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Abstract
In this paper, we are concerned with the exponential synchronization for a class of two
delayed complex-valued recurrent neural networks (CVRNNs) with discontinuous neuron
activations. By separating CVRNNs into real and imaginary parts, forming an equivalent
real-valued subsystems, under the framework of differential inclusions, novel state feedback
controllers are designed and novel criteria are established to ensure the exponential stability
of error system, and thus the drive system exponentially synchronize with the response
system. The obtained results are essentially new and complement previously known ones.
The practicability of theoretical results is also supported via a numerical example.

Keywords Complex-valued neural network · Exponential synchronization · State feedback
control

1 Introduction

In recent years, recurrent neural networks (RNNs) have received increasing research interests
from many fields of science and technology due to their widespread applications in asso-
ciative memories, signal processing, pattern recognition, and optimization problems [1,2]. It
is known that these applications are closely dependent on the dynamic properties of neural
networks. For this reason, qualitative analysis is essential and important in the design and
implementation of neural networks.

Compared with traditional neural network models, discontinuous neural networks, espe-
cially, with discontinuous activations possess obvious preponderance since it has the ability
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to non-linear mapping. In ideal circumstances, it can approximate many linear and non-linear
relationship. At the same time, it has the self-learning autogenous shrinkage characteristics,
and has the strong robustness and fault tolerance. Considering this fact, much efforts have
been devoted to studying the dynamical properties of neural networks with discontinuous
activations, see [3–11] and the references therein.

Nowadays, complex-valued recurrent neural networks (CVRNNs) have stirred enormous
research interest because of their prominent values in such as physical systems dealing
with electromagnetic, light, ultrasonic, and quantum waves [12]. Since CVRNNs posses
complex-valued state, activation function output, and connection weight, they have a number
of advantages that real-valued recurrent neural networks (RVRNNs) do not have, for exam-
ple, the single real-valued neuron cannot deal with the XOR problem and the detection of
symmetry problem, but a single complex-valued neuron with the orthogonal decision bound-
aries can successfully accomplish these problems [13], which shows that the complex-valued
neurons have strong computing capabilities and thus CVRNNs have widespread engineering
applications in than RVRNNs. Currently, there are some prominent results on dynamical
analysis of various CVRNNs, see [14–20] and the references therein.

It should be noted that the existing references mainly focused on the stability or dissipa-
tivity problems, and the activation functions employed in their results are continuous cases.
Synchronization, as a class of nonlinear characteristics, has attracted much attention in many
scientific disciplines [21,22] since it can be applied to combinatorial optimization, image
processing, and secure communication [23]. However, results on synchronization of discon-
tinuous CVRNNs are still quite rare (see [24–27]), a common limitation in these studies is
that the discontinuity of activations as well as the complex range of system parameter varia-
tions, which leads to the theoretical and technical difficulties in studying the synchronization
dynamics of CVRNNs. On the other hand, to the best of the authors’ knowledge, the expo-
nential synchronization issue for delayed CVRNNs with discontinuous activations has not
been reported yet in the existing literature.

Motivated by the aforementioned discussions, this paper studies the global exponential
synchronization problem for a class of delayed CVRNNs with discontinuous activations. By
utilizing the drive-response scheme, and exploiting the theory of differential equations with
discontinuous right-hand sides, novel discontinuous state feedback controllers are designed
and new algebra criteria are established to achieve the exponential stability of error CVRNNs.
Then, exponential synchronization of drive-response CVRNNs can be realized. Finally, The
effectiveness and advantages of the proposed results are verified via a numerical example.

The outline of this paper is organized as follows. The model description and some pre-
liminaries are presented in Sect. 2. The main results are established in Sect. 3. In Sect. 4, an
illustrative numerical example is provided. Finally, conclusions are drawn in Sect. 5.
Notations Let R and Rn be the space of real numbers, and the n dimensional real Euclidean
space respectively, while C and C

n respectively denote the set of all complex numbers,
and the set of all n-dimensional complex-valued vectors. Given the column vector x =
(x1, x2, . . . , xn)T ∈ R

n , where the superscript ‘T’ represents the transpose of a vector, ‖x‖
is the Euclidean vector norm, i.e., ‖x‖ = (

∑n
i=1 x

2
i )

1
2 .

2 Model Description and Preliminaries

In this paper, we consider the following delayed CVRNNs with discontinuous
activations:
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ż j (t) = − d j z j (t) +
n∑

k=1

a jk fk(zk(t)) +
n∑

k=1

b jk fk(zk(t − τ(t))) + I j , j = 1, 2, . . . , n,

(2.1)

where z = (z1, z2, . . . , zn)T ∈ C
n is the state vector, f (z(·)) = ( f1(z1(·)), f2(z2(·)), . . . ,

fn(zn(·)))T ∈ C
n denotes the vector-valued activation function, D = diag{d1, d2, . . . , dn} ∈

R
n×n with d j > 0( j = 1, 2, . . . , n) represents the self-feedback connection weight matrix,

A = (a jk)n×n ∈ C
n×n and B = (b jk)n×n ∈ C

n×n are the connection weight matrix and the
delayed connection weight matrix, respectively, τ(t) denotes the time-varying transmission
delay and satisfies 0 ≤ τ(t) ≤ τ , I = (I1, I2, . . . , In)T ∈ C

n is the external input vector.
Herein, the initial condition associated with the CVRNNs (2.1) is given by

z j (s) = ϕ j (s) + iφ j (s), s ∈ [− τ, 0], j = 1, 2, . . . , n,

where ϕ j (s), φ j (s) ∈ C([− τ, 0],R), and C([− τ, 0],R) denotes the space of continuous
functions mapping [− τ, 0] into R equipped with the supremum norm ‖ · ‖.

Let z j (t) = x j (t)+iy j (t), I j = I Rj +iI Ij , a jk = aR
jk+iaI

jk, b jk = bRjk+ibIjk, fk(zk(t)) =
f Rk (xk(t), yk(t)) + i f Ik (xk(t), yk(t)), in which i denotes the imaginary unit, i.e., i2 = −1.
For simplicity, set xk = xk(t), yk = yk(t), xτ

k = xk(t − τ(t)), yτ
k = yk(t − τ(t)). Then

CVRNNs (2.1) can be rewritten into the equivalent real and imaginary parts as

ẋ j (t) = − d j x j (t) +
n∑

k=1

aR
jk f

R
k (xk, yk) −

n∑

k=1

aI
jk f

I
k (xk, yk) +

n∑

k=1

bRjk f
R
k

(
xτ
k , yτ

k

)

−
n∑

k=1

bIjk f
I
k

(
xτ
k , yτ

k

)+ I Rj ,

ẏ j (t) = − d j y j (t) +
n∑

k=1

aI
jk f

R
k (xk, yk) +

n∑

k=1

aR
jk f

I
k (xk, yk) +

n∑

k=1

bIjk f
R
k

(
xτ
k , yτ

k

)

+
n∑

k=1

bRjk f
I
k

(
xτ
k , yτ

k

)+ I Ij . (2.2)

Note that the activation function depends on the real and imaginary parts of the state
variable of the neuron, which is a bivariate function, so we assume that the activation function
belongs to the following function class.

Definition 2.1 (Function class F ). We say f ∈ F if f satisfies the following assumption:

(i) f (·, ·) is continuous at countable open domains Gs and discontinuous at the boundary
of Gs , which is composed by finite smooth curves. Herein, Gs1

⋂
Gs2 = ∅, for s1 �= s2,

and
⋃∞

s=1(Gs
⋃

∂Gs) = R
2.

(ii) The limitation limz→z0,z0∈∂Gs f (z) exists.

Remark 2.1 Since the discontinuous activation functions depend on both the real and imag-
inary parts, in order to make better use of the theory of differential inclusion, we give a
reasonable definition to define the discontinuities of activation functions, which is essen-
tially different from the real-valued case in [3–5]. On the other hand, in the literature [20,26],
the real and imaginary parts are dependent on the real and imaginary parts of the activations,
respectively. From the viewpoint of information storage, such networks under the design of
complex-valued activation functions are more suitable for the tasks of high-capacity asso-
ciative memories than the corresponding ones in [20,26].
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Since f Rk , f Ik ∈ F for each k = 1, 2, . . . , n, by using the theory of Filippov [28] in
studying the properties of solutions for differential equations with discontinuous right-hand
sides, we can obtain the following differential inclusion:

ẋ j (t) ∈ − d j x j (t) +
n∑

k=1

aR
jkF

[
f Rk

]
(xk , yk) −

n∑

k=1

aI
jkF

[
f Ik

]
(xk , yk) +

n∑

k=1

bRjkF
[
f Rk

] (
xτ
k , yτ

k

)

−
n∑

k=1

bIjkF
[
f Ik

] (
xτ
k , yτ

k

)+ I Rj ,

ẏ j (t) ∈ − d j y j (t) +
n∑

k=1

aI
jkF

[
f Rk

]
(xk , yk) +

n∑

k=1

aR
jkF

[
f Ik

]
(xk , yk) +

n∑

k=1

bIjkF
[
f Rk

] (
xτ
k , yτ

k

)

+
n∑

k=1

bRjkF
[
f Ik

] (
xτ
k , yτ

k

)+ I Ij , (2.3)

where F[ f (R or I )
k ](z) =⋂δ>0

⋂
μ(N )=0 co[ f (R or I )

k (B(z, δ)\N )], where co(�) denotes

the closure of the convex hull of set �, B(z, δ) = {y : ‖y − z‖ ≤ δ, z ∈ R
2} is the ball with

center at z and radius δ, and μ(N ) is Lebesgue measure of set N .
By using the measurable selection theorem [29], if x j (t) and y j (t) are solutions of

(2.2), there exist measurable selections γ
(R or I )
k (t) ∈ F[ f (R or I )

k (xk(t), yk(t))] such that
for almost all (a.a.) t ∈ [− τ, T ), T ∈ [0,∞), the following equation holds:

ẋ j (t) = − d j x j (t) +
n∑

k=1

aR
jkγ

R
k (t) −

n∑

k=1

aI
jkγ

I
k (t) +

n∑

k=1

bRjkγ
R
k (t − τ(t))

−
n∑

k=1

bIjkγ
I
k (t − τ(t)) + I Rj ,

ẏ j (t) = − d j y j (t) +
n∑

k=1

aI
jkγ

R
k (t) +

n∑

k=1

aR
jkγ

I
k (t) +

n∑

k=1

bIjkγ
R
k (t − τ(t))

+
n∑

k=1

bRjkγ
I
k (t − τ(t)) + I Ij , j = 1, 2, . . . , n. (2.4)

In this paper, we shall make drive-response delayed CVRNNs with discontinuous acti-
vations achieve exponential synchronization by designing some effective controllers. For
simplicity, we refer to system (2.4) as the drive system, the response system is given as
follows:

˙̃x j (t) = − d j x̃ j (t) +
n∑

k=1

aR
jk γ̃

R
k (t) −

n∑

k=1

aI
jk γ̃

I
k (t) +

n∑

k=1

bRjk γ̃
R
k (t − τ(t))

−
n∑

k=1

bIjk γ̃
I
k (t − τ(t)) + I Rj + uR

j ,

˙̃y j (t) = − d j ỹ j (t) +
n∑

k=1

aI
jk γ̃

R
k (t) +

n∑

k=1

aR
jk γ̃

I
k (t) +

n∑

k=1

bIjk γ̃
R
k (t − τ(t))

+
n∑

k=1

bRjk γ̃
I
k (t − τ(t)) + I Ij + uI

j , j = 1, 2, . . . , n, (2.5)
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where x̃ j (t), ỹ j (t) denote the states of the response system, uR
j , u

I
j are the external control

inputs to realize exponential synchronization, the other system parameters are the same as
those in (2.1).

Define the error signal between the drive system (2.4) and the response system (2.5) as
e j (t) = z̃ j (t) − z j (t) = eRj (t) + ieIj (t) = x̃ j (t) − x j (t) + i(ỹ j (t) − y j (t)), and subtract
(2.5) from (2.1) yields the following error system:

ėRj (t) = − d j e
R
j (t) +

n∑

k=1

aR
jk

(
γ̃ R
k (t) − γ R

k (t)
)

−
n∑

k=1

aI
jk

(
γ̃ I
k (t) − γ I

k (t)
)

+
n∑

k=1

bRjk

(
γ̃ R
k (t − τ(t)) − γ R

k (t − τ(t))
)

−
n∑

k=1

bIjk

(
γ̃ I
k (t − τ(t)) − γ I

k (t − τ(t))
)

+ uR
j ,

ė Ij (t) = − d j e
I
j (t) +

n∑

k=1

aI
jk

(
γ̃ R
k (t) − γ R

k (t)
)

+
n∑

k=1

aR
jk

(
γ̃ I
k (t) − γ I

k (t)
)

+
n∑

k=1

bIjk

(
γ̃ R
k (t − τ(t)) − γ R

k (t − τ(t))
)

+
n∑

k=1

bRjk

(
γ̃ I
k (t − τ(t)) − γ I

k (t − τ(t))
)

+ uI
j , j = 1, 2, . . . , n. (2.6)

In order to establish our main results, we make the following assumption on the discon-
tinuous activations.

Assumption 1 For any xk, yk, x̃k, ỹk ∈ R, there exist nonnegative constants λRR
k , λRI

k , λI R
k ,

λI I
k , μR

k , and μI
k such that

∣
∣
∣γ̃ R

k − γ R
k

∣
∣
∣ ≤ λRR

k |x̃k − xk | + λRI
k |ỹk − yk | + μR

k ,
∣
∣
∣γ̃ I

k − γ I
k

∣
∣
∣ ≤ λI R

k |x̃k − xk | + λI I
k |ỹk − yk | + μI

k , (2.7)

where γ
(R or I )
k ∈ F[ f (R or I )

k (xk, yk)] and γ̃
(R or I )
k ∈ F[ f (R or I )

k (x̃k, ỹk)], k = 1, 2, . . . , n.

Assumption 2 The delay τ(t) satisfies τ̇ (t) ≤ ρ < 1, where ρ is a positive constant.

Remark 2.2 When the activation f (R or I )
k (xk, yk) is a continuous function, F[ f (R or I )

k
(xk, yk)] is indeed single-valued, and μR

k and μI
k are equal to 0, then (2.7) reduces to the

well-known Lipschitz condition which has widely used in such as [14,17], which implies that
(2.7) not only is an extension of the real-valued case but also generalizes the complex-valued
activation function.

Before proceeding, some definitions and lemmas are needed which play important roles
in the proof of our main results.

Definition 2.2 Drive-response systems (2.4) and (2.5) are said to be globally exponentially
synchronized, if there are control inputs uR

j (t), u
I
j (t), and further there exist constantsM > 1

and ε > 0 such that

‖eR(t)‖ + ‖eI (t)‖ ≤ M sup
−τ≤s≤0

[
‖ϕ̃ − ϕ‖ + ‖φ̃ − φ‖

]
e−εt , for all t > 0.
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The constant ε is said to be the degree of exponential synchronization.

Lemma 2.3 (Halanay inequality [30]). Assume that constant numbers ζ1 and ζ2 satisfy ζ1 >

ζ2 > 0, V (t) is a nonnegative continuous function on [t0 − τ, t0] and satisfies the following
inequality:

D+V (t) ≤ − ζ1V (t) + ζ2 sup
t−τ≤s≤t

V (s), t ≥ t0,

where τ ≥ 0 is a constant. Then, for t ≥ t0, we have

V (t) ≤ sup
t0−τ≤s≤t0

V (s)e−ζ t0 ,

in which ζ is the unique positive solution of the equation ζ = ζ1 − ζ2eζ τ .

3 Main Results

In this section, we first establish some sufficient criteria for global exponential synchro-
nization of discontinuous drive-response CVRNNs (2.4) and (2.5) under the following state
feedback controllers:

uR
j (t) = −pRj e

R
j (t) − qR

j sign(e
R
j (t)), uI

j (t) = −pIj e
I
j (t) − q I

j sign(e
I
j (t)). (3.1)

Theorem 3.1 Let f Rk , f Ik ∈ F , k = 1, 2, . . . , n, and Assumptions 1 and 2 hold. Then
discontinuous response system (2.5) with the feedback controllers (3.1) can be glob-
ally exponentially synchronized with drive system (2.4), if there exist positive constants
pRj , pIj , q

R
j , q I

j ( j = 1, . . . , n) such that

2pRj > − 2d j + 8n +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRR
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI R
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRR
j

)2

+
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI R
j

)2 + 1

1 − ρ
F j ,

2pIj > − 2d j + 8n +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRI
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI I
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRI
j

)2

+
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI I
j

)2 + 1

1 − ρ
T j ,

and

qR
j ≥

n∑

k=1

μR
k

∣
∣
∣aR

jk

∣
∣
∣+

n∑

k=1

μI
k

∣
∣
∣aI

jk

∣
∣
∣+

n∑

k=1

μR
k

∣
∣
∣bRjk

∣
∣
∣+

n∑

k=1

μI
k

∣
∣
∣bIjk

∣
∣
∣ ,

q I
j ≥

n∑

k=1

μR
k

∣
∣
∣aI

jk

∣
∣
∣+

n∑

k=1

μI
k

∣
∣
∣aR

jk

∣
∣
∣+

n∑

k=1

μI
k

∣
∣
∣bRjk

∣
∣
∣+

n∑

k=1

μI
k

∣
∣
∣bIjk

∣
∣
∣ , (3.2)

where

F j =
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
2 (

λRR
j

)2 +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λI R
j

)2 +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λRR
j

)2 +
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
(
λI R
j

)2
,
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T j =
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
2 (

λRI
j

)2 +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λI I
j

)2 +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λRI
j

)2 +
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
(
λI I
j

)2
,

and ε > 0.

Remark 3.1 In view of (3.2) and the continuity arguments, we can obtain that

2pRj ≥ε − 2d j + 8n +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRR
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI R
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRR
j

)2

+
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI R
j

)2 + 1

1 − ρ
F j e

εt ,

2pIj ≥ε − 2d j + 8n +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRI
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI I
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRI
j

)2

+
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI I
j

)2 + 1

1 − ρ
T j e

εt . (3.3)

Proof Consider the following Lyapunov functional defined by

V1(t) = eεt
n∑

j=1

(
eRj (t)

)2 + 1

1 − ρ

n∑

j=1

∫ t

t−τ(t)
F j (e

R
j (s))2eε(s+τ)ds

+ eεt
n∑

j=1

(
eIj (t)

)2 + 1

1 − ρ

n∑

j=1

∫ t

t−τ(t)
T j (e

I
j (s))

2eε(s+τ)ds. (3.4)

Calculate the upper right Dini-derivative of V1(t) along the solutions of (2.6), we obtain

D+V1(t) = εeεt
n∑

j=1

(
eRj (t)

)2 + 2eεt
n∑

j=1

eRj (t)ėRj (t)

+ 1

1 − ρ

n∑

j=1

F j

(
eRj (t)

)2
eε(t+τ) − 1 − τ̇ (t)

1 − ρ

n∑

j=1

F j

(
eRj (t − τ(t))

)2
eε(t−τ(t)+τ)

+ εeεt
n∑

j=1

(
eIj (t)

)2 + 2eεt
n∑

j=1

eIj (t)ė
I
j (t)

+ 1

1 − ρ

n∑

j=1

T j

(
eIj (t)

)2
eε(t+τ) − 1 − τ̇ (t)

1 − ρ

n∑

j=1

T j

(
eIj (t − τ(t))

)2
eε(t−τ(t)+τ)

≤ εeεt
n∑

j=1

(
eRj (t)

)2 − 2eεt
n∑

j=1

d j
(
eRj (t)

)2 + eεt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n∑

j=1

n∑

k=1

2
∣
∣
∣aRjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ R
k (t) − γ R

k (t)
∣
∣
∣

︸ ︷︷ ︸
I1

+
n∑

j=1

n∑

k=1

2
∣
∣
∣aIjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ I
k (t) − γ I

k (t)
∣
∣
∣

︸ ︷︷ ︸
I2
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+
n∑

j=1

n∑

k=1

2
∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ R
k (t − τ(t)) − γ R

k (t − τ(t))
∣
∣
∣

︸ ︷︷ ︸
I3

+
n∑

j=1

n∑

k=1

2
∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ I
k (t − τ(t)) − γ I

k (t − τ(t))
∣
∣
∣

︸ ︷︷ ︸
I4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 2eεt
n∑

j=1

pRj

(
eRj (t)

)2 − 2eεt
n∑

j=1

qRj

∣
∣
∣eRj (t)

∣
∣
∣

+ 1

1 − ρ

n∑

j=1

F j

(
eRj (t)

)2
eε(t+τ) −

n∑

j=1

F j

(
eRj (t − τ(t))

)2
eεt

+ εeεt
n∑

j=1

(
eIj (t)

)2 − 2eεt
n∑

j=1

d j
(
eIj (t)

)2

+ eεt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n∑

j=1

n∑

k=1

2
∣
∣
∣aIjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ R
k (t) − γ R

k (t)
∣
∣
∣

︸ ︷︷ ︸
I5

+
n∑

j=1

n∑

k=1

2
∣
∣
∣aRjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ I
k (t) − γ I

k (t)
∣
∣
∣

︸ ︷︷ ︸
I6

+
n∑

j=1

n∑

k=1

2
∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ R
k (t − τ(t)) − γ R

k (t − τ(t))
∣
∣
∣

︸ ︷︷ ︸
I7

+
n∑

j=1

n∑

k=1

2
∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ I
k (t − τ(t)) − γ I

k (t − τ(t))
∣
∣
∣

︸ ︷︷ ︸
I8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 2eεt
n∑

j=1

pIj

(
eIj (t)

)2 − 2eεt
n∑

j=1

q Ij

∣
∣
∣eIj (t)

∣
∣
∣

+ 1

1 − ρ

n∑

j=1

T j

(
eRj (t)

)2
eε(t+τ) −

n∑

j=1

T j

(
eRj (t − τ(t))

)2
eεt ,

for a.a. t ≥ 0. (3.5)

Now we estimate Ii (i = 1, . . . , 8) term by term. Firstly, according to (2.7), we have

I1 =
n∑

j=1

n∑

k=1

2
∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ R

k (t) − γ R
k (t)

∣
∣
∣

123



Global Exponential Synchronization of Delayed Complex… 2191

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
(
λRR
k

∣
∣
∣eRk (t)

∣
∣
∣+ λRI

k

∣
∣
∣eIk (t)

∣
∣
∣+ μR

k

)

≤ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRR
j

)2 ∣∣
∣eRj (t)

∣
∣
∣
2

+ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRI
j

)2 ∣∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μR
k

∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣ .

(3.6)

For I2, one has

I2 =
n∑

j=1

n∑

k=1

2
∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ I

k (t) − γ I
k (t)

∣
∣
∣

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
(
λI R
k

∣
∣
∣eRk (t)

∣
∣
∣+ λI I

k

∣
∣
∣eIk (t)

∣
∣
∣+ μI

k

)

≤ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI R
j

)2 ∣∣
∣eRj (t)

∣
∣
∣
2

+ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI I
j

)2 ∣∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μI
k

∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣ .

(3.7)

For I3, we can also get from (2.7) that

I3 =
n∑

j=1

n∑

k=1

2
∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ R

k (t − τ(t)) − γ R
k (t − τ(t))

∣
∣
∣

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
(
λRR
k

∣
∣
∣eRk (t − τ(t))

∣
∣
∣+ λRI

k

∣
∣
∣eIk (t − τ(t))

∣
∣
∣+ μR

k

)

≤ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
2 (

λRR
j

)2 ∣∣
∣eRj (t − τ(t))

∣
∣
∣
2

+ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
2 (

λRI
j

)2 ∣∣
∣eIj (t − τ(t))

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μR
k

∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣ .

(3.8)

For the fourth term I4, we have

I4 =
n∑

j=1

n∑

k=1

2
∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
∣
∣
∣γ̃ I

k (t − τ(t)) − γ I
k (t − τ(t))

∣
∣
∣

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣
(
λI R
k

∣
∣
∣eRk (t − τ(t))

∣
∣
∣+ λI I

k

∣
∣
∣eIk (t − τ(t))

∣
∣
∣+ μI

k

)
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≤ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λI R
j

)2 ∣∣
∣eRj (t − τ(t))

∣
∣
∣
2

+ n
n∑

j=1

∣
∣
∣eRj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λI I
j

)2 ∣∣
∣eIj (t − τ(t))

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μI
k

∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eRj (t)

∣
∣
∣ .

(3.9)

Similar to the estimations of Ii , I4+i (i = 1, . . . , 4) can be estimated as follows:

I5 =
n∑

j=1

n∑

k=1

2
∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ R

k (t) − γ R
k (t)

∣
∣
∣

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
(
λRR
k

∣
∣
∣eRk (t)

∣
∣
∣+ λRI

k

∣
∣
∣eIk (t)

∣
∣
∣+ μR

k

)

≤ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRR
j

)2 ∣∣
∣eRj (t)

∣
∣
∣
2

+ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRI
j

)2 ∣∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μR
k

∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣ ,

(3.10)

and

I6 =
n∑

j=1

n∑

k=1

2
∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ I

k (t) − γ I
k (t)

∣
∣
∣

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
(
λI R
k

∣
∣
∣eRk (t)

∣
∣
∣+ λI I

k

∣
∣
∣eIk (t)

∣
∣
∣+ μI

k

)

≤ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI R
j

)2 ∣∣
∣eRj (t)

∣
∣
∣
2

+ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI I
j

)2 ∣∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μI
k

∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣ .

(3.11)

Moreover,

I7 =
n∑

j=1

n∑

k=1

2
∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ R

k (t − τ(t)) − γ R
k (t − τ(t))

∣
∣
∣

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
(
λRR
k

∣
∣
∣eRk (t − τ(t))

∣
∣
∣+ λRI

k

∣
∣
∣eIk (t − τ(t))

∣
∣
∣+ μR

k

)

≤ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λRR
j

)2 ∣∣
∣eRj (t − τ(t))

∣
∣
∣
2
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+ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
2 (

λRI
j

)2 ∣∣
∣eIj (t − τ(t))

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μR
k

∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣ ,

(3.12)

and

I8 =
n∑

j=1

n∑

k=1

2
∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
∣
∣
∣γ̃ I

k (t − τ(t)) − γ I
k (t − τ(t))

∣
∣
∣

≤
n∑

j=1

n∑

k=1

2
∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣
(
λI R
k

∣
∣
∣eRk (t − τ(t))

∣
∣
∣+ λI I

k

∣
∣
∣eIk (t − τ(t))

∣
∣
∣+ μI

k

)

≤ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
(
λI R
j

)2 ∣∣
∣eRj (t − τ(t))

∣
∣
∣
2

+ n
n∑

j=1

∣
∣
∣eIj (t)

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
(
λI I
j

)2 ∣∣
∣eIj (t − τ(t))

∣
∣
∣
2 +

n∑

j=1

n∑

k=1

2μI
k

∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣eIj (t)

∣
∣
∣ .

(3.13)

Inserting the above estimates (3.6)-(3.13) into (3.5), we deduce that

D+V1(t) ≤ eεt
n∑

j=1

[

ε − 2d j + 8n +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRR
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI R
j

)2

+
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRR
j

)2

+
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI R
j

)2 + 1

1 − ρ
F j e

ετ − 2pRj

]
∣
∣
∣eRj (t)

∣
∣
∣
2

+ eεt
n∑

j=1

[

ε − 2d j + 8n +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λRI
j

)2 +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λI I
j

)2

+
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
2 (

λRI
j

)2

+
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
2 (

λI I
j

)2 + 1

1 − ρ
T j e

ετ − 2pIj

]
∣
∣
∣eIj (t)

∣
∣
∣
2

+ eεt
n∑

j=1

[

−2qR
j +

n∑

k=1

2μR
k

∣
∣
∣aR

jk

∣
∣
∣+

n∑

k=1

2μI
k

∣
∣
∣aI

jk

∣
∣
∣+

n∑

k=1

2μR
k

∣
∣
∣bRjk

∣
∣
∣

+
n∑

k=1

2μI
k

∣
∣
∣bIjk

∣
∣
∣

]
∣
∣
∣eRj (t)

∣
∣
∣

+ eεt
n∑

j=1

[

−2q I
j +

n∑

k=1

2μR
k

∣
∣
∣aI

jk

∣
∣
∣+

n∑

k=1

2μI
k

∣
∣
∣aR

jk

∣
∣
∣+

n∑

k=1

2μI
k

∣
∣
∣aR

jk

∣
∣
∣

+
n∑

k=1

2μI
k

∣
∣
∣bRjk

∣
∣
∣

]
∣
∣
∣eIj (t)

∣
∣
∣ . (3.14)
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It follows from (3.3) and (3.14) that

D+V1(t) ≤ 0, for a.a. t ≥ 0,

that is, V1(t) is a monotonically decreasing function. Then we have V1(t) ≤ V (0).
On the other hand, it follows from (3.4) that

V1(0) ≤ [‖eR(0)‖2 + ‖eI (0)‖2]

+ τeετ

1 − ρ
max

⎧
⎨

⎩

n∑

j=1

F j ,

n∑

j=1

T j

⎫
⎬

⎭
sup

−τ≤s≤0
[‖eR(s)‖2 + ‖eI (s)‖2]

≤
⎡

⎣1 + τeετ

1 − ρ
max

⎧
⎨

⎩

n∑

j=1

F j ,

n∑

j=1

T j

⎫
⎬

⎭

⎤

⎦ sup
−τ≤s≤0

[‖eR(s)‖2 + ‖eI (s)‖2]

�ξ sup
−τ≤s≤0

[‖eR(s)‖2 + ‖eI (s)‖2]. (3.15)

Furthermore,

V1(t) ≥eεt

⎡

⎣
n∑

j=1

(eRj (t))
2 +

n∑

j=1

(eIj (t))
2

⎤

⎦

= eεt
[
‖eR(t)‖2 + ‖eI (t)‖2

]
. (3.16)

Then, we have from (3.15) and (3.16) that

‖eR(t)‖2 + ‖eI (t)‖2 ≤ ξ sup
−τ≤s≤0

[‖eR(s)‖2 + ‖eI (s)‖2]e−εt ,

which gives

‖eR(t)‖ + ‖eI (t)‖ ≤ √2ξ sup
−τ≤s≤0

[‖eR(s)‖ + ‖eI (s)‖]e− ε
2 t .

Then, according toDefinition 2.2, the response system (2.5)with state feedback controllers
(3.1) can be globally exponentially synchronized with discontinuous drive system (2.4). 
�

If there is no differentiability imposed on the time delay, that is, if Assumption 2 does
not hold, we can establish the following delay-independent synchronization criteria by con-
structing proper Lyapunov functional.

Theorem 3.2 Let f Rk , f Ik ∈ F , k = 1, 2, . . . , n, and Assumption 1 hold. Then the response
system (2.5) is globally exponentially synchronized with the drive system (2.4) under the
feedback controllers (3.1),

pRj ≥ − d j +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λRR

j +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λI R

j +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λRR

j +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λI R

j ,

pIj ≥ − d j +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λRI

j +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λI I

j +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λRI

j +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λI I

j ,

qR
j ≥

n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣μR

j +
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣μI

j +
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣μR

j +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣μI

j ,
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q I
j ≥

n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣μR

j +
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣μI

j +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣μR

j +
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣μI

j ,

and ζ1 > ζ2, where

ζ1 = min
1≤ j≤n

{

d j + pRj −
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λRR

j −
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λI R

j −
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λRR

j −
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λI R

j ,

d j + pIj −
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λRI

j −
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λI I

j −
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λRI

j −
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λI I

j

}

,

ζ2 = max
1≤ j≤n

{
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣ λRR

j +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣ λI R

j +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣ λRR

j +
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣ λI R

j ,

n∑

k=1

∣
∣
∣bRk j

∣
∣
∣ λRI

j +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣ λI I

j +
n∑

k=1

∣
∣
∣bIk j

∣
∣
∣ λRI

j +
n∑

k=1

∣
∣
∣bRk j

∣
∣
∣ λI I

j

}

,

and ζ is the unique positive solution of the equation ζ = ζ1 − ζ2eζ τ .

Proof Consider the following Lyapunov functional defined by

V2(t) = ‖eR(t)‖1 + ‖eI (t)‖1 =
n∑

j=1

[
|eRj (t)| + |eIj (t)|

]
.

Calculate the upper right Dini-derivative of V2(t) along the solutions of (2.6), we can get
by recalling the estimates in the proof of Theorem 3.1 that

D+V2(t) ≤ −
n∑

j=1

d j

∣
∣
∣eRj (t)

∣
∣
∣+

n∑

j=1

n∑

k=1

∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣γ̃ R

k (t) − γ R
k (t)

∣
∣
∣

+
n∑

j=1

n∑

k=1

∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣γ̃ I

k (t) − γ I
k (t)

∣
∣
∣+

n∑

j=1

n∑

k=1

∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣γ̃ R

k (t − τ(t)) − γ R
k (t − τ(t))

∣
∣
∣

+
n∑

j=1

n∑

k=1

∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣γ̃ I

k (t − τ(t)) − γ I
k (t − τ(t))

∣
∣
∣−

n∑

j=1

pRj

∣
∣
∣eRj (t)

∣
∣
∣−

n∑

j=1

qR
j

−
n∑

j=1

d j

∣
∣
∣eIj (t)

∣
∣
∣+

n∑

j=1

n∑

k=1

∣
∣
∣aI

jk

∣
∣
∣
∣
∣
∣γ̃ R

k (t) − γ R
k (t)

∣
∣
∣

+
n∑

j=1

n∑

k=1

∣
∣
∣aR

jk

∣
∣
∣
∣
∣
∣γ̃ I

k (t) − γ I
k (t)

∣
∣
∣+

n∑

j=1

n∑

k=1

∣
∣
∣bIjk

∣
∣
∣
∣
∣
∣γ̃ R

k (t − τ(t)) − γ R
k (t − τ(t))

∣
∣
∣

+
n∑

j=1

n∑

k=1

∣
∣
∣bRjk

∣
∣
∣
∣
∣
∣γ̃ I

k (t − τ(t)) − γ I
k (t − τ(t))

∣
∣
∣−

n∑

j=1

pIj

∣
∣
∣eIj (t)

∣
∣
∣−

n∑

j=1

q I
j

≤ −
n∑

j=1

d j

∣
∣
∣eRj (t)

∣
∣
∣+

n∑

j=1

n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
(
λRR
j

∣
∣
∣eRj (t)

∣
∣
∣+ λRI

j

∣
∣
∣eIj (t)

∣
∣
∣+ μR

j

)

+
n∑

j=1

n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
(
λI R
j

∣
∣
∣eRj (t)

∣
∣
∣+ λI I

j

∣
∣
∣eIj (t)

∣
∣
∣+ μI

j

)
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+
n∑

j=1

n∑

k=1

∣
∣
∣bRk j

∣
∣
∣
(
λRR
j

∣
∣
∣eRj (t − τ(t))

∣
∣
∣+ λRI

j

∣
∣
∣eIj (t − τ(t))

∣
∣
∣+ μR

j

)

+
n∑

j=1

n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
(
λI R
j

∣
∣
∣eRj (t − τ(t))

∣
∣
∣+ λI I

j

∣
∣
∣eIj (t − τ(t))

∣
∣
∣+ μI

j

)

−
n∑

j=1

pRj

∣
∣
∣eRj (t)

∣
∣
∣−

n∑

j=1

qR
j

−
n∑

j=1

d j

∣
∣
∣eIj (t)

∣
∣
∣+

n∑

j=1

n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣
(
λRR
j

∣
∣
∣eRj (t)

∣
∣
∣+ λRI

j

∣
∣
∣eIj (t)

∣
∣
∣+ μR

j

)

+
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j=1

n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣
(
λI R
j

∣
∣
∣eRj (t)

∣
∣
∣+ λI I

j

∣
∣
∣eIj (t)

∣
∣
∣+ μI

j

)

+
n∑

j=1

n∑

k=1

∣
∣
∣bIk j

∣
∣
∣
(
λRR
j

∣
∣
∣eRj (t − τ(t))

∣
∣
∣+ λRI

j

∣
∣
∣eIk (t − τ(t))

∣
∣
∣+ μR

j

)

+
n∑

j=1

n∑

k=1

∣
∣
∣bRjk

∣
∣
∣
(
λI R
j

∣
∣
∣eRj (t − τ(t))

∣
∣
∣+ λI I

j

∣
∣
∣eIj (t − τ(t))

∣
∣
∣+ μI

j

)

−
n∑

j=1

pIj

∣
∣
∣eIj (t)

∣
∣
∣−

n∑

j=1

q I
j

= −
n∑

j=1

[

d j + pRj −
n∑

k=1

∣
∣
∣aR

k j

∣
∣
∣ λRR

j −
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λI R

j −
n∑

k=1

∣
∣
∣aI

k j

∣
∣
∣ λRR

j

−
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k=1

∣
∣
∣aR

k j

∣
∣
∣ λI R

j

]
∣
∣
∣eRj (t)

∣
∣
∣

−
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j=1

[

d j + pIj −
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∣
∣
∣aR

k j

∣
∣
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∣
∣aI

k j

∣
∣
∣ λI I

j −
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∣
∣ λRI

j

−
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∣
∣aR

k j

∣
∣
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j

] ∣
∣
∣eIj (t)

∣
∣
∣

+
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∣
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∣bRk j
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j +
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∣
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j +
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∣
∣
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∣
∣
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j

⎤

⎦
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∣
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∣
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j +
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∣
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∣
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j

]
∣
∣
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∣
∣

+
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−qR
j +
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j +
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∣aI

k j
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j +
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+
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j +
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j +
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∣
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∣
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∣
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≤ − ζ1

n∑

j=1

⎡

⎣
∣
∣
∣eRj (t)

∣
∣
∣+
∣
∣
∣eIj (t)

∣
∣
∣
]

+ ζ2

n∑

j=1

[ ∣
∣
∣eRj (t − τ(t))

∣
∣
∣+
∣
∣
∣eIj (t − τ(t))

∣
∣
∣

⎤

⎦

≤ − ζ1V2(t) + ζ2 sup
t−τ≤s≤0

V2(s).

It follows from Lemma 2.3 that

V2(t) = ‖eR(t)‖1 + ‖eI (t)‖1 ≤ sup
−τ≤s≤0

V2(s)e
−ζ t , t ≥ 0,

where ζ is the unique positive solution of the equation ζ = ζ1 − ζ2e−ζ t . Then, according to
Definition 2.2, the response system (2.5) with state feedback controllers (3.1) can be globally
exponentially synchronized with discontinuous drive system (2.4). 
�
Remark 3.2 In recent years, various dynamical behaviors of CVNNs with continuous activa-
tions have been extensively investigated by many authors, see [14,16–20] and the reference
therein. However, exponential synchronization issue of delayed CVNNs with discontinuous
activations has not yet been discussed in the existing literature. Thus, in this paper, to shorten
up such a gap, we have analyzed a class of delayed CVRNNs with discontinuous activations.
Some new sufficient criteria are established by the aid of theories of differential equations
with discontinuous right-hand sides, and inequality techniques to ensure the exponential syn-
chronization of the considered system. Moreover, it is admitted that the theoretical results
established in Theorems 3.1 and 3.2 can be directly extended to the delayed CVRNNs in the
continuous case by the same arguments which are utilized in above theorems.

4 A Numerical Example

To authenticate the effectiveness of the theoretical results in Sect. 3, let us consider the
following example.

Example 4.1 For n = 2, the drive system (2.4) and the response system (2.6) of CVRNNs
with the following parameters:

D =
(
3 0
0 3

)

, A =
(
0.25 − 0.6i − 1.4 + 1.5i
− 2 − 0.8i − 2.2 + 0.2i

)

, B =
(
1.2 + 1.1i − 1.2 − i
0.8 − 0.8i 0.2 − 0.5i

)

,

I =
(

0.5 + i
0.4 + 0.6i

)

, τ = 0.5,

the discontinuous complex-valued activation function is:

fk(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−(Re(s) + 1) − (Im(s) + 1)i, Re(s) < 0 and Im(s) < 0,
−(Re(s) + 1) + (Im(s) + 1)i, Re(s) < 0 and Im(s) > 0,
(Re(s) + 1) − (Im(s) + 1)i, Re(s) > 0 and Im(s) < 0,
(Re(s) + 1) + (Im(s) + 1)i, Re(s) > 0 and Im(s) > 0.

k = 1, 2. (4.1)

The state feedback controllers are designed as:
{
uR
1 (t) = −9.6eR1 (t) − 17sign(eR1 (t)),

uR
2 (t) = −10.95eR1 (t) − 15.5sign(eR2 (t)),

(4.2)

and {
uI
1(t) = −9.3eI1(t) − 17sign(eI1(t)),

uI
2(t) = −9.53eI1(t) − 15.5sign(eI2(t)),

(4.3)
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Fig. 1 The real and imaginary parts of synchronization errors

where eRj (t) = x̃ j (t) − x j (t), eIj (t) = ỹ j (t) − y j (t), j = 1, 2. It is readily seen that the

activation function (4.1) satisfies (2.7) with λRR
k = 1, λRI

k = 0, μR
k = 2, λI R

k = 0, λI I
k =

1, μI
k = 2, k = 1, 2. In addition, we take the initial conditions of (2.4) and (2.5) as z1(s) =

− 4 + i, z2(s) = 2 − 4i, z̃1(s) = 2 − i, z̃2(s) = 3 + i, s ∈ [− 0.5, 0], respectively. One can
easily verify that all the conditions in Theorem 3.1 hold. Therefore, we can conclude from
Theorem 3.1 that drive system (2.4) and response system (2.5) are globally exponentially
synchronized under the designed state feedback controllers (4.2)–(4.3). Figure 1 shows the
state trajectories of synchronization errors eRi (t) and eIi (t), i = 1, 2, respectively.

It is easy to see from Fig. 1 that the systems (2.4) and (2.5) with the network parameters
and the controller above are globally exponentially synchronized. This is in accordance with
the conclusion of Theorem 3.1.

5 Conclusion

In this paper, based on the theories of differential inclusions, and inequality techniques, we
have discussed the global exponential synchronization problem for delayed CVRNNs with
discontinuous activations.Under the frameworkof drive-response scheme, bydesigning some
novel state feedback controllers to the response system, new criteria have been established
such that the drive CVRNNs globally exponentially synchronizewith the response CVRNNs.
Finally, a numerical example is presented to substantiate the effectiveness of the proposed
theoretical results.

We would also like to point out that it is interesting and challenging to consider more
different delays, such as infinitely distributed delay, leakage delays or proportional delays, and
their effects on synchronizationdynamics ofCVNNswith discontinuities.Another interesting
yet challenging problem is to study synchronization dynamics of reaction-diffusion CVNNs
with discontinuities. These problems are our future research directions.
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