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Abstract
This paper presents a novel approach to deal with the imbalanced data set problem in neural
networks by incorporating prior probabilities into a cost-sensitive cross-entropy error func-
tion. Several classical benchmarks were tested for performance evaluation using different
metrics, namelyG-Mean, area under theROCcurve (AUC), adjustedG-Mean,Accuracy,True
Positive Rate, True Negative Rate and F1-score. The obtained results were compared to well-
known algorithms and showed the effectiveness and robustness of the proposed approach,
which results in well-balanced classifiers given different imbalance scenarios.

Keywords Multilayer perceptron · Imbalanced data · Classification problem ·
Back-propagation · Cost-sensitive function

1 Introduction

Thenumber of samples commonly differs fromone class to another in classification problems.
This problem, known as the imbalanced data set problem [1–7], arises in most real-world
applications. The point is that most current inductive learning principles resides on a sum of
squared errors that do not take priors into account, which generally results in a classification
bias towards the majority class.

One possible approach to handle this problem is to consider an alternative criterion to
the overall learning error [4,8,9]. Other solution is the use of data resampling, which indi-
rectly modifies the selection probability of the patterns during the learning phase. According
to the Bayesian decision theory, the effect of changing the prior probabilities is analogous
to set a new decision boundary for a probability-based classifier [10]. Many data resam-
pling techniques have been proposed in the Literature, as for example, “Synthetic Minority
Oversampling Technique” (SMOTE) [11], “Weighted Wilson’s editing” (WWE) [12] and
“Adaptive Synthetic Sampling” (ADASYN) [13]. However, it has been shown that the clas-
sifier performance depends on both an ad hoc parameter setting (eg, percentage of data to be
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under- or over-sampled in a class and scale of local neighborhood, to mention a few) and the
choice of the classifier itself. Experiments in [8,14] suggested that well-known resampling
techniques do not lead to performance improvement inMulti-Layer Perceptron (MLP) neural
networks, even in the case of optimized parameter settings. Another solution is the use of
ensemble learning, that has shown improvements forMLPs [15,16]. Ensemble extensions for
imbalanced learning consider changes in the pattern probability function during the training
phase. Such change has an effect on the model selection criterion, since the lowest overall
error rate, as in Adaboost [17], gives way to a balanced decision among the classes accuracy
rates given the consideration of the respective priors. Since the ensemble approach is based
on a combination of different hypotheses (eg, MLPs neural networks), it usually leads to
longer training times. This is the case especially when MLPs are used as weak learners.

This paper presents a novel approach to deal with the imbalanced data set problem in
neural networks by incorporating prior probabilities into a cost-sensitive cross-entropy error
function. The usual overall error formulation for MLPs is explicitly modified to incorpo-
rate unequal misclassification costs [18,19]. Unlike other cost-sensitive approaches in MLP
learning [8,20], each class contribution in the cross-entropy error function is weighted by its
respective class prior probability. This approach results on well-balanced decision bound-
aries.

The remainder of this paper is organized as follows. Section 2 describes the learning prob-
lem using the cross-entropy error function, and Sect. 3 presents the modified cost-sensitive
cross-entropy error function by considering the prior probabilities of the classes. Themethod-
ology, experiments and results are shown and discussed in Sect. 4. Final considerations are
given in Sect. 5.

2 The Learning Problem

In classification problems, considering the learning set S = {(xi , yi ) ∈ X × Y | i =
1, . . . , N }, the output labels yi given the inputs xi are generated by an unknown function
f (x). The objective is to estimate it as close as possible by means of a model f (x | θ), where
θ is the parameter set. Instead of adopting an empirical risk, often based on theMean Squared
Error (MSE) metric, another way to estimate θ is through the cross-entropy error function
(Eq. 1), where ŷ = f (x | θ) is the model output, given the learning of the (X ,Y)-mapping
function.

J (θ) = 1

m

m∑

i=1

[− yi log(ŷi ) − (1 − yi ) log(1 − ŷi )
]

(1)

This function was chosen in place of the MSE one since it is convex and more suitable
for calculating posterior probabilities in the case of neural networks [21]. When yi = 0,
it reduces to − log(1 − ŷi ), and otherwise, with yi = 1, to − log(ŷi ). Whatever the case,
the error decreases logarithmically as ŷi tends to yi (Fig. 1). Moreover, since the curves are
symmetrical, the error reduction happens at the same logarithmic rate for both classes (that
is, yi = 0 and yi = 1). For a balanced learning problem, the error from [− log(ŷi )] will be
proportional to that from [− log(1 − ŷi )], once each term will account for 50% of the total
error J (θ) for a given model output ŷ. However, in the case of imbalanced data, the term
associated to the majority class will have larger influence on J (θ). This occurs because the
overall error, which is a sum of the individual terms, is minimized regardless of the class that
generated the error.
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Fig. 1 Illustration of the cross-entropy error function J (θ) for a range of model outputs ŷ given yi = 1 (solid
line) and yi = 0 (dashed line)

Fig. 2 A two-Gaussian problem

As an example, consider a binary classification problem with classes A and B, each one
containing 200 samples (Fig. 2). AMLP neural network with two inputs, two hidden neurons
and one output, was then identified using the classical cross-entropy error function (Eq. 1).
Also, consider imbalanced scenarios with class A having 5, 50 and 100 random samples
among the original 200 instances. To evaluate the contribution of each class on the cross-
entropy error function, the ratio R (Eq. 2) was calculated along 1000 iterations. Figure 3
depicts the obtained results.

R = −y log(ŷ)
−(1 − y) log(1 − ŷ)

(2)
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Fig. 3 Cross-entropy imbalance ratio R (Eq. 2) during learning of balanced and imbalanced data sets

It can be observed that R is approximately constant when the prior probabilities of the
classes are equal, since each class contributes equally to this ratio. The effect of the imbalance
levels can also be observed; the greater it is, the more R tends to stabilize at a higher value.
The discrepancy between both priors is penalized in the computation of R mainly in the
initial iterations. This behavior led to the proposal of the cost-sensitive approach presented
in the next section.

3 Cost-Sensitive Cross-Entropy Error Function Approach

The discrepancy of the error rates between balanced and imbalanced data may be treated
considering the optimal decision rule given in Eq. 3 [22]. An approximate unit ratio between

[− y′( j)
i log(ŷ′( j)

i )] and [− (1 − y′( j)
i ) log(1 − ŷ′( j)

i )] is expected for balanced problems;
however, as shown in Fig. 3, the ratio will reflect the priors. It also tends to stabilize in one,
once the contribution of the minority class tends to become more influential as the number
of iterations increases compensating the priors.

f0(x) =
{
1, if p(x|y=1)

p(x|y=0) ≥ p(y=0)
p(y=1)

0, otherwise
(3)

It is clear that the prior probabilities ratio p(y=0)
p(y=1) plays an important role in the classifi-

cation balance between classes, and then it could be used to compensate the imbalance. One
way to accomplish this is to incorporate this ratio into the cross-entropy error function, as
shown in Eqs. 4 and 5, where N is the number of samples of the positive class (y = 1) and
M is the total number of samples.

J (θ) = 1

m

m∑

i=1

[− yi log(ŷi )λ − (1 − yi ) log(1 − ŷi )(1 − λ)
]

(4)

λ( j) =
(
N

M

)−1

(5)
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Fig. 4 Minority class output obtained with the proposed approach based on the cross-entropy error function
J (θ) for a range of model outputs hθ (x) given yi = 1 (solid line) and yi = 0 (dashed line)

As an example, considering that NClass A(1)

NClass B(0) = 0.20, Fig. 4 shows that the magnitude of
[− yi log(ŷi )λ] decays faster than that of [− (1 − yi ) log(1 − ŷi )(1 − λ)]. The gradient
descent can also be applied to Eq. 4 in order to obtain ∂ J (θ)/∂θ(n−1) and ∂ J (θ)/∂z(n−1), as
shown by Equations from 6 to 12, where n is the last layer of neurons and ŷi = f (x|θ, z).
Using the conventional cross-entropy error function (Eq. 1), it can be noted that changing
only the error from the output layer, that is, [δ(n) = g(z(n))− y by δ(n) = (

qg(z(n)) − λy
)+

yg(z(n))(λ−q)], is enough tomeet all other equations. Applying this approach to the previous
two Gaussian example (Sect. 2), Fig. 5 shows that the cross-entropy error rate (dashed line)
is kept almost constant when considering the priors, which results in a balance between the
classes. The gradient descent with the Rprop algorithm [23] was used in all experiments in
the next section. Although the present approach is pattern-based, there is no constraint in the
present formulation for a further matrix representation of the problem, as the one presented
by [24].

∂ J (θ)

∂θ(n−1)
=

[(
qg(z(n)) − λy

)
+ yg(z(n))(λ − q)

]
a(n−1) (6)

∂ J (θ)

∂z(n−1)
= δ(n)θ (n−1)g(z(n−1))(1 − g(z(n−1))) (7)

∂ J (θ)

∂z(n−1)
= δ(n−1) (8)

q = (1 − (N/M))−1 (9)

qg(z(n)) − λy = γ (10)

yg(z(n))(λ − q) = β (11)

γ + β = δ (12)
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Fig. 5 Cross-entropy rate for MLP

4 Results and Discussion

4.1 Experimental Study

An empirical study was conducted using 16 data sets from the UCI repository. The proposed
cost-sensitive error function (CSEFMLP) was compared to five well-known techniques,
namely SMOTE [11], weightedWilson’s editing (WWE) [12], Rprop [23], SMOTE + Tomek
Links (SMTTL) [25], and RAMOBoost [26]. Table 1 depicts their main characteristics. After
a preprocessing as in [8], twenty different trials were carried out for each data set by shuf-
fling their original indexes. In sequence, theywere split into training subset (70%), whichwas
employed in a 7-fold cross-validation procedure for model selection, and test subset, used
for performance evaluation. The following metrics were employed with this aim, namely
the Kubat’s G-Mean metric, that takes into account a balance between true positive and true
negative rates given by

√
T Pr · T Nr [27]; the Area under the ROC curve (AUC), that also

considers how well positive classes are ranked [28]; the Adjusted Geometric-Mean, a recent
metric that proposes a balance between Specificity and Sensitivity favoring the latter [29];
the Accuracy, to show that it can be a trick metric if evaluated alone in unbalanced data
problems; the True Positive Rate (TPR) and the True Negative Rate (TNR), that play an
important role given the type of balance is being pursued by the model; and the F1 score,
which is the harmonic mean of the precision and recall. The results for TPR and TNR were
obtained considering the model with the greater accuracy.

4.2 Non-parametric Test

Model comparison procedures usually employ parametric tests. However, in this case, a non-
parametric one is more adequate [30], namely the Nemenyi post-hoc statistical test (FF )
(Eq. 13), which is derived from the Friedman statistics (χ2

F ) (Eq. 14) [31]. This test allows a
simultaneous comparison of multiple classifiers (L) given multiple data sets (M). The null-
hypothesis H0 states that all algorithms perform similarly. In this case, they present equal
average ranks (R j ), where R j = 1

M

∑M
i=1 r

j
i , 1 ≤ j ≤ L , is the average rank of the j th

algorithm given all data sets.
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Table 1 Characteristics of the data sets

Data set Alias No. of features n1 n2 n1/(n1 + n2)

Ionosphere iono 34 126 225 0,359

Pima Indians diabetes pid 08 268 500 0,349

German credit gmn 24 300 700 0,3

WP breast cancer wpbc 33 47 151 0,237

Vehicle (4 vs. all) veh 18 199 647 0,235

SPECTF heart hrt 44 55 212 0,206

Segmentation (1 vs. all) seg 19 30 180 0,143

Glass (7 vs. all) gls7 10 29 185 0,136

Euthyroid (1 vs. all) euth 24 238 1762 0,119

Satimage (4 vs. all) sat 36 626 5809 0,097

Vowel (1 vs. all) vow 10 90 900 0,091

Abalone (18 vs. 9) a18-9 08 42 689 0,057

Yeast (9 vs. 1) y9-1 08 20 463 0,041

Car (3 vs. all) car 06 69 1659 0,04

Yeast (5 vs. all) y5 08 51 1433 0,034

Abalone (19 vs. all) a19 08 32 4145 0,008

FF = (M − 1)χ2
F

M(L − 1) − χ2
F

(13)

χ2
F = 12M

L(L + 1)

⎛

⎝
L∑

j=1

R2
j − L(L + 1)2

4

⎞

⎠ (14)

In case of rejection of the null hypothesis, another statistical test should be carried out to
quantify the differences among the algorithms [30]. The most usual is the Bonferroni-Dunn
post-hoc test [32]. Two classifiers are considered not similar if the difference between their
average ranks is greater than a critical difference (CD; Eq. 15), where qα is based on the
Student statistic.

CD = qα

√
L(L + 1)

6M
(15)

4.3 Results

Tables 2, 3, 4, 5, 6, 7 and 8 summarize the results for the consideredmetrics, namely G-Mean,
AUC,AdjustedG-Mean, Accuracy, True Positive Rate (TPR), TrueNegative Rate (TNR) and
F1 score, respectively. Given a data set, the highest classification score is highlighted in bold.
The good performance of the proposed approach in comparison to well-known classifiers
can be observed in general. For G-Mean, Adjusted G-Mean and TPR, it is the classifier that
presents the highest number of best ratings, and for AUC, this number is similar to Rprop. For
Accuracy, the scores are generally close to the highest classification scores mainly obtained
from Rprop and RAMOboost, even though this metric is not a focus on unbalanced data
problems. For TNR, a worse rating is expected since the proposed approach searches for a
good balance between TPR and TNR, which led to a good average rank for TPR.
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Table 2 Average values for G-Mean

Base Rprop SMOTE SMTTL WWE RAMOBoost CSEFMLP

iono 85.64 87.49 88.65 85.55 89.75 85.56

pid 70.73 74.30 74.32 74.46 73.08 74.57

gmn 69.20 70.64 70.22 70.64 67.87 71.08

wpbc 64.44 66.76 64.37 63.25 68.53 67.34

veh 96.87 96.66 96.60 96.74 97.72 97.41

hrt 66.41 68.36 67.57 73.39 67.43 68.66

seg 99.57 99.44 99.68 99.51 99.76 99.37

gls7 91.00 89.92 90.14 92.27 90.45 91.61

euth 89.99 91.21 91.23 91.32 89.42 91.73

sat 74.60 77.40 77.77 80.21 76.27 87.58

vow 97.82 97.24 98.27 98.04 99.30 98.65

a18-9 74.17 84.37 84.58 76.64 74.61 83.77

y9-1 74.27 70.96 70.08 73.57 74.10 73.40

car 94.87 93.04 91.78 96.75 95.85 99.19

y5 51.36 77.93 78.52 66.46 63.94 79.72

a19 14.18 75.89 75.90 25.08 41.13 76.96

av. Rank 4.56 4.00 3.56 3.25 3.44 2.19

Table 3 Average values for AUC

Base Rprop SMOTE SMTTL WWE RAMOBoost CSEFMLP

iono 89.90 91.86 92.03 93.02 93.50 91.58

pid 82.88 82.63 82.65 82.70 80.54 82.79

gmn 78.49 77.71 77.56 78.20 74.27 78.43

wpbc 73.30 70.82 71.19 72.54 74.13 74.02

veh 99.43 98.87 99.36 98.75 99.25 99.76

hrt 81.58 77.96 77.54 80.65 79.32 78.70

seg 99.98 99.97 99.99 99.91 99.90 99.98

gls7 95.90 95.61 95.28 95.09 93.81 95.08

euth 95.53 95.67 95.58 95.35 96.32 96.81

sat 92.50 91.98 92.27 92.85 93.18 94.52

vow 99.87 99.85 99.80 99.73 99.75 99.87

a18-9 94.56 93.76 93.69 94.18 89.16 93.33

y9-1 79.90 77.30 81.18 82.05 84.09 83.63

car 99.71 99.44 99.62 98.67 98.32 99.64

y5 85.65 85.76 85.78 86.50 85.79 86.25

a19 83.33 84.19 84.14 83.29 75.76 85.13

av. Rank 2.81 4.19 3.81 3.75 4.00 2.44
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Table 4 Average values for Adjusted G-Mean

Base Rprop SMOTE SMTTL WWE RAMOBoost CSEFMLP

iono 83.21 86.02 85.17 83.46 86.32 83.92

pid 65.95 75.39 75.46 73.72 71.14 74.29

gmn 63.99 72.61 71.75 68.63 67.09 72.37

wpbc 59.23 62.84 61.32 63.23 61.60 64.77

veh 96.58 96.52 95.56 96.69 97.08 97.55

hrt 64.71 65.40 54.93 75.27 65.10 64.29

seg 99.39 99.56 99.51 99.59 99.56 99.38

gls7 86.93 89.41 89.72 89.38 86.65 87.54

euth 87.38 90.30 90.28 89.55 86.76 91.00

sat 67.27 81.51 80.81 74.46 74.10 87.10

vow 97.33 96.49 97.69 97.59 99.99 98.60

a18-9 65.70 79.89 80.09 69.61 60.82 81.16

y9-1 66.03 68.34 68.74 65.28 67.28 65.74

car 92.66 93.65 93.82 98.05 93.55 99.41

y5 42.18 75.26 75.45 53.58 50.27 77.28

a19 8.30 74.94 75.30 10.48 40.81 78.36

av. Rank 5.31 2.75 3.00 3.75 4.00 2.44

Table 5 Average values for accuracy

Base Rprop SMOTE SMTTL WWE RAMOBoost CSEFMLP

iono 89.83 90.09 87.57 89.40 90.85 89.66

pid 75.66 73.20 73.01 75.20 73.32 74.69

gmn 74.82 68.44 68.41 73.17 71.47 69.61

wpbc 73.64 73.33 72.12 71.21 75.45 73.64

veh 97.09 96.91 97.06 96.42 97.62 97.16

hrt 77.64 75.28 75.17 74.16 78.54 75.06

seg 99.75 99.74 99.78 99.74 99.82 99.70

gls7 95.71 95.14 95.00 94.57 94.29 95.00

euth 95.46 93.94 93.47 94.72 94.82 93.49

sat 92.61 92.12 91.98 91.72 93.47 88.03

vow 99.48 99.15 99.58 99.06 99.94 98.97

a18-9 96.58 92.51 92.55 96.42 94.94 90.04

y9-1 96.83 93.35 92.80 96.71 97.14 92.80

car 98.94 99.10 99.38 95.83 99.53 98.35

y5 96.48 93.87 93.95 94.62 95.91 90.16

a19 99.28 95.95 96.20 99.28 98.73 83.44

av. Rank 2.00 3.97 4.19 4.13 2.00 4.72
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Table 6 Average values for True Positive Rate

Base Rprop SMOTE SMTTL WWE RAMOBoost CSEFMLP

iono 77.74 82.14 82.74 80.95 83.33 76.31

pid 58.67 76.56 76.56 72.50 70.33 74.11

gmn 56.80 57.70 59.40 65.85 56.85 55.65

wpbc 44.67 48.00 47.33 52.67 47.67 52.67

veh 96.19 96.27 95.22 97.16 96.27 97.24

hrt 50.00 44.21 47.11 67.89 47.11 53.16

seg 99.45 99.36 99.55 99.27 99.64 99.05

gls7 81.67 81.67 84.44 88.33 83.33 85.56

euth 84.31 85.63 80.63 87.25 79.13 89.81

sat 54.47 60.82 62.52 65.29 61.32 87.31

vow 96.17 95.50 95.17 96.50 99.17 98.50

a18-9 55.00 53.21 54.29 60.36 49.64 73.57

y9-1 56.67 47.50 45.00 57.50 53.33 54.17

car 86.96 86.96 88.48 97.61 91.52 100.00

y5 4.71 32.65 44.41 32.65 29.71 60.88

a19 0.00 12.00 10.00 0.00 3.50 58.50

av. Rank 4.66 3.97 3.69 2.53 3.75 2.41

Table 7 Average values for True Negative Rate

Base Rprop SMOTE SMTTL WWE RAMOBoost CSEFMLP

iono 94.67 92.67 93.53 94.80 96.07 96.27

pid 85.57 71.12 71.42 76.66 72.32 75.15

gmn 83.53 72.80 73.59 75.85 78.25 75.60

wpbc 80.98 79.22 80.20 75.29 83.04 79.31

veh 97.49 97.09 97.88 96.49 98.05 97.19

hrt 84.64 84.64 83.07 74.50 88.14 81.29

seg 99.68 99.73 99.74 99.64 99.83 99.73

gls7 97.38 96.39 96.64 95.25 96.39 96.80

euth 96.85 94.31 94.89 95.62 96.89 93.38

sat 96.18 95.09 95.23 94.61 96.95 88.16

vow 99.62 99.65 99.57 99.28 99.92 98.97

a18-9 99.06 95.59 95.66 98.47 97.66 91.99

y9-1 98.97 95.39 95.71 98.68 99.32 93.81

car 99.47 99.58 99.62 95.33 99.75 98.38

y5 99.76 96.60 95.95 97.66 98.34 92.09

a19 100.00 97.02 96.86 100.00 99.44 84.36

av. Rank 2.25 4.38 3.81 4.16 1.84 4.56
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Table 8 Average values for F1-score

Base Rprop SMOTE SMTTL WWE RAMOBoost CSEFMLP

iono 84.15 85.37 85.88 85.28 87.10 81.16

pid 63.51 66.97 66.75 67.16 64.33 67.68

gmn 58.91 59.93 59.65 58.74 56.28 60.37

wpbc 42.49 46.26 45.21 47.93 48.32 48.79

veh 92.97 90.60 90.17 93.69 95.62 90.49

hrt 51.09 51.05 49.86 54.46 52.04 52.65

seg 99.25 99.19 99.17 98.77 99.39 91.59

gls7 83.2 81.94 81.71 80.27 81.49 82.99

euth 77.96 71.89 70.59 77.10 77.48 62.59

sat 61.96 62.56 60.81 63.14 63.60 48.46

vow 96.66 95.16 95.32 93.70 99.24 69.21

a18-9 54.35 44.06 43.40 54.98 50.06 35.38

y9-1 62.87 26.94 29.29 62.79 58.47 41.23

car 89.07 88.05 89.12 60.98 91.51 39.79

y5 33.12 34.66 31.59 39.17 29.26 25.08

a19 0.00 5.04 5.16 0.71 3.42 4.49

av. Rank 3.31 3.50 4.00 3.25 2.75 4.19

The average ranks (R j ) are depicted in the last rows of Tables 2, 3, 4, 5, 6, 7 and 8. The
lower the value, the better. The proposed approach yields to the lowest values for the G-Mean,
AUC, Adjusted G-Mean and TPR metrics. Next, the Nemenyi post-hoc statistical test was
accomplished for an overall performance evaluation of the classifiers, with M = 16 (number
of data sets) and L = 6 (number of classifiers). The test statistics (FF ) for the G-Mean, AUC,
Adjusted G-Mean, Accuracy, True Positive Rate, True Negative Rate and F1-score metrics
are, respectively, equal to 3.3206, 2.4818, 6.8324, 10.1638, 4.1453, 9.3699 and 1.2870.Given
the critical value FF;5;75;α=0.01 = 1.9256, except for F1-score, the null-hypothesis that all
algorithms perform similarly was rejected. The Bonferroni-Dunn post-hoc test was then used
for evaluation of the proposed approach (CSEFMLP). Table 9 shows the pairwise differences
given all classifiers. Values beyond the critical difference (CD = 1.5385; α = 0.1) are
highlighted in bold. According to theG-Meanmetric, the CSEFMLP classifier is significantly
better than Rprop and SMOTE and slightly better than SMTLL, RAMOBoost and WWE.
Regarding the AUC metric, it outperforms the SMOTE and RAMOBoost classifiers and is
slightly better than SMTTL and WWE. For the Adjusted G-Mean metric, it is better than
Rprop and RAMOBoost and slightly better than WWE. Given the Accuraccy metric, the
CSEFMLP performs better than Rprop and RAMOBoost and slightly better than SMOTE.
According to the True Positive Rate metric, CSEFMLP outperforms Rprop and SMOTE and
is slightly better than RAMOBoost and SMTTL, and to the True Negative Rate metric, it is
significantly better than RAMOBoost and Rprop and slightly better than SMTTL.And for the
F1-score, CSEFMLP performs statistically equal to all classifiers. This set of results shows
the efficiency and robustness of the proposed approach, which is based on the cost-sensitive
cross-entropy error function, to handle unbalanced data problems.
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Table 9 Bonferroni-Dunn post-hoc test

CSLFMLP versus

Metric Rprop SMOTE SMTTL WWE RAMOBoost

G-Mean 2.3750 1.8125 1.3750 1.0625 1.25

AUC 0.3750 1.7500 1.3750 1.3125 1.5625

Adj G-Mean 2.8750 0.3125 0.5625 1.0625 1.5625

Accuracy 2.7188 0.7500 0.5312 0.5938 2.7188

True Positive Rate (TPR) 2.2500 1.5625 1.2812 0.1250 1.3438

True Negative Rate (TNR) 2.3125 0.1875 0.7500 0.4062 2.7188

F1-score 0.8750 0.6875 0.1875 0.9375 1.4375

5 Conclusion

This work proposes a new approach, called CSEFMLP (Cost-Sensitive Cross-Entropy Error
Function for MLP neural networks), to handle the common unbalanced classification prob-
lem. This method generally performs better or at least similarly to well-known classifiers
considering a set of performance metrics for unbalanced problems, namely G-Mean, AUC,
Adjusted G-Mean, Accuraccy, True Positive Rate, True Negative Rate and F1-score. In short,
the obtained results demonstrate that the proposed approach is able to deal with unbalanced
data.
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