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Abstract Low-rank representation (LRR) and its variants have been proved to be powerful
tools for handling subspace segmentation problems. In this paper, we propose a new LRR-
related algorithm, termed self-representation constrained low-rank presentation (SRLRR).
SRLRR contains a self-representation constraint which is used to compel the obtained coef-
ficient matrices can be reconstructed by themselves. An optimization algorithm for solving
SRLRRproblem is also proposed.Moreover,we present an alternative formulation of SRLRR
so that SRLRR can be regarded as a kind of Laplacian regularized LRR. Consequently, the
relationships and comparisons between SRLRR and some existing Laplacian regularized
LRR-related algorithms have been discussed. Finally, subspace segmentation experiments
conducted on both synthetic and real databases show that SRLRR dominates the related
algorithms.
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1 Introduction

Subspace segmentation algorithms aim to partition a group of high-dimensional data samples
into several linear subspaces where they are assumed to be drawn from [1–6]. Due to the
prominent achievements in many real-world applications such as motion segmentation [1,2,
7], face clustering [8,9] and so on, graph-based subspace segmentation methods [1–4,7–9]
have attracted a lot of researchers’ attentions.

Sparse subspace clustering (SSC) [1,2] and low-rank representation (LRR) [3,4] may be
the two most representative graph-based algorithms. They both want to seek a reconstruction
coefficient matrix Z for a data set X which satisfies X = XZ + E, where E represents the
reconstruction residual. Then an affinity graph G could be obtained with [G]i j = (|[Z]i j | +
|[Z] j i |)/2, [G]i j denotes the (i, j)-th element of matrix G. Finally, the well-known spectral
clustering algorithm, normalize cut (Ncut) [10], could be used to get the final subspace
segmentation results.

The main difference between SSC and LRR is that they impose different constraints on
the reconstruction coefficient matrix Z. SSC excepts Z to be a sparse matrix, while LRR
hopes Z to have minimal rank. As it is known to all, in graph-based subspace segmen-
tation methods, it is critical to construct an affinity graph which can reveal the intrinsic
structure for a data set. Compared to SSC, LRR is proven to be more powerful to dis-
cover the global intrinsic structures of data sets and less sensitive to corrupted data [3,4].
Hence, LRR usually achieves better results than those of SSC in subspace segmentation
applications. Consequently, many LRR-related research works have been developed. For
example, Zhuang et al. proposed a kind of non-negative low-rank and sparse representa-
tion (NNLRSR) [11] which compels the coefficient matrices obtained by LRR to be sparse
and non-negative. Zheng et al. introduced a locality constraint into LRR and proposed a
so called low-rank representation with locality constraint (LRRLC) algorithm [12]. Tang et
al. designed a structure-constrained LRR (SCLRR) algorithm which was much similar to
LRRLC and claimed that NNLRSR was actually a special case of SCLRR [13]. Wei et al.
analyzed the subspace segmentation procedures of LRR-based algorithms and developed a
spectral clustering steered low-rank representation method (SCSLRR) [9]. SCSLRR could
be regarded as an extension of SCLRR. Recently, Zhuang et al. proposed a new locality-
preserving low-rank representation (L2R2) [14] by only picking the K neighbors of each
data point to reconstruct itself. Lu et al. added a graph regularizer of coefficient matrices into
LRR and proposed a graph-regularized low-rank representation (GLRR) [15]. Yin et al. used
a similar strategy and provided a non-negative Laplacian regularized low-rank representation
(NSLLRR) [16] based on NNLRSR. Then GLRR could be considered as a special case of
NSLLRR. Zhang et al. extended classical LRR to handle subspace segmentation problems for
data with multiview features and invented a low-rank tensor constrained multiview subspace
clustering algorithm [17].

In addition, we also note that some algorithms which used different constraints on recon-
struction coefficientmatrices also achieved promising results in subspace segmentation tasks.
For instance, Lu et al. presented a least square regression method (LSR) which tried to min-
imize the Frobenius norms of coefficient matrices [18]. By following the methodology of
SCSLRR, Wu et al. suggested to combine Ncut and LSR together [19]. Hu et al. hoped the
coefficient matrices to maintain the locality structures of original data sets, so they designed
a kind of smooth representation clustering (SMR) [20] algorithm. Zhao et al. claimed that a
group sparse coefficient matrix could also discover the intrinsic structure of a data set [21].
For the sake of alleviating the sensitivity of the obtained coefficient matrices to noise, Dong
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Robust Subspace Segmentation by Self-Representation... 1673

et al. designed a joint nuclear norm and group sparse constraint minimization method for
subspace segmentation [22].

Based on the studies on LRR and its various extensions, we know that the obtained
low-rank coefficient matrices are actually the affinity matrices of data sets. A coefficient
matrix, in which the similarities between homogeneous data samples are enhanced and
the similarities between heterogeneous data samples are decreased, would produce good
subspace segmentation results. In order to seek this kind of coefficient matrices, in this
paper, we firstly proposed a new LRR-related subspace segmentation algorithm, termed
self-representation constrained low-rank representation (SRLRR). In SRLRR, a new self-
representation constraint on coefficient matrices was devised, which was used to force the
coefficient matrices could be linearly reconstructed by themselves. We deeply analyzed the
obtained coefficient matrices of SRLRR and explained the advantages of SRLRR for sub-
space segmentation tasks. Secondly, we presented an alternative form of SRLRR which
could be regarded as a kind of Laplacian-regularized LRR. Then we stated the relation-
ships between the SRLRR and some existing Laplacian-regularized LRR-based algorithms
including GLRR, SMR and NSLLRR. We believe that the comparisons would be helpful
for understanding our proposed algorithm. Thirdly, extensive subspace segmentation exper-
iments conducted on both synthetic and real data sets would show SRLRR outperforms the
related algorithms.

The rest of this paper is organized as follows: Sect. 2 beiefly reviews LRR algorithm.
Section 3 introduces the motivation of self-representation constrained low-rank representa-
tion (SRLRR) method and presents the optimization algorithm. The further discussions on
SRLRR and the relationships between SRLRR and some existing LRR-based algorithms are
presented in Sect. 4. In Sect. 5, subspace segmentation experiments on both synthetic and
real world databases are performed to show the effectiveness of SRLRR. Finally Sect. 6 gives
the conclusions.

2 Preliminaries

2.1 Notations

We first provide some important notations adopted in the following sections of this paper in
Table 1.

Table 1 Some important notations used in this paper

Notations Descriptions

X = [x1, x2, · · · , xn ] A given data set

xi ∈ X The i th data sample in the data set X

Xi ⊂ X The i th subset of X, the data in Xi spans the i-th subspace of X

Z = [z1, z2, · · · , zn ] The reconstruction coefficient matrix of X

zi ∈ Z The coefficient vector corresponding to xi
Zi ⊂ Z The reconstruction coefficient matrix corresponding to Xi

E The reconstruction error of X

1n = [1, 1, · · · , 1] A vector with n elements and each element equals 1

I The identity matrix

123



1674 L. Wei et al.

2.2 Low-Rank Representation (LRR)

Suppose a group of data samples X = [x1, x2, · · · , xn] ∈ RD×n , and each data can be
represented by the linear combination of the data set itself X. Namely,

X = XZ, (1)

where Z = [z1, z2, · · · , zn] ∈ Rn×n is the coefficient matrix with each zi being the repre-
sentation of xi . Low-rank representation (LRR) aims to find a proper Z with minimal rank
which satisfies Eq. (1). However, in real applications, data points are usually corrupted with
some noise and outliers. Hence, the objective function of LRR can be expressed as follows:

minZ,E ‖Z‖∗ + λ‖E‖2,1,
s.t. X = XZ + E, (2)

where ‖Z‖∗ is the nuclear norm of Z ( i.e., the sum of the singular values of the matrix)
[23] which is a convex substitute of rank(Z).) λ > 0 is used to balance the effects of the

two terms. ‖E‖2,1 = ∑n
j=1

√∑n
i=1([E]i, j )2 is an error term which can characterize the

sample-specific outliers [24]. Actually, alternative matrix norms could also be adopted. For
example, the l1-norm of E, namely ‖E‖1 = ∑n

i=1
∑n

j=1 |[E]i j | can be used to model noise

satisfies Laplacian distribution. And the Frobenius norm, ‖E‖F =
√∑n

i=1
∑n

j=1[E]2i j , is
able to fit Gaussian noise.

In fact, the noise in real world data usually is very complex. Many works attempted to
model different kinds of noise in real word data. For instance, under the Baysian framework,
Zhao et al. argued to use a mixture of Gaussian to fit a wide range of noises such as Laplacian,
Gaussian, sparse noises and any combinations of them [25]. Wang et al. claimed that the
alternative coefficients of noise in frequency domain are constant w.r.t. their variance, so
they proposed a new method based on discrete cosine transform (DCT) to handle complex
noise [26]. They also designed a DCT-based regularizer which is efficient in visual recovery
for data with large percentage of corruption [27].

Finally, as we mentioned in Sect. 1, once Z is obtained by LRR, an affinity graph G can
be defined. Then Ncut is used to produce the subspace segmentation results.

3 Self-Representation Constrained Low-Rank Representation (SRLRR)

3.1 Motivation

According to the descriptions in the previous section,Z is the linear reconstruction coefficient
matrix ofX. Consider the noise-freemodel ofLRR,wehaveX = XZ. Furthermore, according
to LRR, the reconstruction coefficient matrix Z can also be regraded as the representation of
X. As proved by some manifold learning algorithms such as locally linear embedding (LLE)
[28] and sparsity preserving projection (SPP) [29], an appropriate representation of a original
data set should follow the reconstruction relationship of the original data set. Hence, replace
X by Z in Eq. (1), we have

Z = ZZ = Z2. (3)

The above equation is called self-representation constraint on Z which means the coefficient
matrix should be able to reconstructed by itself. We add Eq. (3) into the objective function of
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LRRand explicitly enforce each columnofZ to sum to one1 [30]. Then the self-representation
constrained LRR (SRLRR) problem can be defined as follows:

minZ,E ‖Z‖∗ + β‖Z − Z2‖2F + λ‖E‖2,1,
s.t. X = XZ + E, 1nZ = 1n,

(4)

where β is a positive real number, 1n = [1, 1, · · · , 1] ∈ R1×n .

3.2 Explanation

Some researchers may argue that the coefficient matrix Z which satisfies the self-
representation constraint, e.g. Z = ZZ = Z2 can only be Z = 0 or Z = I. Hence, they
regard the self-representation constraint is erroneous. In fact, any idempotent matrix could
satisfies the self-representation constraint. An idempotent matrix could have many formula-
tions including two simplest ones, namely 0, I. It is known that the rank of an idempotent
matrix equals its trace. Because the lowest-rank constraint in Eq. (4), I would not be a solu-
tion to SRLRR. Moreover, the constraint 1nZ = 1n will prevent SRLRR to get the solution
Z = 0.

We now discuss the possible formulation of the solution to SRLRR. Suppose a group
of data samples generated from C clusters, namely X = [X1,X2, · · · ,XC ]. Here Xi ∈
RD×ni , ni is the number of samples in the i-th cluster. We know that the optimal solution to
the classical LRR problem is block-diagonal, namely

Z =

⎛

⎜
⎜
⎜
⎝

Z1 0 0 0
0 Z2 0 0

0 0
. . . 0

0 0 0 ZC

⎞

⎟
⎟
⎟
⎠

,

whereZi is an ni×ni matrix [3,4]. Because SRLRR is designed based onLRR, the coefficient
matrix obtained by SRLRR should also be block-diagonal. In addition, in SRLRR, Z = ZZ
and 1nZ = 1n , henceZi = ZiZi and 1niZi = 1ni . Moreover,Zi should also be low rank (but
can not be 0 because of 1niZi = Zi ). Then an idempotent matrix with low-rank constraint
which also satisfies the sum of each column be 1 (namely, 1niZi = 1ni ), so we have

Zi =

⎛

⎜
⎜
⎝

1
ni

· · · 1
ni

...
. . .

...
1
ni

· · · 1
ni

⎞

⎟
⎟
⎠ .

This property of the coefficient matrix obtained by SRLRR will enhance the similarities of
data samples in the same subspace, so the coefficient matrixZwill be more suitable for reveal
the subspace relationship of data samples than that of LRR. In the subsequent sections, we
will present an alternative formulation of SRLRR and discuss its superiorities to the related
algorithms.

1 According to the descriptions in [30], this constraint can make Z be more powerful to reveal the intrinsic
structures of data sets.
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3.3 Optimization

In this subsection, wewill showhow to solve the proposed SRLRRproblem [namely, Eq. (4)].
The well-known alternating direction method (ADM) [31] is adopted. Firstly, Eq. (4) can be
converted to the following equivalent problem:

minZ,J,T,E ‖J‖∗ + β‖Z − ZT‖2F + λ‖E‖2,1,
s.t. X = XZ + E,Z = J,Z = T, 1nZ = 1n .

(5)

Here J,T are two auxiliary variables. Then the we can define the augmented Lagrangian
function of Eq. (5) as follows:

minZ,J,T,E‖J‖∗ + β‖Z − ZT‖2F + λ‖E‖2,1,
+〈Y1,X − XZ − E〉 + 〈Y2,Z − J〉 + 〈Y3,Z − T〉 + 〈Y4, 1nZ − 1n〉
+μ/2

(‖X − XZ − E‖2F + ‖Z − J‖2F + ‖Z − T‖2F + ‖1nZ − 1n‖2F
)
, (6)

where Y1,Y2,Y3 and Y4 are four Lagrangian multipliers, μ is a positive parameter. Then
the variables in the above problem can be optimized alternately.

1. Update J with fixed other variables Suppose in the kth iteration, Zk,Tk,Ek are
computed. We drop the irrelevant terms of J in Eq. (6), then we have:

minJk‖Jk‖∗ + 〈Yk
2,Z

k − Jk〉 + ‖Zk − Jk‖2F
= minJk‖Jk‖∗ + μk/2‖Zk − Jk + Yk

2/μ
k‖2F . (7)

The optimal solution Jk+1 to the above problem satisfies Jk+1 = Uk�1/μk (Sk)(Vk)T ,

whereUkSk(Vk)T is the SVD ofmatrixZk +Yk
2/μ

k,� is the singular value thresholding
operator [23].
2. Update T with fixed other variables Similar to the above processing, we neglect the
irrelevant terms of T in Eq. (6), then in kth iteration, Eq. (6) becomes

minTkβ‖Zk − ZkTk‖2F + 〈Yk
3,Z

k − Tk〉 + μk/2‖Zk − Tk‖2F
= minTkβ‖Zk − ZkTk‖2F + μk/2‖Zk − Tk + Yk

3/μ
k‖2F , (8)

hence Tk+1 = (
2β(ZT )kZk + μk

)−1(2β(Zk)TZk + μk(Zk + Yk
3/μ

k)
)
.

3. Update Z with fixed other variables We also collect the relevant terms w.r.t Z in
Eq. (6), then we have

minZkβ‖Zk − ZkTk‖2F + 〈Yk
1,X − XZk − Ek〉 + 〈Yk

2,Z
k − Jk〉

+ 〈Yk
3,Z

k − Tk〉 + 〈Yk
4, 1nZ

k − 1n〉 + μk/2
(‖X − XZk − Ek‖2F

+‖Zk − Jk‖2F + ‖Zk − Tk‖2F + ‖1nZk − 1n‖2F
)

= minZkβ‖Zk(I − Tk)‖2F + μ/2
(‖X − XZk − Ek + Yk

1/μ
k‖2F

+‖Zk − Jk + Yk
2/μ

k‖2F + ‖Zk − Tk + Yk
3/μ

k‖2F + ‖1nZ − 1n + Yk
4/μ

k‖2F
)
,

(9)

where I ∈ Rn×n is a identity matrix. By taking the derivation of Eq. (9) with respect to
Zk and set it to be zero, the following equation holds:

μk(XTX + 2I + 1n1Tn
)
Zk + 2βZk(I − Tk)(I − Tk)T − μk

(
XT (X − Ek + Yk

1/μ
k)

+ Jk − Yk
2/μ

k + Tk − Yk
3/μ

k + 1Tn (1n − Yk
4/μ

k)
)

= 0. (10)
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It can be found that Eq. (10) is a Sylvester equation [32] w.r.t. Zk . Hence it could be
solved by using the Matlab function lyap().
4. Update E with fixed other variables Drop the irrelevant terms w.r.t. E in Eq. (6),
then in the kth iteration, we have:

minEkλ‖Ek‖2,1 + 〈Yk
1,X − XZk − Ek〉 + μk/2‖X − XZk − Ek‖2F

= minEkλ‖Ek‖2,1 + μk/2‖X − XZk − Ek + Yk
1/μ

k‖2F (11)

The above problem could be solved by following the Lemma presented in [3,4].

Lemma 1 Let Q = [q1,q2, · · · ,qi , · · · ] be a given matrix. If the optimal solution to

minPν‖P‖2,1 + 1

2
‖P − Q‖2F (12)

is P∗, then the i-th column of P∗ is

P∗(:, i) =
{ ‖qi‖2−ν

‖qi‖2 qi , if ν < ‖qi‖2;
0, otherwise.

(13)

5. Update parameters with fixed other variables The precise updating schemes for
parameters existed in Eq. (6) are summarized as follows:

Yk+1
1 = Yk

1 + μk(X − XZk − Ek),

Yk+1
2 = Yk

2 + μk(Zk − Jk),

Yk+1
3 = Yk

3 + μk(Zk − Tk),

Yk+1
4 = Yk

4 + μk(1nZk − 1n),

μk+1 = min(μmax , ρμk), (14)

where μmax and ρ are two given positive parameters.

3.4 Algorithm

The algorithmic procedure of SRLRR is summarized in Algorithm 1.

4 Further Discussions

In this section, we will firstly analysis SRLRR algorithm from another perspective, then
explain the relationships between SRLRR and some existing LRR-related algorithms.

4.1 Laplacian Regularized View of SRLRR

We rewrite the objective function of SRLRR [Eq. (4)] in the following form:

minZ,E‖Z‖∗ + β‖Z − Z2‖2F + λ‖E‖2,1
= minZ,E‖Z‖∗ + βtr

(
Z(I − Z)(I − Z)TZT ) + λ‖E‖2,1

= minZ,E‖Z‖∗ + βtr
(
ZLZT ) + λ‖E‖2,1, (15)

where L = (I − Z)(I − Z)T . The second row of Eq. (15) holds because of ‖Z − Z2‖2F =
‖Z(I − Z)‖2F = tr

(
(I − Z)TZTZ(I − Z)

) = tr
(
Z(I − Z)(I − Z)TZT

)
. Based on these
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Algorithm 1 Self-representation constrained low-rank representation (SRLRR)
Input:

Data set X = [x1, x2, · · · , xn ] ∈ RD×n with each column has unit l2 norm, parameters β, λ and the
maximal number of iteration Maxiter ;

Output:
The coefficient matrix Z∗ and noise E∗;

1: Initialize the parameters, i.e., Y0
1 = Y0

2 = Y0
3 = Y0

4 = 0, μ0 = 10−8, μmax = 1030, ρ = 1.1, ε =
10−8, k = 0.

2: Initialize the variables. Z0, J0,T0 ∈ Rn×n and E0 ∈ RD×n .

3: while
(
‖X −XZk − Ek‖∞ > ε and ‖Zk − Jk‖∞ > ε and ‖Zk − Tk‖∞ > ε and ‖1nZk − 1n‖∞ > ε

)

do
4: Update Jk by solving Eq. (7);
5: Update Tk by solving Eq. (8);
6: Update Zk by solving Eq. (10);
7: Update Ek by solving Eq. (11);
8: Update Yk

1,Y
k
2,Y

k
3,Y

k
4, μ

k by using Eq. (14).
9: end while
10: return the coefficient matrix Z∗ = Zk ,E∗ = Ek .

deductions, it can be seen that the self-representation constraint is transformed to a kind of
Laplacian regularizer [15,16,33–38].

The usage of a Laplacian regularizer is to characterize the manifold structure of a data set.
And a well-designed Laplacian regularizer will be great helpful to improve the performances
of different algorithms [15,16,33–38]. Besides the classical Laplacian regularizer [15,16,33–
36], from the purpose of revealing the manifold structures of data sets, Laplacian regularizers
could be devised in many different ways. For example, Wang et al. used a locality linear
reconstruction method to construct a kind of Laplacian regularizer and stated its rationality
[39]. Yu et al. adopted a multimodal hypergraph Laplacian regularizer to build a group of
manifolds [37]. Yu et al. also used the patch alignment skill to devise a kind of Laplacian
regularizer [38].

From this viewpoint, we discuss the connections between SRLRR and some existing
Laplacian-regularized LRR-related methods and explain the superiorities of SRLRR to them.

4.2 Relationship with Some Existing Laplacian-Regularized LRR-Related
Methods

4.2.1 Relationship with Graph-Regularized Low-Rank Representation (GLRR)

Equation (15) is much similar to the objective function of GLRR [15] listed as the following
equation:

minZ,E ‖Z‖∗ + βtr
(
ZLKZT

) + λ‖E‖2,1
s.t. X = XZ + E.

(16)

In GLRR, the Laplacian matrix LK is devised based on KNN (K-nearest-neighbor)
method2 [40] and the similarities between pairwise data samples are manually set. How-
ever, the neighborhood size K in KNN method is usually difficult to choose. An improper
value of K will have terrible impacts on the performance of a graph-based method [41].
And it is also difficult to manually determine a suitable value for the similarity of a pair of

2 Namely, L = D−W, whereW is an affinity matrix constructed by using KNN,D is a diagonal matrix with
Di i = ∑

j Wi j .
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data samples. Consequently, the Laplacian matrix LK in GLRR may not be able to faithfully
reveal the manifold structure of a data set.

As we mentioned above, Wang et al. pointed out that the reconstruction coefficient matrix
Z of a data set is also capable for designing a suitable Laplacian matrix (namely L = (I −
Z)(I−Z)T )3 [39]. Hence the definedLaplacianmatrixL in SRLRR is reasonable. In addition,
different from the method in [39], the coefficient matrix Z obtained by SRLRR could be able
to reveal the global structures of data sets with the help of the low-rank constraint. Moreover,
Z is updated in each iteration and would recovery the truth reconstruction relationship for
a data set more precisely. Therefore, the Laplacian regularizer defined in SRLRR is more
appropriate for recovery the manifold structures of different kinds of data sets.

4.2.2 Relationship with Smooth Representation Clustering (SMR)

Smooth representation clustering (SMR) [20] is a simple and efficient subspace segmentation
algorithm whose objective function can be expressed as follows:

minZ tr(ZLKZT ) + λ‖E‖2F ,

s.t. X = XZ + E,
(17)

where LK is also defined based on KNN, ‖E‖2F represents the Frobenius norm of matrix E.
Compared with Eq. (16), it could be found that SMR is actually a special case of GLRR
without the low-rank constraint. Hence, SMR inherits the drawbacks of GLRR. The for-
mulation of SMR inspires us to think whether the low-rank constraint can be abandoned in
SRLRR either? In our experiments, we found that if the low-rank constraint on Z in SRLRR
is dropped, the performance of SRLRR would degenerate sharply. This may be the low-rank
constraint can guarantee the coefficient matrix to be block diagonal which is important to
SRLRR as we stated in Sect. 3.2.

4.2.3 Relationship with Non-negative Laplacian Regularized Low-Rank
Representation (NSLLRR)

NSLLRR [16] could be regard as an extension of GLRR whose objection function can be
expressed as follows:

minZ,E ‖Z‖∗ + α‖Z‖1 + βtr
(
ZLKZT

) + λ‖E‖2,1
s.t. X = XZ + E,Z ≥ 0

(18)

where 0 ∈ Rn×n is a matrix with each element equals zero. In NSLLRR, the Laplacianmatrix
is constructed in the similar way as used in GLRR and SMR. Hence, the drawback of GLRR
remains in NSLLRR. Moreover, there are four parameters α, β, λ and the neighborhood size
K needed to be adjusted in NSLLRR, which will make NSLLRR more difficult to achieve
satisfactory results.

Finally, we present the following Table 2 to summarize the differences between SRLRR
and the close related algorithms such as LRR, GLRR, SMR and NSLLRR.

4.3 Computational Complexity Analysis

In this subsection, we will analyze the computational complexity of SRLRR, namely Algo-
rithm 1. Suppose the data matrix X ∈ RD×n , then Z ∈ Rn×n . The time consumed for
running Algorithm 1 is mainly composed of updating J,T,Z,E.

3 Z is a locally reconstruction coefficient matrix.
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Table 2 The differences between SRLRR and some LRR-related algorithms

Algorithms Coefficient matrix term Laplacian regularizer Error term

LRR ‖Z‖∗ – ‖E‖2,1
SMR – tr(ZLKZT ) ‖E‖2F
GLRR ‖Z‖∗ tr(ZLKZT ) ‖E‖2,1
NSLLRR ‖Z‖∗, ‖Z‖1 tr(ZLKZT ) ‖E‖2,1
SRLRR ‖Z‖∗ tr(ZLZT ),L = (I − Z)(I − Z)T ‖E‖2,1

We then discuss the updating method for J,T,Z,E respectively. Firstly, updating J
requires to computing the singular value decomposition (SVD) of an n × n matrix. The
time complexity of performing SVD is O(n3). Secondly, the computation burden of seeking
the pseudo-inverse of an n× n matrix is O(n3). Hence, the time complexity of updating T is
O(n3). Thirdly, updating Z needs to solve a Sylvester equation which will also takes O(n3).
Fourthly, the time complexity is O(n)when Lemma 1 is used to update E. Therefore, we can
see that the time complexity of each iteration of Algorithm 1 is O(n3). Suppose the number
of iteration is N , the total complexity of Algorithm 1 is N × O(n3). Hence, the complexity
of SRLRR is the same order as LRR algorithm [4].

5 Experiments

In this section, extensive subspace segmentation experiments will be conducted to verify the
effectiveness of SRLRR. Some representative and related algorithms such as SSC [1], LRR
[3,4], SCLRR [5], NSLLRR [16],4 LSR [18] will also be evaluated for comparisons. Four
types databases including a synthetic data set, Hopkins 155 motion segmentation database
[42], face image databases (such as ORL database [43], the extended Yale B database [44],
AR database [45]) and other two image databases including MNIST (http://yann.lecun.com/
exdb/mnist/) and COIL-20 [27] will be adopted.

5.1 Experiments on the Synthetic Data

The synthetic data is generated by strictly following the methodology used in [3]. It is
draw from 5 independent subspaces {Ci }5i=1, whose basis {Bi }5i=1 are computed by Bi+1 =
RBi , 1 ≤ i ≤ 4, where R is a random rotation and Bi is a orthogonal matrix of dimension
100× 4. Then we construct a 100× 100 data matrix X = [X1,X2,X3,X4,X5] by sampling
20 data points from each subspace Xi = BiQi , 1 ≤ i ≤ 5 with Qi be a 4 × 20 matrix
satisfies uniform distribution. Moreover, some data is randomly selected to add Gaussian
noise with zero mean and variance 0.3‖x‖2. Finally, the above mentioned algorithms are
used to segment the data into 5 clusters and the segmentation accuracy5 of each method is
recorded. The segmentation accuracy (averaged from 20 random trials) of each algorithm
varies with the variation of corruption is shown in Fig. 1 (The corresponding parameters of
different algorithms are set to their best values which are also reported in Fig. 1).

4 TheMatlab code of NSLLRR can be found on http://www.cis.pku.edu.cn/faculty/vision/zlin/sparse_graph_
LRR.m. Because NSLLRR is the extension of GLRR and SMR, we do not use GLRR and SMR for compar-
isons.
5 The segmentation accuracy is defined as the ratio between number of correct classified points to total number
of points.
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Fig. 1 The segmentation accuracy versus variation the range of corruption for eachmethod. Notice: the neigh-
borhood size K in NSLLRR is set to be 10. We test the performance of NSLLRR with different neighborhood
sizes and chose the best one

From Fig. 1, we can get several interesting observations: (1) Laplacian-regularized LRR
methods (SRLRR and NSLLRR) outperform LRR and SCLRR; (2) SRLRR constantly
achieves the best results and dominates NSLLRR. It can be concluded that the self-represent
constraint defined in SRLRR is more helpful for revealing the intrinsic structures of data sets
than the classical Laplacian constraint used in NSLLRR; (3) SSC and LSR are inferior to
LRR-based algorithms.

Moreover, we also illustrate the affinity graphs obtained by all the evaluated algorithms in
Fig. 2. Here a generated synthetic data set with 40% corruption is adopted. The segmentation
accuracies obtained based on the affinity graphs are also presented in the captions of each
sub-figure. From Fig. 2, we can find that (1) the block structures of the affinity graph learned
by LRR-related algorithms are better to reveal the intrinsic structures of the synthetic data set
than those obtained by SSC and LSR; (2) compared to other LRR-related algorithms, SRLRR
is better to discovery the structure of the fourth subspace denoted by the read pointers in Fig. 2.

Finally, we test the performances of SRLRR with different matrix norms for modelling
noise and outliers. Here, three frequently used matrix norms, such as l2,1-norm, l1-norm and
Frobenius norm are used. And the segmentation accuracy curves of SRLRR with the three
different norms of error matrix E are plotted in Fig. 3. From Fig. 3, we can see that (1)
SRLRR with l2,1-norm error term achieves the best values; (2) if we use l1-norm to model
the noise, the performances of SRLRR become very poor when the percentage of corruption
is large than 10%. Hence, in the following experiments, we will use l2,1-norm to characterize
the noise existed in data sets.

5.2 Experiments on Hopkins 155 Database

Hopkins 155 database is a well-known motion segmentation database. It consists of 120
sequences motions of two motions and 35 sequences of three motions.6 The features are

6 It also contains a sequence of 5 motions which is called “dancing”. We neglect this sub-database in our
experiments.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 The affinity graphs computed by a SSC, b LSR, c LRR, d SCLRR, e NSLLRR and f SRLRR
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Fig. 3 The performances of SRLRR with different matrix norms imposed on the error terms

extracted and tracked along with the motion in all frames, and errors were manually removed
for each sequence. Then each sequence could be viewed as a single clustering problem, hence
there are 155 clustering tasks in total. Fig. 4 presents two sample images of Hopkins 155
database.
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Fig. 4 Sample Images of Hopkins 155 motion segmentation database. a 1R2RC, b arm

7
5

3

β
1

0.1
0.01

0.0010.01

0.1

1

3

λ

5

0.2

0.1

0
10

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Fig. 5 The performance of SRLRR versus the variation of parameters λ, β. The vertical axis denotes the
segmentation errors, the left horizontal axis and right horizontal axis represent the variations of λ and β

respectively

For computational efficiency, we perform a preprocessing step to project the data to be
12-dimensional7 by principal component analysis (PCA) [40]. We first test the sensitivity of
SRLRR to its parameters β and λ. β and λ are chosen to vary in the intervals [0.001, 7] and
[0.01, 10] respectively.And the segmentation errors8 achievedbySRLRRwith corresponding
values are illustrated in Fig. 5. Clearly, it can be found that the performance of SRLRR is
much stable when β and λ vary in relative large ranges. Furthermore, we also recorded the
detailed statistics of the segmentation errors of the evaluated algorithms including Mean,
standard deviation (Std.) and maximal error(Max.) in Table 3. We set the two parameters
in SRLRR as β = 5, λ = 10 according to the above sensitivity testing experiments. The

7 The choices of PCA dimension is followed the suggestion in [3].
8 Segmentation error=1− segmentation accuracy.
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Table 3 The segmentation errors (%) of different algorithms on Hopkins 155 database

Method 2 motions 3 motions ALL

Mean Std. Max. Mean Std. Max. Mean Std. Max.

SSC 4.02 10.24 41.59 11.16 11.00 37.56 5.63 10.81 41.59

LSR 6.21 10.23 43.59 15.36 9.88 42.26 8.27 10.82 43.59

LRR 3.13 7.45 30.20 6.56 7.49 23.41 3.9 7.57 30.20

SCLRR 3.42 8.42 31.09 8.18 7.74 24.68 4.49 8.49 31.09

NSLLRR 2.92 7.32 28.12 5.28 7.90 23.66 3.45 8.08 28.12

SRLRR 2.04 6.40 28.23 5.67 7.16 23.41 2.86 6.73 28.23

The optimal values of different criterion are emphasized in bold style
Notice: In SSC, λ = 3 × 10−3. In LSR, λ = 4.6 × 10−3. In LRR, λ = 2.4. In SCLRR, β = 0.01, λ = 2. In
NSLLRR, α = 0.001, β = 0.01, λ = 5.6 and neighborhood size K = 10

parameters in other evaluated algorithms are tuned to their best values by following the
disciplines described in the corresponding related references (also reported in Table 3).

From Table 3, we can see that (1) the mean of segmentation errors on the data sets with
2 motions and all data sets obtained by SRLRR are all slightly better than those of other
algorithms; (2) the standard deviation on all data sets obtained by SRLRR is also superior to
those of other algorithms; (3) all the best values are achieved SRLRR and NSLLRR.

5.3 Experiments on Face Image Databases

Three well-known face image databases including ORL [43], the extend Yale B [44] and AR
face database [45] will be used in the experiments performed in this subsection. The brief
information of the three databases are introduced as follows:

ORL database contains 400 face images (without noise) of 40 persons. Each person has
10 different images. These images were taken at different times, varying the lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses).

The extended Yale B face database contains 38 human faces and around 64 near frontal
images under different illuminations per individual. Some images in this database were
corrupted by shadow. We just selected images from first 10 classes of the extended Yale B
database to form a heavily corrupted subset. In our experiments, all the images from ORL
and the extended Yale B database are resized to 32 × 32 pixels.

AR database consists of over 4000 face images of 126 persons. For each individual, 26
pictures were taken in two sessions (separated by two weeks) and each section contains 13
images. These images include front view of faces with different expressions, illuminations
and occlusions. In our experiments, the pictures from the first 20 persons (520 images) of
AR will be taken. And each image is resized into 50× 40 pixels. Some sample images from
the three databases are shown in Fig. 6a–c respectively.

We still first test the performance of SRLRR on the three databases when the parameters
varies. In the following experiments, for computational efficiency, we project the data into
its corresponding PCA subspace whose dimension equals n − 1. n is the number of data
sample in each database. Then we let the two parameters β, λ change in interval [0.001, 10]
and record the segmentation accuracies obtained by SRLRR. The experiments results are
reported in Fig. 7a–c.

From Fig. 7, we can find that SRLRR is insensitive to the two parameters β, λ when
these databases are used. Moreover, the best experimental results of SRLRR on the three
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Fig. 6 Sample images from a ORL, b the extend Yale B and c AR databases

databases are recorded in Table 4. For comparison, the segmentation accuracies achieved by
the other evaluated algorithms are also reported. Form Table 4, it can be seen that (1) the
best experiments results on the three databases are all achieved by SRLRR; (2) especially,
on the extend Yale B database, the result of SRLRR is much better than those of other
algorithms.

For further comparisons, we also performed subspace segmentation experiments on some
sub-databases constructed from the above used three image databases. Each sub-database
contains the images from q persons (q changes from a relative small number to the total
number of class). Then the six evaluated algorithms are performed to obtain the subspace
segmentation accuracies. In these experiments, all the corresponding parameters in each
evaluated algorithm are varied from 0.001 to 10, and the best values corresponding to the
highest accuracy of each evaluated algorithm are chosen. Finally, the segmentation accuracy
curve of each algorithm againsts the number of class q are plotted in Fig. 8.

Clearly, form Fig. 8, we can find that (1) in all the experiments, the best results are almost
achieved by SRLRR; (2) the results of SRLRR are much better than those of other algorithms
on the AR database.

5.4 Experiments on Other Image Databases

We hope to further verify the effectiveness of SRLRR on different kinds of databases. There-
fore, two frequently used image databases, MNIST (http://yann.lecun.com/exdb/mnist/) and
COIL-20 [46] are adopted in this section. The brief information of the two databases are
summarized as follows:

MNIST database has images from 10 handwritten digits, namely 0-9. In the following
experiments, we construct a subset which consists of the first 50 samples of each digits
training data set. Then each image is resize to 28 × 28 pixels.
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Fig. 7 The segmentation accuracies obtained by SRLRR with different values of parameters on three face
image databases. a ORL, b Yale B, c AR
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Table 4 The segmentation accuracies (%) of different algorithms on the three image databases

Methods Database

ORL Yale B AR

SSC(λ) 81.75 (5) 68.42 (0.5) 84.46 (0.5)

LSR(λ) 79.50 (0.5) 65.78 (0.1) 83.46 (0.1)

LRR(λ) 79.25 (5) 70.00 (1) 84.62 (5)

SCLRR(β, λ) 81.50 (0.01, 3) 69.53 (0.001, 1) 85.58 (0.001, 5)

NSLLRR(α, β, λ) 80.75 (0.001, 0.01, 7) 72.19 (0.001, 0.01, 2) 84.81 (0.001, 0.01, 10)

SRLRR (β, λ) 82.25 (0.01, 5) 83.28 (10, 3) 86.54 (0.5, 3)

The optimal values of different criterion are emphasized in bold style
Notice: In these experiments, the neighborhood size K in NSLLRR is set to be 5

COIL-20 database contains total 1440 images of size 32 × 32 from 20 different subjects
and each object has 72 images. We take first 36 images of each object to form a subset. The
sample images of the two databases are illustrated in the following Fig. 9.

Based on the previous experiments, we can conclude that SRLRR is insensitive to its
parameters. Hence, we just present the subspace segmentation results obtained by SRLRR
and other algorithms on the two databases. The similar strategies used in the experiments
conducted on the face image databases will be also adopted in the following experiments.
Hence, the subspace segmentation accuracies of different evaluated algorithms on the sub-
databases with q-subjects (extracted from the two databases) will be recorded. Fig. 10 plots
the segmentation accuracy curves of the six algorithms change with the number of subject
(class). Obviously, these experimental results also present the conclusion that SRLRR is
superior to the related algorithms.

Moreover, one may doubt on the segmentation accuracy curves obtained by the evaluated
algorithms in Figs. 8 and 10. It seems that some of them increase and the others decrease. We
know that each curve in Figs. 8 and 10 recorded the best results of an evaluated algorithm
with corresponding parameters and different numbers of class (person or subject). In most
cases, with the number of class increases, it will be more difficult for subspace segmentation
algorithms to correctly segment data samples to their true subspace. Hence, the segmentation
accuracy curves will decrease constantly in most cases.9 However, in some situations, the
distribution of data and the search strategies adopted for determining the best parameters of
different algorithms may prevent the evaluated algorithms to obtain the best results. Hence,
the segmentation accuracy curves will increase sometimes.

All the above experiments show that SRLRR is superior to the related algorithms. Here
we summarize the reasons for explaining the successes of SRLRR: On one hand, as we
explained in Sect. 3.2, the self-representation constraint defined in SRLRR would make the
similarity between each pair-wise homogenous data points (in a same subspace) strictly larger
than 0. However, other related algorithmsmay not satisfy this property. Hence, the coefficient
matrices obtained by SRLRRwould bemore powerful to characterize the subspace structures
of data sets. On the other hand, SRLRR could be regarded as a kind of Laplacian regularized
LRR method. However, different from the existing Laplacian regularized LRR methods,
SRLRR uses the obtained low-rank coefficient matrix to define a Laplacian matrix. Because
the low-rank coefficient matrix could reveal the intrinsic structure of an original data set

9 It can be seen that the curves plotted in Fig. 8b and most curves in Fig. 8a, c are consistent with the
interpretation.
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Fig. 8 The segmentation accuracies obtained by the evaluated algorithms versus the variations of number of
class on different databases. a ORL, b the extend Yale B, c AR
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Fig. 9 Sample images from a MNIST, b COIL-20 databases
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Fig. 10 The segmentation accuracies obtained by the evaluated algorithms versus the variations of number
of class on different databases. a MNIST, b COIL-20

in a certain extent, the defined Laplacian matrix is more suitable to recovery the manifold
structure of the original data set. The two reasons guarantee the effectiveness of SRLRR and
help SRLRR to achieve satisfactory results in the above subspace segmentation experiments.

6 Conclusion

In this paper, we proposed a newLRR-related algorithm, termed self-representation low-rank
representation (SRLRR). In SRLRR, we devised a new self-representation constraint based
on the analysis on coefficient matrices obtained by LRR method. The self-representation
constraint makes the coefficient matrices should be able to reconstruct themselves. And we
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proved that it could also be transferred to be a kind of Laplacian regularizer. We described the
rationality of the proposed self-representation constraint and stated the relationships between
SRLRR and some existing related algorithms. Finally, subspace segmentation experiments
performed on both synthetic and real databases showed the effectiveness of SRLRR.
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