attitude
tracking for a spacecraft [18]. Recently, the FTS of NNs with discrete time delays has been
widely investigated in [41–43,56,57,66–69]. On one hand, despite the fact that discrete
time delays provide a good approximation for modeling the signal propagation in NNs, this
advantage is no longer onewhen a large number of neurons is taken into account [77]. Indeed,
NNs have a spatial extent because of parallel pathways [26]. This behavior of NNs renders the
use of discrete time delays irrelevant [77]. Therefore, the concept of continuously distributed
delay occurs naturally. On the other hand, the class of high-order NNs is more effective than
the lower order class due to its faster convergence rate, higher fault tolerance and greater
storage capacity [65]. Therefore, it has been widely used in many applications such as the
resolution of optimization problems, identification of dynamical systems, robotics and other
fields [22,29,52,55].

It should be pointed out that in practice many delayed NNs can be modeled as dynamical
systems, named neutral systems, where the differential expression contains the derivative of
the past state [3] such as controlled constrained manipulators [32]. Furthermore, it has been
proved that it is difficult to characterize the properties of a neural reaction process without
having information about the derivative of the past state that better models the dynamics
of complex neural reactions [3]. The above discussion proves that it is significant to study
high-order neutral Hopfield NNs with mixed delays.

Despite the design of many controllers for the finite time stabilization of different kinds of
NNs, there is no general controller able to guarantee the finite time stabilization of a general
class of NHNNs with mixed delays. When NNs are used for the resolution of optimization
problems with constraints such that constrained linear programming problems [21], the acti-
vation functions which are modeled by diode-like exponential-type functions are unbounded
[19] for dealingwith the constraints [77]. So far, there is no result available yet to deal with the
finite time stabilization problem of NHNNs with unbounded activation functions. Motivated
by the above discussion, we investigate in our article the finite time stabilization problem
for a general class of high-order NHNNs with infinite distributed delays and NHNNs with
unbounded activation functions.

The contributions of this article is as follows:
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• inspired by the results in [50] and the FTS theory of differential equations, new sufficient
conditions are provided to ensure the finite time stabilization of high-order NHNNs with
infinite distributed delays;

• two different kinds of finite time controller are built by using the LMI approach which
include a delay-dependent controller for NHNNs with unbounded activation functions
and a delay-free controller for high-order NHNNs with bounded activation functions
which is more suited for real physical applications because the knowledge of the delays
is not necessary.

• for better applications, based on the Lyapunov–Krasovskii-functional (LKF) analysis,
a non-chattering controller is designed to stabilize in finite time the NHNNs with
unbounded activation functions.

The rest of the article is organized as follows. In Sect. 2, some preliminaries useful for the
study of a class of NHNNs are provided. The finite time stabilization of a class of NHNNs is
studied in Sect. 3 where different kinds of FTS controller are designed. Then, three examples
are given in Sect. 4 to prove the feasibility and the effectiveness of our theoretical results.
Finally, some concluding remarks and open problem are addressed in Sect. 5.

2 Preliminaries

Throughout this paper, we use the following notations:

• C([a, b], R
n) stands for the space of the continuous functions φ : [a, b] → R

n

equipped with the uniform norm ‖φ‖ = supa≤s≤b ‖φ(s)‖;
• a function ν : R+ → R+ belongs to the classK if ν(0) = 0, ν is continuous and strictly

increasing;
• 〈., .〉 stands for the inner product of Euclidean space;
• λmax (A) and λmin(A) stand for the maximum eigenvalue of A and the minimum eigen-

value of A respectively;
• C∞

c (Rn) stands for the space of bump functions;
• In stands for the n−dimensional identity matrix.

Now, we consider the following NHNN with mixed delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = −ci xi (t) +
n∑

j=1
ai j f j

(
x j (t)

) +
n∑

j=1
bi j f j

(
x j (t − τ(t))

)

+
n∑

j=1
ei j

t∫

−∞
k j (t − s)g j

(
x j (s)

)
ds

+
n∑

j=1
di j h j

(
ẋ j (t − σ(t))

) + Ji , t > 0

x(s) = φ(s), s ∈ (−∞, 0]

(1)

where x(t) = (x1(t), . . . , xn(t))T stands for the neuron state; ci > 0, ai j , bi j ,
ei j and di j stand for the interconnection weight coefficients of the neurons; K (.) =
diag

(
k1(.), . . . , kn(.)

)
and J = (J1, .., Jn)T stand for the delay kernel and an exter-

nal input vector respectively; the continuous activation functions f j , g j and h j satisfies
f j (0) = g j (0) = h j (0) = 0; τ(.) and σ(.) stand for the time-varying transmission
delays with 0 ≤ τ(t) ≤ τ , 0 ≤ σ(t) ≤ σ and σ̇ (t) ≤ σ ∗ < 1. The initial condition
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φ ∈ C1
b((−∞, 0],Rn) where C1

b((−∞, 0],Rn) is the space of the continuous and bounded
functions equipped with the following norm

‖φ‖σ = max

{

sup
s≤0

‖φ(s)‖, sup
−σ≤s≤0

‖φ̇(s)‖
}

.

Remark 1 Compared with [34,62,70,78,80], system (1) is more general. In fact, the delays
considered here contain an infinite distributed delay which causes a problem for the choice of
an admissible Banach [6]. Furthermore, the neutral term in the NN investigated here renders
the system more realistic because it is difficult to characterize the properties of a neural
reaction process without having information about the derivative of the past state [3].

Let us introduce the following assumptions:

(H1) there exist constants l−i j , l+i j , i = 1, 2, 3 such that

l−1 j
≤ | f j (x) − f j (y)|

x − y
≤ l+1 j

, l−2 j
≤ |g j (x) − g j (y)|

x − y
≤ l+2 j

,

l−3 j
≤ |h j (x) − h j (y)|

x − y
≤ l+3 j

for all x, y ∈ R and j = 1, . . . , n;
(H2) for j = 1, . . . , n, the delay kernels k j : R+ → R+, are bump functions satisfying

+∞∫

0

k j (s)ds = k j .

Remark 2 Under assumptions (H1) and (H2), the existence of solutions of the system (1) is
ensured as it is explained in [28]. However, the theorems of continuation useful for defining
the asymptotic stability and the FTS are not easy for neutral systems, see for instanceTheorem
2.4 (page 278) in [24] and [25]. It should be pointed out that, in the assumption (H1), the
constants l+j and l j can be negative or positive and then (H1) allows Lipschitz functions

if we take l−j = −l+j < 0. Therefore (H1) is more general and weaker than the Lipschitz
condition.

Some useful lemmas and definitions are given below.

Lemma 1 [66] If a1, . . . , an, r1, r2 ∈ R with 0 < r1 < r2, then the following inequality
holds

[
n∑

i=1

|ai |r2
] 1

r2

≤
[

n∑

i=1

|ai |r1
] 1

r1

.

Let Ω be an open subset of C1
b ((−∞, 0],Rn) such that 0 ∈ Ω .

Definition 1 [50] The equilibrium point, if it exists, of system (1) is finite time stable (FTS)
if:

(i) the equilibrium of system (1) is Lyapunov stable;
(ii) for any state φ(s) ∈ Ω, there exists 0 ≤ T (φ) < +∞ such that every solution of system

(1) satisfies x(t, φ) = 0 for all t ≥ T (φ).
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The functional

T0(φ) = inf
{
T (φ) ≥ 0 : x(t, φ) = 0, ∀t ≥ T (φ)

}

is called the settling-time of system (1).

Now, we introduce the following notations:

l1i = max
{
|l−1i |, |l+1i |

}
, l2i = max

{
|l−2i |, |l+2i |

}
, l3i = max

{
|l−3i |, |l+3i |

}
;

L1 = diag
(
l11 , . . . , l1n

)
, L2 = diag

(
l21 , . . . , l2n

)
, L3 = diag

(
l31 , . . . , l3n

) ;
A = (

ai j
)

n×n , B = (
bi j

)

n×n ,C = diag (c1, . . . , cn) , D = (
di j

)

n×n ;
E = (

ei j
)

n×n , K = diag(k1, . . . , kn), 1 ≤ i, j ≤ n;
f (x) = ( f1(x1), . . . , fn(xn))

T , g(x) = (g1(x1), . . . , gn(xn))
T ,

h(x) = (h1(x1), . . . , hn(xn))
T ;

and the operator

Dφ = φ(0) − D h(φ(−σ(.))). (2)

The following lemma is an extension of [50, Proposition 4].

Lemma 2 If there exist three functions ν1, ν2 and r of classK and a continuous functional
V : Ω → R+ such that:

(i) ν1 (‖Dφ‖) ≤ V (φ) ≤ ν2(‖φ‖);
(ii) V̇ (φ) ≤ −r (V (φ)) with

ε∫

0

dz
r(z) < ∞, ∀ε > 0, φ ∈ Ω;

then system (1) is FTS with a settling-time satisfying the inequality T0(φ) ≤ ∫ V (φ)

0
dz
r(z) . In

particular, if r(V ) = λV ρ where λ > 0, ρ ∈ (0, 1), then the settling-time satisfies the
inequality

T0(φ) ≤
V (φ)∫

0

dz

r(z)
= V 1−ρ(0, φ)

λ(1 − ρ)
. (3)

Proof Theorem4.1 (page 287) in [24] implies that the operatorDφ = φ(0)−D h(φ(−σ(.)))

is stable. Then, Theorem 7.1 (page 297) in [24] ensure that the system (1) is asymptotically
stable.Moreover, under the conditions of Lemma2, the second part of the proof of Proposition
4 in [50] remains valid for system (1) which achieves the proof. �
Remark 3 In [40,58,60,71,81], the FTS is studied for NNs with mixed delays but without
involving a neutral term. In our work, some results are given for the FTS of a class of neutral
NNs with mixed delays. Thus, our results extend and complement the previous works.

In the next lemma, we give sufficient conditions in the form of LMIs that ensure the
existence and uniqueness of an equilibrium point of system (1)

Lemma 3 Under assumptions (H1) − (H2), if there exist a matrix P > 0, two positive
scalars εi , i = 1, 2 and two diagonal matrices R1 and R2 such that the following LMI
holds:

Π =
⎛

⎝
Π11 PA + PB PEK
∗ −ε1R1 0
∗ ∗ −ε2R2

⎞

⎠ < 0 (4)
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where

Π11 = −PC − CP + ε1L
T
1 R1L1 + ε2L

T
2 R2L2

then system (1) has an unique equilibrium point.

Proof In order to establish the existence and uniqueness of the equilibrium point of system
(1) based on the homomorphism theory, we consider the following map

H(x) = −Cx + (A + B) f (x) + EKg(x) + J.

If x∗ is an equilibrium point of system (1) then H(x∗) = 0. So, it is sufficient to prove that
H(x) is a homomorphism onRn for proving the existence and uniqueness of the equilibrium
point of system (1). If we replace A and B by A + B and EK respectively in the proof of
Theorem 1 in [15] we obtain immediately that system (1) has a unique equilibrium point
which achieves the proof. �
Remark 4 It is clear that the condition (4) is not a standard LMI. It is worth noting that if
we fix the parameters εi , i = 1, 2 then the inequality (4) can be transformed into a standard
LMI and then can be easily solved by using the Matlab LMI toolbox.

3 Main Results

In this section, the finite time stabilization of NHNNs with mixed delays is considered.
Assume that x∗ = (x∗

1 , . . . , x∗
n )

T is an equilibrium point of system (1). By a simple
transformation

z(t) = x(t) − x∗

we can shift the equilibrium point x∗ to the origin. If in addition we add the control variable
u ∈ R

n , system (1) can be rewritten in this z−form as follows
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ż(t) = −Cz(t) + A F(z(t)) + B F(z(t − τ(t))) + E
t∫

−∞
K (t − s) G(z(s))ds

+D H(ż(t − σ(t))) + u, t > 0,

z(s) = φ(s) − x∗, s ∈ (−∞, 0]
(5)

where u = (u1, . . . , un)T and

F(z) = f (z + x∗) − f (x∗), G(z) = g(z + x∗) − g(x∗);
H(z) = h(z + x∗) − h(x∗), K (.) = diag (k1(.), . . . , kn(.)) .

The state feedback control is supposed to be of the following form

u(z) = u(z) + ǔ(z) (6)

where

u(z) = (u1 (z) , . . . , un (z))T , ǔ(z) = (
ǔ1 (z) , . . . , ǔn (z)

)T
.

Now, sufficient general conditions on the state feedback control are established to ensure
the finite time stability of the closed-loop system (5)–(6).
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Theorem 1 Under conditions of Lemma 3, if there exist three symmetric positive definite
matrices P, Q1 and Q2 and positive constants ε, 0 < μ < 1 and δ such that

−PC − CP + ε−1PAQ−1
1 AT P + εLT

1 Q1L1 − Q2 < 0; (7)

〈PB|F(z(t − τ(t)))|, |z(t)|〉 + 〈PD|H(ż(t − σ(t)))|, |z(t)|〉

+
〈

PE

t∫

−∞
K (t − s) |G(z(s))| ds, |z(t)|

〉

+ z(t)T P u(z(t)) ≤ −1

2
z(t)T Q2z(t); (8)

z(t)T P ǔ(z(t)) ≤ − δ

2

n∑

i=1

|zi (t)|μ + 1; (9)

then the closed-loop system (5)–(6) is FTS and the settling-time satisfies

T0(φ) ≤ 2λmax(P)‖φ‖1−μ

δ(1 − μ)
.

Proof Consider the Lyapunov function

V (z(t)) = z(t)T Pz(t). (10)

Calculating the derivative of (10) along the trajectories of the closed-loop system (5)–(6),
we obtain

V̇ (t) = 2z(t)T Pż(t)

≤ −z(t)T (PC + CP)z(t) + 2 〈PD|H (ż (t − σ(t))) |, |z(t)|〉
+ 2 〈PA|F(z(t))|, |z(t)|〉 + 2 〈PB |F(z(t − τ(t))| , |z(t)|〉

+ 2

〈

PE

t∫

−∞
K (t − s)|G(z(s))|ds, |z(t)|

〉

+ 2z(t)T P u(z(t)) (11)

Since

2 〈PA |F(z(t))| , |z(t)|〉 ≤ ε−1z(t)T P AQ−1
1 AT P z(t) + εF(z(t))T Q1 F(z(t)). (12)

It follows from (7)–(12) that

V̇ (t) ≤ z(t)T
[
−PC − CP + ε−1PAQ−1

1 AT P + εLT
1 Q1L1 − Q2

]
z(t)

+ 2z(t)T P ǔ(z(t))

≤ 2z(t)T P ǔ(z(t)) ≤ −δ

n∑

i=1

|zi (t)|μ+1 (13)

Since 0 < μ < 1, we get the following inequality

−
[

n∑

i=1

|zi (t)|μ+1

] 1
μ+1

≤ −
[

n∑

i=1

|zi (t)|2
] 1

2

(14)

from Lemma 1. So, we obtain

V̇ (t) ≤ −r (V (t))
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where

r (s) = δ

λmax (P)
μ+1
2

s
μ+1
2 .

Since
ε∫

0

ds

r(s)
= 2ε

1−μ
2

δλ
− (1+μ)

2
max (P)(1 − μ)

< +∞ (15)

for all ε > 0 and the condition (i) in Lemma 2 is ensured from (H1), we obtain fromLemma 2
that the closed-loop system (5)–(6) is FTS and T0(φ) satisfies

T0(φ) ≤ 2V
1−μ
2 (0)

δλ
− (1+μ)

2
max (P)(1 − μ)

≤ 2λmax(P)‖φ‖1−μ

δ(1 − μ)
.

�
Remark 5 The results obtained in [40,58,60,71,74,76,79,81] use the L1−norm and fail for
the L2−norm [76]. As L2 ⊂ L1, the settling-time obtained in our work may be smaller than
that given in previous works which proves the advantage of our results.

In the following, an explicit state feedback control will be designed.

3.1 Finite Time Stabilization via a Delay-Dependent Controller

In this subsection, we develop some theoretical results of finite time stabilization of system
(5) where we design a state feedback control able to ensure the FTS of a class of NHNNs
with infinite distributed delay and unbounded activation functions.

Theorem 2 Under conditions of Lemma 3, if there exist constants ε > 0, α1 > 0 and two
symmetric matrices P > 0, Q1 > 0, such that

−PC − CP + ε−1PAQ−1
1 AT P + εLT

1 Q1L1 − 2α1P < 0 (16)

then the closed-loop system (5)–(17) is FTS where

u(z(t))=−α1z(t) − BL1 sign(z(t)) |z(t − τ(t))| − EL2 sign(z(t))

t∫

−∞
K (t − s) |z(s)|ds

− DL3 sign(z(t))|ż(t − σ(t))| − α2 sign(z(t))|z(t)|μ (17)

with 0 ≤ μ < 1, α2 > 0 and the settling-time satisfies

T0(φ) ≤ λmax(P)‖φ‖1−μ

α2λmin(P)(1 − μ)
.

Proof Let

u(z(t))=−α1z(t) − BL1 sign(z(t)) |z(t − τ(t))| − EL2 sign(z(t))

t∫

−∞
K (t − s) |z(s)|ds

− DL3 sign(z(t)) |ż(t − σ(t))| ,
ǔ(z(t)) = −α2 sign(z(t))|z(t)|μ.
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From (H1), we have

〈PB |F(z(t − τ(t)))| , |z(t)|〉 + 〈PD |H(ż(t − σ(t)))| , |z(t)|〉

+ z(t)T P u(z(t)) +
〈

PE

t∫

−∞
K (t − s)| G(z(s)|ds, |z(t)|

〉

≤ −α1z(t)
T P z(t)

and

2z(t)T P ǔ(z(t)) = −2α2z(t)
T P sign(z(t))|z(t)|μ ≤ −2α2λmin(P)

n∑

i=1

|zi (t)|μ+1.

Therefore, by taking Q2 = 2α1 In and δ = 2λmin(P)α2, we are in the conditions of applica-
tion of Theorem 1 and this achieves the proof. �
Remark 6 The controller (17) can only be used if the time-varying delays τ(t) and σ(t)
are known which is not an easy task in practice [30]. This is the reason why we develop in
Sect. 3.2 a delay-free controller when the activation functions are supposed to be bounded.

Corollary 1 Under conditions of Lemma 3, if there exist positive constants ε, μ < 1, α1

and p such that

−p(C + CT ) + ε−1 p2AT A + εLT
1 L1 − 2α1 p < 0 (18)

then the closed-loop system (5)–(17) is FTS. Moreover, the settling-time satisfies

T0(φ) ≤ ‖φ‖1−μ

α2(1 − μ)
.

If we set P = pIn , the proof of Corollary 1 is straightforward and thus it is omitted.

Remark 7 The conditions of Corollary 1 are less conservative than that established in [63,72–
76]. Indeed, the settling-time obtained in our work is independent of p and consequently the
same approximation of the settling-time can be conserved equipped with less conservative
conditions than the above-mentioned results.

The approach given in [67] for studying the concept of FTS of NNs requires not only the
Lipschitz condition of the activation functions but also the boundedness of these functions.
For removing these restrictions and improving the results given in [67], we establish the
following corollary where the activation functions are not necessary bounded.

Corollary 2 Under assumptions (H1) − (H2), if there exist a matrix P > 0, non negative
scalars ε, εi , i = 1, 2, p, α1 and two diagonal positive matrices R1 and R2 such that

Ψ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ11 pA εLT
1 0 0 0

∗ −ε In 0 0 0 0
∗ ∗ −ε In 0 0 0
∗ ∗ ∗ Π11 PA + PB PEK
∗ ∗ ∗ ∗ −ε1R1 0
∗ ∗ ∗ ∗ ∗ −ε1R2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0 (19)

with

Ψ11 = −p(C + CT ) − 2pα1 In
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1654 C. Aouiti, F. Miaadi

then system (1) has an unique equilibrium point and the closed-loop system (5)–(17) is FTS
and the settling-time satisfies

T0(φ) ≤ ‖φ‖1−μ

α2(1 − μ)
.

Proof Let

Ξ =
⎛

⎝
−p(C + CT ) − 2pα1 In pA εLT

1∗ −ε In 0
∗ ∗ −ε In

⎞

⎠ (20)

Since Ψ = diag(Ξ, Π) < 0, we have Π < 0 and consequently system (1) has an unique
equilibrium point.

Furthermore, by pre and post multiplying the inequality (18) by diag(In,
1√
ε
In,

1√
ε
In)

we obtain from Schur complement Lemma that Ξ < 0 is equivalent to (18) which achieves
the proof. �
Remark 8 It should be pointed out that the inequality (16) of Theorem 2 is not linear and
consequently difficult to solve. However, Corollary 2 uses the inequality (19) to determine
the control gain α1 which can be turned into a LMI by:

1. letting α = pα1 in (19);
2. finding α and p by solving the LMI with the Matlab LMI Toolbox;
3. deducing the value α1.

Remark 9 In [78], stabilization of NNs was investigated but the systems are without delay.
On the one hand, the class of delayed NNs have more complex dynamic behaviors compared
with NNs without delay [35,36,38]. On the other hand, it is delicate to design a Lyapunov
functional satisfying the derivative condition for FTS of delayed system [50]. In our article,
the stabilization of NNs with mixed delays is investigated which renders the results more
general compared with the above-mentioned ones.

3.2 Finite Time Stabilization via a Delay-Free Controller

In this subsection, we apply the theoretical results of Sect. 3.1 for the design of a delay-free
controller able to stabilize in finite time system (5) and the following high-order NHNN
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = −ci xi (t) +
n∑

j=1
ai j f j

(
x j (t)

) +
n∑

j=1

n∑

k=1
Ti jk fk (xk (t − τ(t))) f j

(
x j (t − τ(t))

)

+
n∑

j=1
bi j f j

(
x j (t − τ(t))

) +
n∑

j=1
di j h j

(
ẋ j (t − σ(t))

)

+
n∑

j=1
ei j

t∫

−∞
k j (t − s)g j

(
x j (s)

)
ds + ui ,

x(s) = ψ(s), s ∈ (−∞, 0]
(21)

where Ti jk stand for the second-order synaptic weights.
Let use introduce the following assumption:

(H3) there exist constants ω1i , ω2i and ω3i such that

| fi (x)| ≤ ω1i , |gi (x)| ≤ ω2i , |hi (x)| ≤ ω3i , i = 1, . . . , n.
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Let us denote

ω1 = max
1≤i≤n

{ω1i }, ω2 = max
1≤i≤n

{ω2i }, ω3 = max
1≤i≤n

{ω3i }
Ω1 = diag(ω1, . . . , ω1), Ω2 = diag(ω2, . . . , ω2), Ω3 = diag(ω3, . . . , ω3)

and x∗ = (x∗
1 , . . . , x∗

n )
T an equilibrium point of system (21) if it exists. By a simple

transformation z(t) = x(t) − x∗, we can shift the equilibrium point x∗ to the origin. Thus,
system (21) with ui = 0 leads to

żi (t) = −ci zi (t) +
n∑

j=1

ai j Fj
(
z j (t)

) +
n∑

j=1

bi j Fj
(
z j (t − τ(t))

)

+
n∑

j=1

n∑

k=1

Ti jk
[[

f j
(
x j (t − τ(t))

)

− f j (x
∗
j )
]
fk (xk(t − τ(t))) + f j (x

∗
j )
[
fk (xk(t − τ(t))) − fk(x

∗
k )
]]

+
n∑

j=1

di j Hj (ż j (t − h(t))) +
n∑

j=1

ei j

∫ t

−∞
k j (t − s)Hj

(
z j (s)

)
ds

= −ci zi (t) +
n∑

j=1

ai j Fj
(
z j (t)

) +
n∑

j=1

bi j Fj
(
z j (t − τ(t))

)

+
n∑

j=1

n∑

k=1

Ti jk
[
Fj

(
z j (t − τ(t))

)
fk (xk(t − τ(t))) + f j (x

∗
j )Fk (zk(t − τ(t)))

]

+
n∑

j=1

di j Hj (ż j (t − h(t))) +
n∑

j=1

ei j

∫ t

−∞
k j (t − s)G j

(
z j (s)

)
ds

= −ci zi (t) +
n∑

j=1

ai j Fj
(
z j (t)

) +
n∑

j=1

[
bi j +

n∑

k=1

(
Ti jk fk (xk(t − τ(t)))

+ Tik j fk(x
∗
k )
)]

Fj
(
z j (t − τ(t))

)

+
n∑

j=1

di j ż j (t − h(t)) +
n∑

j=1

ei j

∫ t

−∞
k j (t − s)Fj

(
z j (s)

)
ds

= −ci zi (t − σ(t)) +
n∑

j=1

ai j Fj
(
z j (t)

) +
n∑

j=1

[

bi j

+
n∑

k=1

(
Ti jk + Tik j

)
ξi jk

]
Fj

(
z j (t − τ(t))

)

+
n∑

j=1

di j Hj (ż j (t − h(t))) +
n∑

j=1

ei j

∫ t

−∞
k j (t − s)G j

(
z j (s)

)
ds

where

ξi jk =
{ Ti jk

Ti jk+Tik j
fk (xk(t − τ(t)) + Tik j

Ti jk+Tik j
fk(x∗

k ) if Ti jk + Tik j �= 0

0 if Ti jk + Tik j �= 0
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Therefore, the z-form of system (21) can be written as follows
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ż(t) = −Cz(t) + A F(z(t)) + Γ T T ∗ F(z(t − τ(t))) + B F(z(t − τ(t))

+D H(ż(t − σ(t))) + E
t∫

−∞
K (t − s) G(z(s))ds + u

z(s) = ψ(s) − x∗, s ∈ (−∞, 0]
(22)

where u = (u1, . . . , un)T and

Ti = [Ti jk]n×n, T ∗ = [T1 + T T
1 , . . . , Tn + T T

n ]T , ξi j = [ξi j1, . . . , ξi jn]T ;
ξi = [ξ Ti1, . . . , ξ Tin]T , Γ = [ξ1, . . . , ξn]T .

We can now state the main result of this subsection.

Theorem 3 Under assumptions (H1) − (H2) − (H3), if there exist positive scalars ε, p, α1

such that the following LMI holds:

Ω =
⎛

⎝
−p(C + CT ) − 2pα1 In pA εLT

1∗ −ε In 0
∗ ∗ −ε In

⎞

⎠ < 0 (23)

then the closed-loop system (22)–(24) is FTS where

u(z(t)) = −α1z(t) − (B + T ∗Ω1)Ω1 sign(z(t)) − EKΩ2 sign(z(t)) − DΩ3 sign(z(t))

− α2 sign(z(t))|z(t)|μ (24)

with the settling-time satisfies

T0(φ) ≤ ‖φ‖1−μ

α2(1 − μ)
.

Proof Let

u(z(t)) = −α1z(t) − (B + T ∗Ω1)Ω1 sign(z(t)) − EKΩ2 sign(z(t)) − DΩ3 sign(z(t))

ǔ(z(t)) = −α2 sign(z(t))|z(t)|μ

From (H3), we have
〈
P(B + Γ T T ∗) |F(z(t − τ(t)))| , |z(t)|

〉

+ 〈PD |H(ż(t − σ(t)))| , |z(t)|〉 + z(t)T P u(z(t))

+
〈

PE

t∫

−∞
K (t − s) G(z(s))ds, |z(t)|

〉

≤ −α1z(t)
T P z(t)

and

2z(t)T P ǔ(z(t)) = −2α2z(t)
T P sign(z(t))|z(t)|μ

≤ −2α2λmin(P)

n∑

i=1

|zi (t)|μ+1.

The rest of the proof is similar to the proof of Theorem 2. �
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Remark 10 The criterion given in [40,58,60,71–74,76,79,81] that ensures the FTS of NNs
requires the boundedness of the derivative of the time-varying delay and fails when the time-
varying delay is not differentiable even without neutral delay. The results given in our article
overcome these difficulties and remove this restriction because the NNs studied are subjected
to non differentiable time-varying delays which proves the advantage of our approach.

Remark 11 Thanks to their ability to solve optimization problems, many results around the
stability of lower order class of NNs are established [8,48]. However, the authors of [17]
have proved that this class of NNs can lead to the poorest quality of solution with a large
complexity as determined by the order of the NNs. Thus, Theorem 3 can also be considered
as a basis for the construction of neutral high-order NNs with infinite distributed delays more
effective in the resolution of optimization problems thanks to the second order synaptic terms
Ti jk [6].

Now, based on 1-norm analytical approach, the assumption (H3) is removed and a new
delay-free controller is designed to ensure the FTS of system (5) for the unbounded case
where we impose the following assumption:

(H4) There are positive constants τ̄1, τ̄2, σ̄1 and σ̄2 such that τ(.) ≤ τ̄1, τ̇ (.) ≤ τ̄2 < 1
and σ(.) ≤ σ̄1, σ̇ (.) ≤ σ̄2 < 1

The delay-free controller is constructed as follows:

ui (z(t)) = −λ1i zi (t) − λ2i żi (t) − λ3i sign(zi (t)) (25)

where λki , k = 1, 2, 3, i = 1, . . . n stand for the control strength to be determined.

Theorem 4 Under assumptions (H1) − (H2) and (H4), if λ3i > 0 and λ1i , λ2i satisfy the
following inequalities

λ1i > −ci +
n∑

j=1

|a ji ||li1| +
n∑

j=1

1

1 − τ̄2
|b ji ||li1| +

n∑

j=1

k j |e ji ||li2|; (26)

λ2i >

n∑

j=1

1

1 − σ̄2
|d ji ||li3| (27)

then the closed-loop system (5)–(25) is FTS.

The proof of Theorem 4 is inspired by the proof of Theorem 1 in [71,74]

Proof Consider the Lyapunov–Krasovskii functional as follows:

V (zt ) =
4∑

i=1

Vi (zt ). (28)

where

V1(zt ) =
n∑

i=1

|zi (t)|;

V2(zt ) =
n∑

i=1

n∑

j=1

1

1 − τ̄2
|bi j |l j1

t∫

t−τ(t)

|z j (s)|ds;
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V3(zt ) =
n∑

i=1

n∑

j=1

|ei j |l j2
0∫

−∞

t∫

t+s

k j (−s)|z j (u)|duds;

V4(zt ) =
n∑

i=1

n∑

j=1

1

1 − σ̄2
|di j |l j3 |

t∫

t−σ(t)

|ż j (s)|ds;

Calculating the derivative of (28) along the trajectories of the closed-loop system (5)–(25),
we obtain

V̇1(zt ) =
n∑

i=1

sign(zi (t))
[

− ci zi (t) +
n∑

j=1

ai j f j
(
z j (t)

) +
n∑

j=1

bi j f j
(
z j (t − τ(t))

)

+
n∑

j=1

di j h j
(
ż j (t − σ(t))

) +
n∑

j=1

ei j

t∫

−∞
k j (t − s)g j

(
z j (s)

)
ds

− λ1i zi (t) − λ2i żi (t) − λ3i sign(zi (t))
]

(29)

It is obtained from (H1) and the approach used in [76] that

V̇1(zt ) ≤
n∑

i=1

[
− (

ci + λ1i
) |zi (t)| +

n∑

j=1

|ai j l j1 ||z j (t)| +
n∑

j=1

|bi j l j1 ||z j (t − τ(t)))|

+
n∑

j=1

|di j l j3 ||ż j (t − σ(t)) |

+
n∑

j=1

|ei j l j2 |
t∫

−∞
k j (t − s)|z j (s)|ds − λ2i |żi (t)| − λ3i λ̄i

]
(30)

where

λ̄i =
{
1 if zi (t) �= 0

0 otherwise
(31)

From (H1), (H2) and (H4), one has

V̇2(zt ) =
n∑

i=1

n∑

j=1

1

1 − τ̄2
|bi j l j1 ||z j (t)| −

n∑

i=1

n∑

j=1

1 − τ̇ (t)

1 − τ̄2
|bi j l j1 ||z j (t − τ(t))|

≤
n∑

i=1

n∑

j=1

1

1 − τ̄2
|bi j l j1 ||z j (t)| −

n∑

i=1

n∑

j=1

|bi j l j1 ||z j (t − τ(t))| (32)

V̇3(zt ) =
n∑

i=1

n∑

j=1

|ei j l j2 |k j |z j (t)| −
n∑

i=1

n∑

j=1

|ei j l j2 |
t∫

−∞
k j (t − s)|z j (s)|ds (33)

V̇4(zt ) =
n∑

i=1

n∑

j=1

1

1 − σ̄2
|di j l j3 ||ż j (t)| −

n∑

i=1

n∑

j=1

1 − σ̇ (t)

1 − σ̄2
|di j l j1 ||ż j (t − σ(t))|
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≤
n∑

i=1

n∑

j=1

1

1 − σ̄2
|di j l j3 ||ż j (t)| −

n∑

i=1

n∑

j=1

|di j l j3 ||ż j (t − σ(t))| (34)

It follows from (29)–(34) that

V̇ (zt ) ≤
n∑

i=1

[(
− (

ci + λ1i
) +

n∑

j=1

|a ji ||li1| +
n∑

j=1

1

1 − τ̄2
|b ji ||li1| +

n∑

j=1

k j |e ji ||li2|
)
|zi (t)|

+
( n∑

j=1

1

1 − σ̄2
|d ji ||li3| − λ2i

)
|żi (t)| − λ3i λ̄i

]

(35)

When ‖z(t)‖1 �= 0, we deduce that

V̇ (zt ) ≤ −
n∑

i=1

λ− < 0 (36)

where λ− = min1≤i≤n{λ3i }. Therefore, from the proof of Theorem 1 in [76], system (5) is
FTS via (25) which achieves the proof. �
Remark 12 On the one hand, the exact values of the delay is often poorly known in practice
because it is difficult to assess the delays and most of the time, only approximate values are
available [30]. On the other hand even the real time operating system can only guarantee
a maximum values for the time-varying delay [30]. For this, the delay-free controllers (24)
and (25) does not use the knowledge of the time-varying delays are more suitable for real
applications.

The controllers (24) and (25) arewithout delaywhichmake themmore suitable in practice.
However, these controllers contain the sign function and then the chattering phenomena will
be appears [73]. For this, based on the results obtained in[74,79], we design the delay-free
non chattering control as follows:

ui (z(t)) = −λ1i zi (t) − λ2i żi (t) − λ3i sat (zi (t),Δ) (37)

where λki , k = 1, 2, 3 stand for the control strength to be determined and

sat (zi (t)) =

⎧
⎪⎨

⎪⎩

1 if
z j (t)
Δ

≥ 1

−1 if
z j (t)
Δ

≤ −1
z j (t)
Δ

otherwise

(38)

with Δ > 0.

Corollary 3 Under assumptions (H1) − (H2) and (H4), if λ3i > 0 and λ1i , λ2i satisfy the
following inequalities

λ1i > −ci +
n∑

j=1

|a ji ||li1| +
n∑

j=1

1

1 − τ̄2
|b ji ||li1| +

n∑

j=1

k j |e ji ||li2|; (39)

λ2i >

n∑

j=1

1

1 − σ̄2
|d ji ||li3| (40)

then the closed-loop system (5)–(37) is FTS.
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Proof The proof is similar to the one of Theorem 4 so it is omitted her . �
Remark 13 If the activation functions are discontinuous, system (5) becomes a differential
equation with discontinuous right-hand side. Thus, based on the Filipov theory, the study of
the obtained differential inclusion can be transformed into the study of an uncertain differen-
tial equation. It should be pointed out that the existence of solutions is the most fundamental
and a strict mathematical proof about the existence of solution should be presented. For
this, we can be use the similar approach used in [73,76,79] combined with the method of
exchanging integral order presented in [72] to deal with the infinite distributed delay.

Remark 14 The non-linear discontinuous part of the control law (25) can be circumvented
by using the controller designed in [34] as follows:

ui (z(t)) = −λ1i zi (t) − λ2i żi (t) − λ3i
zi (t)

‖z(t)‖1 + ν
(41)

where λki , k = 1, 2, 3 stand for the control strength to be determined and ν a small positive
constant.

4 Numerical Examples

In this section, three numerical examples are provided to show the effectiveness of our main
results. As all the equilibrium points are at the origin, we use the z-form for the systems
instead of the x-form because they are equivalent.

4.1 Example 1: FTS via a Delay-Dependent Controller

Consider the following delayedHopfield neural networkwith unbounded activation functions

ż(t) = −Cz(t) + A F(z(t)) + B G(z(t − τ)) + u (42)

where n = 2, Fi (zi ) = 0.2[zi − sin(zi )] and Gi (zi ) = 0.4zi for i = 1, 2, τ = 2,

C =
[
2 0
0 1.5

]

, A =
[
0.5 0
1 1.5

]

, B =
[
0.5 0.3
0 0.5

]

and the initial condition z1(s) = φ1(s) = −1.6, z2(s) = φ2(s) = 1.2 for all s ∈ [−2, 0].
System (42) has been studied in [15] where only the global exponential stability is ensured.
By using Matlab LMI toolbox [45] for solving (19) with ε1 = 3, ε2 = 1 and α = pα1 we
obtain the following solution

P =
[
9.0006 −0.6194

−0.6194 7.5220

]

, R1 =
[
10.228 0

0 9.6053

]

, R2 =
[
25.5043 0

0 24.4666

]

and

p = 0.02, ε = 0.8972, α1 = 26.555.

From Corollary 2, we deduce that system (42) has a unique equilibrium, the origin, which is
FTS with the following delay-dependent controller

u (z(t)) = −26.555z(t) − B sign(z(t)) |z(t − τ(t))| − sign(z(t))|z(t)| 12 (43)

We plot the state trajectories of the closed-loop system (42)–(43) in Fig. 1.
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Fig. 1 State trajectories of system (42) with controller (43)

Corollary 2 guarantees the FTS of the closed-loop system (42)–(43) but also the following
inequality for the settling-time functional

T0(φ) ≤ ‖φ‖μ

1 − μ
= 2.88

with μ = 0.5.

Remark 15 It should be pointed out that the results given in [67] fail for system (42) because
the above activation functions are unbounded.

4.2 Example 2: FTS via a Delay-Free Controller

Consider the following NHNN with mixed delays
⎧
⎪⎨

⎪⎩

ż(t) = −Cz(t) + A F(z(t)) + B F(z(t − τ)) + E
t∫

−∞
K (t − s) G(z(s))ds

+D H(ż(t − σ)) + u
(44)

with n = 2, τ = 1, σ = 0.1, k1(x) = k2(x) = e−x , the initial condition x1(s) = φ1(s) =
−0.7, x2(s) = φ2(s) = 0.5 for all s ∈ (−∞, 0] and parameters C, A, B, E and D as
follows

C =
[
4 0
0 4

]

, A = B =
[

0.3 0.15
−0.25 −0.4

]

, E =
[
0.7 −0.2

−0.2 0.5

]

, D =
[
0.1 0
0 0.1

]

.

System (44) has been studied in [32] where only the asymptotic stability is ensured. The
Matlab LMI toolbox [45] for solving (23) when we fix α2 = 1 and we let α = pα1 leads to
the solution

p = 0.1911, ε = 1.1221, α = 0.7632, α1 � 3.993721.

4.2.1 Bounded Activation Function Case

Firstly, we take Fi (zi ) = Gi (zi ) = Hi (zi ) = tanh(zi ) for i = 1, 2.
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Fig. 2 State trajectories of system (44) with controller (45)

Therefore, since Ωi = diag(1, 1), i = 1, 2, 3, Theorem 3 implies that the equilibrium
point of system (44), which is the origin, is FTS with the following delay-free controller

u(z(t)) = −3.993721z(t) − B sign(z(t)) − EK signz(t)) − D sign(z(t))

− sign(z(t))|z(t)| 12 (45)

whereK = diag(1, 1) and T ∗ = 0. The state trajectories of the closed-loop system (44)–(45)
is depicted in Fig. 2.

4.2.2 Unbounded Activation Function Case

Now, we choose
Fi (zi ) = Gi (zi ) = Hi (zi ) = |zi + 1| + |zi − 1| (46)

and other parameters similar to Example 4.2.1. Obviously, the above activation functions are
unbounded. According to Remark 14, system (44) is FTS with the following controller:

u1(z(t)) = −2z1(t) − 0.2 ż1(t) − z1(t)

‖z(t)‖1 + ν
; (47)

u2(z(t)) = −2z2(t) − 0.2 ż2(t) − 2
z2(t)

‖z(t)‖1 + ν
(48)

when we fix ν = 0.001. The state trajectories of the closed-loop system (44)–(48) with
unbounded activation functions (46) is depicted in Fig. 3.

Remark 16 It should be pointed out that from Theorem 2, the following controller

u(z(t)) = −3.993721z(t) − B sign(z(t)) |z(t − τ(t))|

− E sign(z(t))

t∫

−∞
K (t − s) |z(s)|ds

− D sign(z(t)) |ż(t − σ(t))|)) − |z(t)| 12 (49)

can be stabilize in finite time system (44) under activation functions (46) which is illustrated
in Fig. 4.
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Fig. 3 State trajectories of system (44) under activation functions (46) with controller (47)–(48)
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Fig. 4 State trajectories of system (44) under activation functions (46) with controller (49)

Moreover, despite the controller (47)–(48)ismore suitable in practice, the delaydependent-
controller (49) provide a settling time more accurate than that founding from (47)–(48).

Now, if the time- varying delay τ(.) given by the following non-differentiable function

τ(t) = 0.5|sin(t)| (50)

System (44) stays FTS which is illustrated in Fig. 5.

4.2.3 FTS via Non-chattering Control

Now, we choose A, B and E as follows

A = B =
[

1.3 1.15
−1.25 −1.4

]

, E =
[
1.7 −1.2

−1.2 1.5

]

,

and others parameters similar to 4.2.1. From (39), if we taking λ11 = 0.8, λ12 = 1.5 and
λ21 = λ22 = 0.2, Corollary 3 implies that the following controller which is more suitable in
practice

u1(z(t)) = −0.8z1(t) − 0.2 ż1(t) − sat (z1(t),Δ); (51)
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Fig. 5 State trajectories of system (44) with controller (45) under time varying delay (50)
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Fig. 6 Trajectories of system (44) with controller (51)–(52)

u2(z(t)) = −1.5z2(t) − 0.2 ż2(t) − 1.1 sat (z2(t),Δ) (52)

can be stabilize in finite time system (44) when we fix Δ = 0.01. The state trajectories of
system (44) with controller (51)–(52) is illustrated in Fig. 6.

4.3 Example 3: Resistance-Capacitance Network Circuit

A two dimensional resistance capacitance network circuit (RCNC) studied in [1, Example
4.4.] can be modeled by the following nonlinear NN

ż(t) = −Az(t) + W1 F(z(t)) + W2 u(z(t)) (53)

with

A =
[

1
R1C1

0
0 1

R2C2

]

, W1 =
[ω11

C1

ω12
C1

ω21
C2

ω22
C2

]

, W2 =
[

1
C1

0
0 1

C2

]

where all constants are positive. We consider system (53) with the following values

Ri = Ci = ω11 = 1, Fi (zi ) = tanh (zi ) , i = 1, 2, ω12 = 1.5, ω21 = −1.5, ω22 = −1.
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Fig. 7 State trajectories of system (53) with initial condition (−1.6, 1.4)T and controller (54)

proposed in [1, Example 4.4.]. We have Ω1 = diag(1, 1) and consequently the Matlab LMI
toolbox [45] for solving (23) with α2 = 1, μ = 0.5 and α = pα1 leads to the following
solution

p = 0.1409, ε = 0.8063, α = 0.9321, α1 � 6.6153302.

Therefore, Theorem3 implies that the origin of system (53) is FTSvia the following controller

u(z(t)) = −6.6153302z(t) − sign(z(t))|z(t)| 12 . (54)

and the settling-time functional satisfies

T0(z(0)) ≤ ‖z(0)‖μ

1 − μ
< 3.

The state trajectories of the closed-loop system (53)–(54) is depicted in Fig. 7. In [1], only
asymptotic stability of system (53) is ensured.

5 Conclusion and Open Problem

The problem of finite time stabilization of a class of neutral Hopfield neural networks with
mixed time delays is investigated. First, theoretical results are established around the sta-
bilization in finite time. Then, based on LMI techniques, these results are used to design
different kinds of feedback controls which overcome the chattering phenomena and provides
a favourable situation for real applications. On one hand, our results extend the results given
in [40,41,58,62,63,66,67] where the neutral class, infinite distributed delay and unbounded
activation functions are not taken into account simultaneously and offers a fast settling time
compared with [40,58,60] . On the other hand, our study offers an improvement compared
with [1,31,33,36,38,54,70,78] where only asymptotic and exponential stability of NNs are
considered. Finally, the effectiveness of our proposed approach has been shown in simulation
on three examples.

In future work, we would like to extend our results to quaternion-valued NNs (QVNNs).
On the one hand, the Hamilton rules about quaternion multiplication renders the famous
inequalities such as given in [10] and Lemma 1 are not applicable for the study of the
stability of QVNNs [16]. To solve this problem, Chen et al. are established in [16] the
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modulus inequalities for QVNNs. Based on the obtained results in [16], we can be used
a direct method to study the stability of system (1) by imposing the Lipschitz conditions
entries.

On the other hand, a decomposition method such as presented in [44] can be used to solve
this problem. This method gives a wider class of the quaternion-valued activation functions.
However, the dimensions grow four times for the QVNNs which complicated the calculus
for a large number of neurones. The corresponding results will appear in the near future.
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