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Abstract In this article, we consider some well-known approaches for solving fuzzy linear
programming (FLP) problems.We present some of the difficulties of these approaches. Then,
crisp linear programming problems are suggested for solving FLP problems.A new algorithm
is also given. The proposed approach has advantages over the other methods. For example,
we can achieve higher membership degrees for objective function and constraints. Moreover,
we show that the fuzzy optimal solutions obtained by the proposed approach are efficient
enough. Also, we see that unlike the previous methods, our method finds efficient solutions
by solving only one crisp linear problem instead of solving two or three crisp problems.
Finally some numerical examples are presented to show the efficiency of the given approach
over the other approaches.

Keywords Fuzzy linear programming · Membership function · Efficient solution · Crisp
linear programming

1 Introduction

In the real world, we deal with the linear and nonlinear programming problems. Some of these
problems must be stated in the fuzzy sense, since in this case, decision makers have more
flexibility in modeling and solving problems. The definition of a fuzzy linear programming
(FLP) problem is not unique and various models of FLP have been suggested by researchers.
Tanaka andAsai [16] presented a number of FLPmodels. In the field of solvingFLPproblems,
the main pioneer researchers are Bellman and Zadeh [4], Tanaka et al. [17], Negoita and
Sularia [13], Zimmermann [24,25], Yager [23], etc. In recent decades, many papers and
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books have been published in the field of fuzzy programming, for more information refer to
Alex [1], Bector and Chandra [3], Cao [5], Lu et al. [11], Srinivasa Raju and Duckstein [15],
Wu [21], Arikan and Gungor [2], Jimenez and Bilbao [9], Wu et al. [22], Ghaznavi et al. [6]
Mohanaselvi and Kandasamy [12] and references therein.

All FLP models deal with one of the following cases (see Bellman and Zadeh [4], Tanaka
et al. [17], Zimmermann [24,25]):

(I) Decision maker seeks to achieve an aspiration level for objective function where it is
not possible by a nonfuzzy linear programming problem directly.

(II) The constraints of the problem may be vague. In this case, the inequality constraints
can be acceptable by targeted violations. In fact, there is a tolerance for resources in
inequality constraints.

(III) Components of vectors and matrices appearing in the FLP problem can be fuzzy num-
bers. In this case, the inequality constraints of the problem are interpreted by the ranking
of fuzzy number concept.

In this paper, we focus on the models dealing with cases I and II. But in a different point
of view the FLP problems are divided to two major classes: symmetric and non-symmetric.
The symmetric models introduced by Bellman and Zadeh [4]. In these models, the objective
function and constraints of the problem are stated as a fuzzy set. Here, the decision maker
considers the confluence of objective function and constraints to achieve an optimal solution
(see [25]). Also, themax-min operator is utilized. However, in the non-symmetricmodels, the
objective function is a non-fuzzy or classic function and at least one of the constraints of FLP
problem is fuzzy. In this case, two approaches are usually utilized. In the first approach, the
problem converts to an equivalent parametric problem (see [18,19]). In the second approach,
a membership function may be defined for non-fuzzy objective function and it can be con-
verted to a fuzzy objective function (see [8,9,20,22]). In fact, in the second approach, a
non-symmetric problem is converted into a symmetric one.

In defining membership functions for constraints and objective function of an FLP
problem, smoothness is very important, since the obtained problem may be nonlinear or
nonsmooth. For this, in solving FLP problems, the researchers simplify the membership
functions where it can lead to drawbacks or error. In this paper, we revise some drawbacks
of the other methods for solving FLP problems. Some of these drawbacks are listed below

(a) Incorrect application of membership function due to its simplifying.
(b) When optimal solution is unbounded or the problem is infeasible, the available methods

can not solve the problem, correctly.
(c) Lack of method for finding an optimal solution that has higher membership degree and

a good value for the main objective function, simultaneously.

To solve these difficulties, we present modified membership functions for objective function
and constraints. At what follows, we propose new crisp linear programming problems for
solving FLP problems.We show that optimal solutions of the proposed problems are efficient.
We summarize the obtained results in a new algorithm.

The outline of this paper is as follows: in Sect. 2 some well-known approaches for solving
FLP problems are reviewed. In Sect. 3 some difficulties of the mentionedmethods are shown,
by numerical examples. Section 4, contains new models and an algorithm for solving FLP
problems. Section 5 is devoted to numerical examples for comparing the suggested algorithm
with well-known approaches. Section 6 contains conclusions.
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2 Some Well-Known Methods for Solving FLP Problems

In this section, we briefly introduce the Zimmermann [24,25], Werners [20], Guu and Wu
[8], Jimenez and Bilbao [9] and Wu et al. [22] approaches for solving FLP problems.

2.1 Zimmermann Approach for Solving Symmetric FLP Problems

Consider the following symmetric FLP problem:

˜max z = cx

subject to

{
Ai x≤̃bi , i = 1, 2, . . . ,m,

x ∈ X ,

(1)

where x = (x1, x2, . . . , xn)T is the decision vector, c = (c1, c2, . . . , cn) ∈ R
n, Ai =

(ai1, . . . , ain)T ∈ R
n, bi ∈ R, i = 1, 2, . . . ,m and X = {x ∈ R

n : Bx ≤ d} with B ∈ R
l×n

and d ∈ R
l . In FLP problem (1), the fuzzifier ˜max means that the decision maker wants to

reach some aspiration level b0 ∈ R that might not even be definable crisply. Here, ≤̃ indicates
the fuzzified version of ≤ and is described as “essentially less than or equal to.”

Assumed that the decision maker proposes an aspiration level b0. The FLP problem (1)
can be restructured into the following model [25]:

Find x

subject to

⎧⎪⎨
⎪⎩
cx≥̃b0,

Ai x≤̃bi , i = 1, 2, . . . ,m,

x ∈ X .

(2)

In the Zimmermann [24,25] approach for FLP problem (1) (or equivalently, problem (2)),
we must select a suitable membership function for each of the fuzzy inequalities and then
utilize the Max-Min operator (based on the Bellman and Zadeh [4] principle ) to identify
the fuzzy decision. Assume that p0 > 0 is the allowable tolerance for the cost function and
pi > 0, i = 1, 2, . . . ,m, is the acceptable tolerance for the ith constraint. The membership
functions of the objective function and the ith constraint (for i = 1, 2, . . . ,m) are defined as
follows, respectively:

μ0(cx) =

⎧⎪⎨
⎪⎩
1, cx > b0,

1 − b0−cx
p0

, b0 − p0 ≤ cx ≤ b0,

0, cx < b0 − p0,

(3)

μi (Ai x) =

⎧⎪⎨
⎪⎩
1, Ai x < bi ,

1 − Ai x−bi
pi

, bi ≤ Ai x ≤ bi + pi ,

0, Ai x > bi + pi ,

(4)

where they are nonlinear (or piecewise linear) and continuous. Using the membership func-
tions (3) and (4), and assumption α = min{μ0(cx), μ1(A1x), . . . , μm(Amx)}, we can
convert the FLP problem (1) to the following crisp nonlinear programming (CNLP) problem
(see for details Zimmermann [25]):
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Max α

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ0(cx) ≥ α,

μi (Ai x) ≥ α, i = 1, 2, . . . ,m,

0 ≤ α ≤ 1,

x ∈ X .

(5)

To facilitate the work and converting the nonlinear membership function to a linear one, it is
assumed thatμ0(cx) = 1− b0−cx

p0
andμi (Ai x) = 1− Ai x−bi

pi
for i = 1, 2, . . . ,m.Therefore,

CNLP problem (5) is converted to the following crisp linear programming (CLP) problem:

Max α

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cx ≥ b0 − (1 − α)p0,

Ai x ≤ bi + (1 − α)pi , i = 1, 2, . . . ,m,

0 ≤ α ≤ 1,

x ∈ X .

(6)

In the Zimmermann approach, if (x∗, α∗) is an optimal solution of the CLP problem (6), then
x∗ is said to be an optimal solution for the FLP problem (1).

2.2 Werners Approach for Solving Non-symmetric FLP Problems

Consider the following non-symmetric FLP problem with crisp objective function and fuzzy
constraints:

Max z = cx

subject to

{
Ai x≤̃bi , i = 1, 2, . . . ,m,

x ∈ X .

(7)

Assume that pi , i = 1, 2, . . . ,m is the maximum tolerance of bi , i = 1, 2, . . . ,m, as
determined by decision maker. Werners [20] suggested a membership function for crisp
objective function of FLP problem (7). He proposed solving the following CLP problems:

Max z = cx

subject to

{
Ai x ≤ bi , i = 1, 2, . . . ,m,

x ∈ X ,

(8)

and
Max z = cx

subject to

{
Ai x ≤ bi + pi , i = 1, 2, . . . ,m,

x ∈ X .

(9)

Let z0 and z1 be optimal values of problems LPs (8) and (9), respectively. The suggested
membership function, for crisp objective function of FLP problem (7), is as follows:

μ0(cx) =

⎧⎪⎨
⎪⎩
1, cx > z1,

1 − z1−cx
z1−z0

, z0 ≤ cx ≤ z1,

0, cx < z0,

(10)

which is a nonlinear function. Also, the membership functions of the fuzzy constraints are
as in relation (4). Now, by applying the Bellman and Zadeh [4] principle and assuming
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α = min{μ0(cx), μ1(A1x), . . . , μm(Amx)}, the following crisp nonlinear programming
(CNLP) problem is proposed for solving the FLP problem (7):

Max α

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ0(cx) ≥ α,

μi (Ai x) ≥ α, i = 1, 2, . . . ,m,

0 ≤ α ≤ 1

x ∈ X .

(11)

Here by assuming μ0(cx) = 1 − z1−cx
z1−z0

and μi (Ai x) = 1 − Ai x−bi
pi

, i = 1, 2, . . . ,m (to
facilitate, but with loss of generality), the CNLP problem (11) will be converted into the
following CLP problem:

Max α

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cx ≥ z1 − (1 − α)(z1 − z0),

Ai x ≤ bi + (1 − α)pi , i = 1, 2, . . . ,m,

0 ≤ α ≤ 1,

x ∈ X .

(12)

2.3 Guu and Wu Approach for Solving Non-symmetric FLP Problems

In this subsection, the two phase method suggested by Guu and Wu [8] for FLP problem (7)
is presented. Note that there are also some other two phase approaches (see Lee and Li [10]
and Guu and Wu [7]). The proposed two phases are as follows:

Phase 1. Solve the following crisp problem

Max α

subject to

{
0 ≤ α ≤ μi (x) ≤ 1, i = 0, 1, . . . ,m,

x ∈ X ,

(13)

and denote its optimal solution by (x∗, α∗).
Phase 2. Find the optimal solution (x∗∗, α∗∗

0 , α∗∗
1 , . . . , α∗∗

m ) of the following problem:

Max
m∑
i=0

αi

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ0(cx∗) ≤ α0 ≤ μ0(cx) ≤ 1,

μi (Ai x∗) ≤ αi ≤ μi (Ai x) ≤ 1, i = 1, 2, . . . ,m,

0 ≤ αi ≤ 1, i = 0, 1, . . . ,m,

x ∈ X .

(14)

In this approach, for convenience, it is assumed that μ0(cx) = 1 − z1−cx
z1−z0

and μi (Ai x) =
1− Ai x−bi

pi
, i = 1, 2, . . . ,m.Therefore, the CNLP problem (14) is converted to the following

CLP problem:
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Max
m∑
i=0

αi

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 + α(z1 − z0) ≤ cx ≤ z1,

bi ≤ Ai x ≤ bi + (1 − αi )pi , i = 1, 2, . . . ,m,

μ0(cx∗) ≤ α0,

μi (Ai x∗) ≤ αi ,

0 ≤ αi ≤ 1,

x ∈ X .

(15)

Remark 1 In order to simplify, the symbolsμi (x) are used uniformly for all i = 0, 1, . . . ,m.

Here μ0(x) is μ0(cx) and μi (x), i = 1, 2, . . . ,m are μi (Ai x), i = 1, 2, . . . ,m, actually.

Theorem 1 [8] Let (x∗∗, α∗∗
0 , α∗∗

1 , . . . , α∗∗
m ) be an optimal solution of CNLP problem (14).

Then, x∗∗ is a fuzzy efficient solution, which means, there is no x ≥ 0 such that μi (x) ≥
μi (x∗∗), i = 0, 1, . . . ,m and μ j (x) > μ j (x∗∗), for some j ∈ {0, 1, . . . ,m}.
2.4 Jimenez and Bilbao Approach for Solving Non-symmetric FLP Problems

Jimenez and Bilbao [9] presented an approach for fuzzy (multiple objective) programming
problems. Here we explain their method for non-symmetric FLP problems. Consider the FLP
problem (7). In Jimenez and Bilbao [9] approach, we have three phases. Phases 1 and 2 are
the same as phases 1 and 2 of Guu and Wu [8] approach. Let x∗∗ be the optimal solution
obtained from phase 2 ofGuu andWu [8] approach andμ0(cx) andμi (Ai x), i = 1, 2, . . . ,m
be defined as relations (10) and (4), respectively. Then, in phase 3 if μ0(cx∗∗) = 1, the
following problem is solved:

max
p∑

s=0

ns

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cx + n0 = cx∗∗,
Asx + ns = Asx∗∗, s = 1, 2, . . . , p,

μr (Ar x) = μr (Ar x∗∗), r = p + 1, p + 2, . . . ,m,

x ∈ X , ns ≥ 0.

(16)

But, if μ0(cx∗∗) < 1, then we must solve the following problem:

max
p∑

s=1

ns

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Asx + ns = Asx∗∗, s = 1, 2, . . . , p,

μ0(cx) = μ0(cx∗∗),
μr (Ar x) = μr (A1x∗∗), r = p + 1, p + 2, . . . ,m,

x ∈ X , ns ≥ 0,

(17)

where in problems (16) and (17), subscript s refers to membership functions that are equal
to 1 and subscript r refers to membership functions that are strictly less than 1. For more
details of this approach, we refer to Example 2 of Jimenez and Bilbao [9].
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2.5 Wu et al. Approach for Solving Non-symmetric FLP Problems

Wu et al. [22] suggested a new approach for fuzzy (multiple objective) linear programming
problems. Consider the FLP problem (7). In Wu et al. [22] approach, the membership func-
tions are suggested as follows:

μ0(cx) =
{

cx−z0
z1−z0

, z0 ≤ cx,

0, cx ≤ z0,
(18)

μi (Ai x) =
{
1 − Ai x−bi

pi
, Ai x ≤ bi + pi ,

0, Ai x > bi + pi .
(19)

In this approach, we must solve the following CLP problem in phase 1:

max λ

subject to

⎧⎪⎨
⎪⎩

μ0(cx) ≥ λ,

μi (Ai x) ≥ λ,

x ∈ X .

(20)

Assume that λ∗ is the optimal solution of problem (20), then, in phase 2 the following problem
is solved:

max
m∑
i=0

si

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ0(cx) − s0 ≥ λ∗,
μi (Ai x) − si ≥ λ∗,
x ∈ X ,

si ≥ 0, i = 1, 2, . . . ,m.

(21)

Remark 2 Wu et al. [22] claimed that by redefining the membership functions as relations
(18) and (19), we can release the conditions μi (x) ≤ 1, i = 0, 1, . . . ,m in the Jimenez and
Bilbao approach. While, the functions defined in relations (18) and (19) do not satisfy the
conditions 0 ≤ μi ≤ 1, i = 0, 1, . . . ,m generally. For example, if Ai x∗ = bi − 1, for some
i ∈ {1, 2, . . . ,m}, thenμi (Ai x∗) = pi+1

p−i > 1 which is not an acceptable membership value.

3 Some Difficulties of the Described Approaches

In the previous section,we briefly described somewell-knownmethods for solving symmetric
and non-symmetric FLP problems. However, these methods have difficulties and they can
not solve all FLP problems, correctly. Now, in this section, we show some of these drawbacks
by numerical examples.

In theWerners [20],Guu andWu [8], Jimenez andBilbao [9] andWuet al. [22] approaches,
to define μ0(cx) we must solve the LP problems (8) and (9) to find z0 and z1, respectively.
However, in some FLP problems it may happen that z0 = z1. In this case, we can not define
μ0 by relations (10) or (18). The following example shows this difficulty.

Example 1 Consider the following non-symmetric FLP problem:

max x2

123



1570 M. H. Noori Skandari, M. Ghaznavi

subject to

⎧⎪⎨
⎪⎩
x1 + x2≤̃2,

x1≤̃1,

x1, x2 ≥ 0.

Let p1 = 0 and p2 = 1. The optimal values of LP problems (8) and (9) are z0 = 1 and
z1 = 1, respectively. Therefore, we can not use relations (10) and (18) to define μ0(cx).

In Sect. 2, for convenience, it was assumed that μ0(cx) = 1 − b0−cx
p0

(for symmetric

FLPs), or μ0(cx) = 1 − z1−cx
z1−z0

(for non-symmetric FLPs) and μi (Ai x) = 1 − Ai x−bi
pi

for
i = 1, 2, . . . ,m.However, this may not be generally correct. For example, if x∗ is an optimal
solution of CLP problem (6) and cx∗ > b0 or Ai x∗ < bi for some i = 1, 2, . . . ,m then
μ0(cx∗) > 1 or μi (Ai x∗) > 1 which contradicts the definition of membership degree.

Example 2 Consider the following FLP problem:

max x2

subject to

⎧⎪⎨
⎪⎩
x1 + x2≤̃1,

x1≤̃0.5,

x1, x2 ≥ 0.

Let p1 = 1 and p2 = 1. By solving LPs (8) and (9), we get z0 = 1 and z1 = 2. Using
the Werners, Jimenez and Bilbao and Wu et al. methods, we get x∗

1 = 0 and x∗
2 = 1.5.

Now by μ2(A2x∗) = 1 − A2x∗−b2
p2

we have μ2(A2x∗) = 3
2 > 1 which is not an acceptable

membership degree.

Even if we want to use the membership functions described in relations (3)–(10), we have
to consider all of the constraints to check which of the cases described in the membership
functions happens. Thus,we cannot find themembership functions directly during the process
of solving the related CLP problem.

In the two phase method by Guu and Wu, and the three phase method by Jimenez and
Bilbao, in phase 1 and phase 2 we have the constraints 0 ≤ μi (x) ≤ 1, i = 1, . . . ,m. If
we replace μi (x) by μi (x) = 1 − Ai x−bi

pi
, i = 1, 2, . . . ,m we conclude that bi ≤ Ai x ≤

bi + pi , i = 1, 2, . . . ,m [see the example given in Guu and Wu (1999) and Jimenez and
Bilbao (2009)]. However, adding the constraints bi ≤ Ai x ≤ bi + pi , i = 1, 2, . . . ,m may
cause that problem (13) or problem (14) becomes infeasible. This drawback is shown in the
following example:

Example 3 Consider the following non-symmetric FLP-problem:

max z = 2x1 + x2

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 + x2≤̃2,

3x1 + x2≤̃3,

3x1 + 2x2≤̃12,

x1, x2 ≥ 0.

(22)

Let p1 = p2 = p3 = 1. By solving LPs (8) and (9), we obtain z0 = 2.5 and z1 = 3.5. By
substituting μi (x), i = 0, 1, . . . ,m as relations (10) and (4), the linear problem in phase 1
is as follows:
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max α

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α ≤ 1 − (3.5 − 2x1 − x2),

α ≤ 1 − (x1 + x2 − 2),

α ≤ 1 − (3x1 + x2 − 3),

α ≤ 1 − (3x1 + 2x2 − 12),

2 ≤ x1 + x2,

3 ≤ 3x1 + x2,

12 ≤ 3x1 + 2x2,

0 ≤ α ≤ 1,

x1, x2 ≥ 0.

which is an infeasible linear problem.

Even if phase 1 and phase 2 problems are feasible, the obtained solution may not be an
optimal solution for the main FLP problem.

Example 4 Consider the following FLP problem:

max 0.1x1 + 3x2

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 + x2≤̃4,

x1 + 3x2≤̃6,

x1≤̃2,

x1, x2 ≥ 0.

Let p1 = 3, p2 = 2 and p3 = 1. We solve this problem by Guu and Wu method, Jimenez
and Bilbao method and Wu et al. method, respectively.

With phase 1 of Guu and Wu method, the following problem should be solved:

max α

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6 + 2α ≤ 0.1x1 + 3x2 ≤ 8,

4 ≤ x1 + x2 ≤ 7 − 3α,

6 ≤ x1 + 3x2 ≤ 8 − 2α,

2 ≤ x1 ≤ 3 − α,

α, x1, x2 ≥ 0.

Using the simplex method, we can acquire optimal solution (x∗
1 , x

∗
2 , α

∗) = (2.0408, 1.9592,
0.0408) and μ0(x∗) = 0.0408, μ1(x∗) = 1, μ2(x∗) = 0.0408, μ3(x∗) = 0.9592. More-
over, in phase 2 of Guu and Wu method, the following CLP problem is solved:

max α0 + α1 + α2 + α3
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subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 + 2α0 ≤ 0.1x1 + 3x2 ≤ 8,

4 ≤ x1 + x2 ≤ 7 − 3α1,

6 ≤ x1 + 3x2 ≤ 8 − 2α2,

2 ≤ x1 ≤ 3 − α,

0.0408 ≤ α0 ≤ 1,

1 ≤ α1 ≤ 1,

0.0408 ≤ α2 ≤ 1,

0.9592 ≤ α3 ≤ 1,

x1, x2 ≥ 0.

Solving this problemwe, again, obtain x∗∗ = (2.0408, 1.9592), cx∗∗ = 6.0816,μ0(cx∗∗) =
0.0408, μ1(A1x∗∗) = 1, μ2(A2x∗∗) = 0.0408 and μ3(A3x∗∗) = 0.9592.

Now, we solve this problem using Jimenez and Bilbao [9] method. Phases 1 and 2 coincide
with phases 1 and 2 of Guu and Wu method. In phase 3 (see problem (17)), the following
problem should be solved:

max n1

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + n1 = 4,
0.1x1+3x2−6

2 = 0.0.408,
8−x1−3x2

2 = 0.0408,

3 − x1 = 0.9592,

x1, x2, n1 ≥ 0.

Using the simplex method, we obtain the same optimal solutions as those gained by Guu and
Wu method.

Finally, we solve this problem by Wu et al. [22] method. Phase 1 of Wu et al. approach
(see problem (20)), is as follows:

max λ

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ ≤ 0.1x1+3x2−6
2 ,

λ ≤ 7−x1−x2
3 ,

λ ≤ 8−x1−3x2
2 ,

λ ≤ 3 − x1,

x1, x2 ≥ 0.

Optimal solution of this problem is (x∗
1 , x

∗
2 ) = (1.7948, 3.6442) and λ∗ = −2.36. Using

the optimal solutions given in phase 1, Wu et al. formulated phase 2 (see problem (21)) as
follows:

max s0 + s1 + s2 + s3

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2.36 ≤ 0.1x1+3x2−6
2 − s0,

−2.36 ≤ 7−x1−x2
3 − s1,

−2.36 ≤ 8−x1−3x2
2 − s2,

−2.36 ≤ 3 − x1 − s3,

x1, x2, si ≥ 0, i = 0, 1, 2, 3.
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Having solved this problem, we obtain (x∗∗
1 , x∗∗

2 ) = (0, 0.4267) and cx∗∗ = 1.2801. More-
over, we have (s∗∗

0 , s∗∗
1 , s∗∗

2 , s∗∗
3 ) = (0.0000, 4.5511, 5.7200, 5.3600).

In Sect. 5, we will obtain the optimal solution xopt = (0, 2.333) with objective value
cxopt = 7 and higher membership degrees. Therefore, in these examples we see that the
methods proposed by Guu and Wu, Jimenez and Bilbao and Wu et al. sometimes, can not
solve an FLP problem, correctly (see Table 6).

4 The Suggested Approach

In the previous section, using numerical examples, we presented some drawbacks of the
famous approaches for solving FLP problems. Therefore, these methods must be modified.
So, in this section, we propose crisp linear programming models for obtaining optimal solu-
tions of FLP problems. Also, an algorithm for finding optimal solutions of FLP problems is
recommended which resolves the difficulties described in Sect. 3.

Here we first modify the membership functions (3), (4) and (10), to convert the FLP
problems (1) and (7) into an equivalent CLP problem. The proposed membership functions
include different cases Akx∗ < bk for some k ∈ {1, 2, . . . ,m}, or bi ≤ Ai x∗ ≤ bi + pi , for
all i = 1, 2, . . . ,m. Also, we can directly obtain the membership function μi (Ai x∗), for all
i = 1, 2, . . . ,m, by solving a CLP problem. Let Xi = {x ≥ 0 : Ai x ≤ bi + pi }. We suggest
the following continuous nonnegativemembership functionsμi : R → [0, 1], i = 1, . . . ,m,

for constraints of the symmetric FLP problem (1) and the non-symmetric FLP problem (7):

μi (Ai x) = Minimum{1, 1 − Ai x − bi
pi

}, x ∈ Xi , i = 1, 2, . . . ,m. (23)

Note that every x ≥ 0 which x /∈ Xi , is infeasible for FLP problem (1) (or FLP problem (7)).
So, we disregard the case Ai x > bi + pi . Hence, the membership function μi (Ai x), i =
1, 2, . . . ,m is equal to 1 if Ai x ≤ bi , strictly decreasing from1 to 0 on the interval (bi , bi+pi )
and equal to 0 if Ai x ≥ bi + pi .

Also, let X0 = {x ∈ X : cx ≥ b0 − p0}. The proposed membership function for the
objective function of symmetric FLP problem (1) is as follows:

μ0(cx) = Minimum{1, 1 − b0 − cx

p0
}, x ∈ X0. (24)

Moreover, let X̄0 = {x ∈ X : cx ≥ z0}. We suggest the following membership function
for the objective function of non-symmetric FLP problem (7):

μ0(cx) = Minimum{1, 1 − z1 − cx

z1 − z0
}, x ∈ X̄0. (25)

After employing the above membership functions, we propose the following crisp linear
programming (CLP) model to solve FLP problems (1) and (7).

max λ + 1

m + 1

m∑
i=0

λi

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ ≤ λ0 ≤ μ0(cx), x ∈ X0 (or X̄0)

λ ≤ λi ≤ μi (Ai x), x ∈ Xi , i = 1, 2, . . . ,m,

λi ≥ 0, i = 0, 1, . . . ,m,

x ∈ X .

(26)
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Remark 3 If themainFLPproblem is symmetric,wewill use relation (24) for themembership
function of the objective function, otherwise, relation (25) will be used for the membership
function.

Remark 4 It can be observed that when the problem (26) is solved, the optimal solutions λ
opt
0

and λ
opt
i (for i = 1, 2, . . . ,m ) show the membership degrees of the objective function and

the constraints, respectively. Thus, by solving our suggested crisp problem, we can directly
achieve membership functions, while in the famous methods described in Sect. 2, we can not
see this important property.

Remark 5 The problem (26) is general and can be included different cases, such as, Akx∗ <

bk for some k ∈ {1, 2, . . . ,m} or bi ≤ Ai x∗ ≤ bi + pi , for all i = 1, 2, . . . ,m.

Theorem 2 Suppose that (λopt , xopt , λopt0 , . . . , λ
opt
m ) is an optimal solution for the problem

(26), where the membership functions satisfy relations (23) and (24). Then (λopt , xopt ) is an
optimal solution for the CNLP problem (5).

Proof It is trivial that (λopt , xopt ) is a feasible solution for CNLP problem (5). Suppose that
(λopt , xopt ) is not an optimal solution for (5). Then, there is a (λ̄, x̄) such that

λ̄ ≤ μ0(cx̄), λ̄ ≤ μi (Ai x̄), i = 1, 2, . . . ,m, 0 ≤ λ̄ ≤ 1, x̄ ≥ 0.

and
λ̄ > λopt . (27)

Now, we define

λ̄0 =
{

λ̄+μ0(cx̄)
2 , λ

opt
0 ≤ λ̄ ≤ μ0(cx̄),

λ
opt
0 , λ̄ < λ

opt
0 ≤ μ0(cx̄),

(28)

and for i = 1, . . . ,m:

λ̄i =
{

λ̄+μi (Ai x̄)
2 , λ

opt
i ≤ λ̄ ≤ μi (Ai x̄),

λ
opt
i , λ̄ < λ

opt
i ≤ μi (Ai x̄).

(29)

It is obvious that (λ̄, x̄, λ̄0, λ̄1, . . . , λ̄m) is a feasible solution for (26). Moreover, from rela-
tions (28) and (29), we have

λ̄i ≥ λ
opt
i f or i = 0, 1, . . . ,m. (30)

Thus, from relations (27) and (30), λ̄ + 1
m+1

∑m
i=0 λ̄i > λopt + 1

m+1

∑m
i=0 λ

opt
i which is a

contradiction.

Theorem 3 Suppose that (λopt , xopt , λopt0 , . . . , λ
opt
m ) is an optimal solution for the problem

(26), where the membership functions satisfy the relations (23) and (25). Then (λopt , xopt )
is an optimal solution for the CNLP problem (11).

Proof The proof is similar to that of Theorem 2.

By Theorems 2 and 3, it can be seen that fuzzy optimal solution of the problem (26) is not
worse than the fuzzy optimal solution obtained by Zimmermann approach for FLP problem
(1) and Werners approach for FLP problem (7).

In solving an FLP problem, the following two purposes must be considered:
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– Finding higher membership degrees for the objective function and the constraints, simul-
taneously.

– Finding the best value for the main objective function.

Now, we improve the CLP problem (26) and propose a new CLP model for solving a given
FLP problem. In this model, we try to meet these requirements. Our suggested crisp linear
programming (SCLP) problem for solving FLP problems (1) and (7) is as follows:

max λ + 1

m + 1

m∑
i=0

λi + δcx

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ ≤ λ0 ≤ μ0(cx), x ∈ X0 (or X̄0)

λ ≤ λi ≤ μi (Ai x), x ∈ Xi , i = 1, 2, . . . ,m,

λi ≥ 0, i = 0, 1, . . . ,m,

x ∈ X ,

(31)

where δ is a sufficiently small positive number (in our suggested algorithm, we will find δ

systematically) and the membership functions are determined as problem (26).
We can practically see that the suggested problem (31) gives us a better optimal solution

from (6) or (12), since not only we achieve higher membership degrees for constraints and
the objective function (see examples in Sect. 5), but also obtain a good value for the objective
function.

Now, consider the following multiple objective optimization problem:

(MOP) max
x∈X (μo(x), μ1(x), . . . , μm(x), cx). (32)

Without loss of generality, we may replace cx with notation μm+1(x).

Definition 1 Afeasible solution x∗ is said to be an efficient solution for themultiple objective
optimization problem (32), if there is no other x ≥ 0 such that μi (x) ≥ μi (x∗), for all
i = 0, 1, . . . ,m + 1 and μ j (x) > μ j (x∗) for some j ∈ {0, 1, . . . ,m + 1}.

Theorem 4 Suppose that (λopt , xopt , λopt0 , . . . , λ
opt
m ) is an optimal solution of the SCLP

problem (31). Then, xopt is an efficient solution for the multiple objective optimization prob-
lem (32).

Proof Suppose that xopt is not an efficient solution. Then, there exists a feasible solution
x̄ such that μi (x̄) ≥ μi (xopt ), i = 0, 1, . . . ,m + 1 and μ j (x̄) > μ j (xopt ) for some j ∈
{0, 1, . . . ,m+1}.Now, by assuming λ̄i = μi (x̄), i = 0, 1, . . . ,m and λ̄ = mini=0,1,...,m λ̄i ,

it is obvious that (λ̄, x̄, λ̄0, . . . , λ̄m) is feasible for (31). Therefore, we have

λopt + 1

m + 1

m∑
i=0

λ
opt
i ≤ λopt + 1

m + 1

m∑
i=0

μi (x
opt ) < λopt + 1

m + 1

m∑
i=0

μi (x̄). (33)

On the other hand, we have:

μi (x̄) ≥ μi (x
opt ) ≥ λopt ,∀i = 0, 1, . . . ,m,

and
λ̄ = min

i=0,1,...,m
μi (x̄) ≥ λopt . (34)
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Therefore, by relations (33) and (34) we have:

λopt + 1

m + 1

m∑
i=0

λ
opt
i + δcxopt < λ̄ + 1

m + 1

m∑
i=0

μi (x̄) + δcx̄,

which is in contradiction to optimality of (λopt , xopt , λopt0 , . . . , λ
opt
m ). Therefore, xopt is an

efficient solution for multiple objective optimization problem (32).

Note that if the CNLP problem (11) corresponding to the FLP problem (7) has only one
optimal solution then it is an efficient solution for the following problem:

min
x∈X(μ0(x), μ1(x), . . . , μm(x)). (35)

However, if the CNLP problem (11) corresponding to the FLP problem (7) has multiple
optimal solutions, Werners [20] showed that the optimal solutions of the problem (11) are
weakly efficient, and at least one of them is efficient.

Theorem 4 shows that, the optimal solutions resulted by this approach are always efficient
[for multiple objective problems (32) and (35)] and we can see practically that each mem-
bership degree is larger than or equal to the membership degree obtained by the max-min
operator. Thus, by our approach we obtain high membership degrees for the objective func-
tion and constraints, and provide a better usage of existing resources. Also, we find a good
value for the main objective function.

It is important to note that, unlike the methods proposed by Guu andWu [8], Jimenez and
Bilbao [9] and Wu et al. [22], our method finds efficient solutions by solving only one crisp
linear problem instead of solving two or three crisp problems. Also, unlike the two phase
method, we not only try to achieve high membership degrees, but also find a good value for
the main objective function.

Now, for symmetric FLP problem (1), by considering the membership functions given in
relations (23) and (24), the suggested CLP problem (31) can be converted to:

max λ + 1

m + 1

m∑
i=0

λi + δcx

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ≤ λ0,

λ0 ≤ 1 − b0−cx
p0

,

λ ≤ λi , i = 1, 2, . . . ,m,

λi ≤ 1 − Ai x−bi
pi

, i = 1, 2, . . . ,m,

0 ≤ λi ≤ 1, i = 0, 1, . . . ,m,

x ∈ Xi , i = 0, 1, . . . ,m,

x ∈ X ,

(36)

where X0 = {x ∈ X : cx ≥ b0 − p0} and Xi = {x ≥ 0 : Ai x ≤ bi + pi }, i = 1, 2, . . . ,m.

Also, for non-symmetric FLP problem (7), by considering themembership functions given
in relations (23) and (25), the suggested problem (31) is as follows:

max λ + 1

m + 1

m∑
i=0

λi + δcx
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subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ≤ λ0

λ0 ≤ 1 − z1−cx
z1−z0

,

λ ≤ λi , i = 1, 2, . . . ,m,

λi ≤ 1 − Ai x−bi
pi

, i = 1, 2, . . . ,m,

0 ≤ λi ≤ 1, i = 0, 1, . . . ,m,

x ∈ Xi , i = 0, 1, . . . ,m,

x ∈ X ,

(37)

where X0 = {x ∈ X : cx ≥ z0} and Xi = {x ≥ 0 : Ai x ≤ bi + pi }, i = 1, 2, . . . ,m.

The suggested algorithm

Step 1 Determine the FLP problem is symmetric or non-symmetric.
Step2 2.1 If the FLP problem is symmetric, then take b0 and pi > 0, i = 0, 1, . . . ,m

from decision maker. Also, determine z0 and z1 by solving LPs (8) and (9),
respectively.

2.2 If the FLP problem is non-symmetric, then determine z0 and z1 and take pi >

0, i = 1, . . . ,m, from decision maker.
Step 3 For an FLP problem (symmetric or non-symmetric):

3.1 If LP (9) is infeasible, then STOP. The main FLP problem is infeasible.
3.2 If z0 = z1, then STOP. Optimal value of the main FLP problem is z0 and the

membership degree of all constraints is equal to one.
3.3 If z1 = ∞, then STOP. The main FLP problem is unbounded.

Step 4 Let

δ =

⎧⎪⎨
⎪⎩

1
z1

, i f 0 ≤ z0 < z1,
1
z0

, i f z0 ≤ z1 ≤ 0,

0, i f z0 < 0 < z1.

Note that, in this step, we select δ such that 0 ≤ δcx ≤ 1.
Step 5 For a symmetric FLP, solve the problem (36). Let (λopt , xopt , λopt0 , λ

opt
1 , . . . , λ

opt
m )

be the optimal solution of problem (36). Then, xopt is the optimal solution of the
main FLP problem and λ

opt
i , i = 0, 1, . . . ,m are the membership degrees of the

objective function and the constraints, respectively.
Step 6 For a non-symmetric FLP, solve the problem (37). Let (λopt , xopt , λ

opt
0 , λ

opt
1

, . . . , λ
opt
m ) be the optimal solution of problem (37). Then, xopt is the optimal

solution of the main FLP problem and λ
opt
i , i = 0, 1, . . . ,m are the membership

degrees of the objective function and the constraints, respectively.

5 Numerical Examples

In this section, we will solve some symmetric and non-symmetric FLP problems by our
algorithm and compare the results with those of belonging to Zimmermann [24], Werners
[20], Guu and Wu [8], Safi et al. [14], Jimenez and Bilbao [9] and Wu et al. [22] approaches.
We present the optimal value of the objective function and the membership degrees of the
objective function and constraints. The crisp LP problems are solved by using MATLAB
software.
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Table 1 The results of solving
Example 5 by using ZM and SA x∗

1 x∗
2 z∗ = cx∗ μ0 μ1 μ2 μ3

∑3
i=0 μi

ZM 1.2735 3.4823 8.2391 1 1 1 1 4

SA 1 4 9 1 1 1 1 4

Table 2 The results of solving
Example 6 by using ZM and
suggested algorithm

x∗
1 x∗

2 z∗ = cx∗ μ0 μ1 μ2
∑2

i=0 μi

ZM 83.5075 10.1808 93.6883 1 1 1 3

SA ∞ ∞ ∞ 1 1 1 3

In what follows, we use the notations ZM, WM, GWM, Safi, JBM, WEAM, and SA
instead of Zimmermann method, Werners method, Guu and Wu method, Safi et al. method,
Jimenez and Bilabo method, Wu et al. method and suggested algorithm, respectively.

Example 5 Consider the following symmetric FLP problem:

˜max z = x1 + 2x2

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x1 + x2≤̃3,

x1 + x2≤̃5,

x1≤̃4,

x1, x2 ≥ 0.

Let b0 = 7, p0 = 4, p1 = 3, p2 = 1, and p3 = 2. Table 1 shows the results of solving
this FLP problem by ZM and SA. As it can be seen in Table 1, although the membership
degrees of the objective function and the constraints are similar, optimal objective value of
the suggested algorithm is better than that of Zimmermann method.

Example 6 Consider a symmetric FLP problem as follows:

˜max x1 + x2

subject to

⎧⎪⎨
⎪⎩
x1 + 3x2≥̃3,

3x1 + x2≥̃3,

x1, x2 ≥ 0.

Let b0 = 10, p0 = 5, and p1 = p2 = 1. The results of solving this problem by using ZM
and SA are as illustrated in Table 2. As it can be seen in this table, this problem is unbounded.
Nevertheless, Zimmermann approach can not recognize this subject.

Example 7 Consider the following symmetric FLP problem:

˜max z = 2x1 + 2.2x2
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Table 3 The results of solving Example 7 by using ZM, Safi and SA

x∗
1 x∗

2 cx∗ μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9
∑

μi

ZM 2.0676 0.1824 4.5365 1 1 0.625 1 1 0.625 0.9618 0.8176 1 0.8176 8.847

Safi 1.875 0.375 4.575 1 1 0.625 1 1 0.625 0.833 0.625 1 0.625 8.333

SA 2.25 0 4.5 1 1 0.625 1 1 0.625 1 1 1 1 9.25

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 + x2≤̃8,

x1 + x2≥̃3,

−x1 + x2≤̃2,

−x1 + 10x2≤̃10,

3x1 + 3x2≤̃6,

x1 − x2≥̃2,

2x1 + 3x2≤̃4.5,

3x1 − x2≤̃8,

4x1 + 7x2≤̃9,

x1, x2 ≥ 0.

Let b0 = 4, p0 = 1, p1 = p2 = p4 = p5 = 2, p3 = p6 = p9 = 3 and p7 = p8 = 1.
Table 3 shows the results of solving this problem by ZM, Safi and SA. The results show that,
by our algorithm we achieve higher membership degrees, although the obtained value for
the objective function is less than those obtained by Zimmermann and Safi et al. approaches,
partially.

Example 8 Consider the following symmetric FLP problem:

˜max x1 + x2

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x1 + x2≤̃2,

6x1 − 2x2≤̃30,

−x1 + 10x2≥̃10,

x1 + 3x2≤̃15,

3x1 − x2≥̃17,

4x1 + 3x2≤̃34,

x1 + 7x2≤̃27,

x1 + 2x2≥̃12,

x1, x2 ≥ 0.

Let b0 = 3, p0 = p1 = p2 = p3 = 1, p4 = p5 = 2 and p6 = p7 = p8 = 1. Table 4 shows
the results after solving this problem by ZM, Safi and SA. The results illustrate that by the
suggested algorithm we can achieve a better objective value and higher membership degrees
compared with the results of Zimmermann method. In comparison with Safi et al. approach,
the membership degrees are higher although the objective value is partially different from
Safi et al. algorithm.

Example 9 Consider the non-symmetric FLP problem given in Example 3. In Example 3 we
showed that phase 1 of the two phase method, by Guu and Wu [8] and Jimenez and Bilbao
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Table 4 The results of solving Example 8 by using ZM, Safi and SA

x∗
1 x∗

2 cx∗ μ0 μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8
∑

μi

ZM 6.0279 2.6839 8.7117 1 1 0.2 1 1 0.2 1 1 0.3955 6.7955

Safi 6.1636 3.0909 9.2545 1 1 0.2 1 0.7819 0.2 1 0.2 1 6.382

SA 6.12 2.96 9.08 1 1 0.2 1 1 0.2 1 1 1 7.4

Table 5 The results of solving Example 10 by using WM, GWM, JBM, WEAM and SA

x∗
1 x∗

2 x∗
3 x∗

4 cx∗ μ0 μ1 μ2 μ3
∑3

i=0 μi

WM 4.1892 5.4778 7.833 0 114.6429 0.5 0.5 0.9947 0.5 2.4947

GWM 4.0476 5.6548 7.7976 0 114.6429 0.5 0.5 1 0.5 2.5

JBM 0 10.7142 6.7857 0 114.6429 0.5 0.5 1 0.5 2.5

WEAM 0 10.7142 6.7857 0 114.6429 0.5 0.5 1 0.5 2.5

SA 1.818 8.4417 7.2402 0 114.6429 0.5 0.5 1 0.5 2.5

[9], was infeasible. Therefore, we could not find optimal value of FLP problem (22) by the
aforementioned methods. However, we solve the FLP problem (22) by using the suggested
algorithm and obtain (x∗

1 , x
∗
2 ) = (0.5, 2) and cx∗ = 3. Also, we have μ0 = μ1 = 0.5, and

μ2 = μ3 = 1.

Example 10 Consider the following non-symmetric FLP problem:

max 4x1 + 5x2 + 9x3 + 11x4

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 + x2 + x3 + x4≤̃15,

7x1 + 5x2 + 3x3 + 2x4≤̃80,

3x1 + 4.4x2 + 10x3 + 15x4≤̃100,

x1, x2, x3 ≥ 0.

Let p1 = 5, p2 = 40 and p3 = 30. By solving LPs (8) and (9), we have z0 = 99.2857
and z1 = 130. Table 5 shows the results of solving this FLP problem by using WM, GWM,
WEAM, JBM and SA. The results show that GWM, SA, JBM and WEAM give the same
objective value and the same membership degrees. However, in the next example we show
that sometimes GWM, JBM and WEAM can not solve an FLP problem, correctly.

Example 11 Consider the non-symmetric FLPproblem, solved inExample 4 by usingGWM,
JBMandWEAM.Now,we solve this problemby the suggested algorithm. The corresponding
CLP problem (37), is as follows:

max λ + 1

4
(λ0 + λ1 + λ2 + λ3) + 1

8
(0.1x1 + 3x2)
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Table 6 The results of solving Example 11 by using GWM, JBM, WEAM and SA

x∗
1 x∗

2 z∗ = cx∗ μ0 μ1 μ2 μ3
∑3

i=0 μi

GWM 2.0408 1.9592 6.0816 0.0408 1 0.0408 0.9592 2.5408

JBM 2.0408 1.9592 6.0816 0.0408 1 0.0408 0.9592 2.5408

WEAM 0 0.4267 1.2801 0 2.1919 3.36 3

SA 0 2.333 7 0.5 1 0.5 1 3

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ ≤ λi , i = 0, 1, 2, 3,

λ0 ≤ 0.1x1+3x2−6
2 ,

λ1 ≤ 1 − x1+x2−4
3 ,

λ2 ≤ 1 − x1+3x2−6
2 ,

λ3 ≤ 3 − x1,

x1 + x2 ≤ 7,

x1 + 3x2 ≤ 8,

x1 ≤ 3,

0 ≤ λi ≤ 1, i = 0, 1, 2, 3,

x1, x2 ≥ 0.

Table 6 shows the results of solving the main FLP problem by using GWM, JBM, WEAM
and SA. This table shows that Guu and Wu, Jimenez and Bilbao and Wu et al. approaches
can not find the optimal solution, correctly. Moreover, using Wu et al. [22] method, we find
membership degrees that are not necessarily between 0 and 1.

6 Conclusions

In this paper, having reviewed some well-known approaches for solving FLP problems, we
showed some of their difficulties by numerical examples. We also showed that some of these
methods can not solve all the given FLP problems, correctly. Thereafter, we considered
a new CLP problem and showed that its optimal solution is also an optimal solution for
Zimmermann and Werners approaches. Also, we suggested another new CLP problem and
proved that its optimal solutions are efficient. In the proposed model we not only tried to find
higher membership degrees, but also attempted to find a good optimal value for the main
objective function. Furthermore, we proposed a new algorithm for solving FLP problems and
obtained better results than those related to Zimmermann, Werners, Guu and Wu, Safi et al.,
Jimenez and Bilbao and Wu et al. approaches.
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