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Abstract The meteorological early warning model of precipitation-induced landslides is a
significant yet challenging task, due to the complexity and uncertainty of various influence
factors. Generally, the existing machine learning methods have the drawbacks of poor learn-
ing ability andweak capability of feature extraction. Inspired by deep learning technology, we
propose a deep belief network (DBN) approach with Softmax classifier and Dropout mecha-
nism for meteorological early warning of precipitation-induced landslides to overcome these
problems.With the powerful nonlinearmapping ability of DBNwhen training a large number
of sample data, we use the greedy unsupervised learning algorithm of DBN to extract the
intrinsic characteristics of landslide factors. Then, to further improve prediction accuracy of
landslides, the Softmax classifier is added to the top layer of DBN neural network. More-
over, the Dropout mechanism is introduced in the training process to reduce the prediction
error caused by the over-fitting phenomena. Taking Wenchuan earthquake affected area for
example, after analysis of the factors influencing landslide disasters, the meteorological early
warning model of landslides based on Dropout DBN-Softmax is established. Compared with
the existing BP neural network algorithm and BP algorithm based on Particle Swarm Opti-
mizer (PSO-BP) algorithm, the experimental results show that the new approach proposed
has the advantages of higher accuracy and better technological performances than the former
algorithms.
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1 Introduction

The occurrence and development of landslide disasters is an extremely complex system
with nonlinear dynamic process [1]. Since the variety, complexity and uncertainty of the
geological conditions and inducing factors, the prediction of landslides is still a hot topic
in the world. Rainfall is one of the most important influence factors to regional landslide.
Therefore, it is very necessary to get down to the research on the method for meteorological
early warning and forecast of landslides by taking the rainfall as the triggering factor. It is the
major scientific and technological problem of landslide hazard predicting and preventing.

The former research concentratesmuchmore on the probability andmathematical statistics
or shallowneural network. Such as approach of antecedent precipitation for rainfall-triggering
landslide forecast [2,3], Bayes statistical inference model [4], Logistic regression model
[5], probability quantization model of hazard factors [6], early warning analysis model of
normalized equation [7], forecasting indexmethod of disaster [8], rainfall level indexmethod
[9], meteorological and geological environment coupling model [10], BP model [11] and so
on. Since these models established in the case of limited training samples and computational
units, the utilization of data sample is not high enough. Besides, there exists great subjectivity
in the analysis process, which lead the result that the complex nonlinear relationships between
landslide and its influencing factors cannot be fully exploit. Therefore, thesemodels still have
many disadvantages and not ideal for prediction and poor generalization ability.

Deep learning is a new research direction in the field of artificial intelligence, which has
now been applied in many fields, including big data mining [12,13], digital image processing
[14,15], speech recognition [16], human activity recognition [17,18], character recognition
[19], etc. Deep belief network (DBN) is one of the typical deep learning methods articulated
by Hinton. It consists of Restricted Boltzmann Machine (RBM) stacked in series, and it has
the ability to extract features from a large number of samples, which can greatly improve the
classification accuracy and prediction precision. Currently, DBN has been successfully used
in various kinds of prediction and classification problems. But so far, it has not been applied
in the landslide forecast area yet.

In this paper, we extend a method of the meteorological early warning of precipitation-
induced landslides based on Dropout DBN-Softmax. Firstly, there is a brief introduction
toward the natural condition and geological environment condition of the study area in
Wenchuan earthquake affected area. And the data preparation is described, including the
samples of 5000 history landslide disaster data from 2009 to 2013. Selection and classifi-
cation of the influence factors, the data quantization and preprocessing are also described.
And then the adopted methodology is particularly introduced. A method of landslide hazard
prediction based on DBN is proposed. Softmax classifier is introduced to further improve
prediction accuracy of landslide based on DBN. The Dropout mechanism is also applied in
the training process to reduce the prediction error caused by over-fitting. The meteorological
early warning model based on Dropout DBN-Softmax is established. Furthermore, to verify
the performance of the method presented, a series simulation experiments are presented in
this paper. The experimental results show that, compared with the traditional BP algorithm
and PSO-BP algorithm, the method presented has the advantages of higher accuracy and
better technological performances.

The rest of the paper is organized in the following manner. Section 2 introduces the
study area, and articulates the experimental data preparation process. Section 3 illustrates the
adoptedmethodology in details. Section 4 presents a series of experiments to demonstrate the
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Fig. 1 Administrative zoning map of the study area

effectiveness and performance of the proposedmethod. Finally, the summary and conclusions
are given in the last section.

2 Study Area and Data Preparation

2.1 Study Area

The study area is the hard-hit areas in 5 · 12 Wenchuan earthquake in 2008. It is mainly in
the northwest of Sichuan Province, in the border area of Gansu and Shaanxi Province. It lies
between 29◦13′ and 34◦10′N latitude and 101◦58′ and 106◦55′E longitude, covering a total
area of about 14.66×104 km2. It has a tropicalmonsoon climatewith great annual rainfall and
uneven rainfall distribution. The Wenchuan earthquake affected area locates at the alp-gorge
zone, which has varied types of landform and big topographic relief. The variation range of
elevation is about 297–6676 m, and its average slope is 23.52◦. Within the geographical area
of LongmenMountain fault zone, there has the complexity of structure and the assemblage of
rock and stratum, which leads to the high susceptibility zone of geological disasters such as
landslides [20]. From the administrative district divisions, the study area belongs to Sichuan,
Gansu and Shanxi province, including 62 counties (cities or districts) as shown in Fig. 1.

2.2 Selection and Classification of Influence Factors

Landslide is the result of both disaster pregnant environment factors and disaster inducing
factors. Accordingly, we selected the influence factors of typical characteristics of landslides
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Table 1 Selection and classification of influence factors

Influence factors Divisions

Geomorphological type Plain, hill, highland region, river valley basin, lake,
mountain, low mountain

Rock type and soil mass Igneous, sedimentary, metamorphic, and others

Elevation (m) < 500, [500, 1000), [1000, 1500), [1500, 2000), [2000,
2500), [2500, 3000), > 3000

Slope (◦) [0, 5), [5, 10), [10, 20), [20, 30), [30, 40), [40, 50), [50, 60)

Seismic intensity I, II, III, IV, V, VI, VII, VIII, IX, X, XI

Hydrogeological type Pore phreatic water in loose rock mass, carbonate karst
fissure of water, intrusion, rock crevice water of magmatic
rock, fault pore-fracture water, karst fracture water,
fracture water, and others

Average annual rainfall after
earthquake (mm)

[0, 50), [50, 60), [60, 70), [70, 80), [80, 90), [90, 100),
[1000, 1100), [1100, 1200), [1200, 1300), [1300, 1400),
[1400, 1500), [1500, 1600), [1600, 1700), > 1700

Daily rainfall (mm) Actual rainfall value

Cumulative precipitation in
previous 7 days (mm)

Actual rainfall value

from the both aspects. With the development characteristics of landslides in the study area,
considering the availability and practicality of data samples, there were 9 typical factors
chosen as influence factors of landslides, including geomorphological type, rock type and
soil mass, elevation, slope, seismic intensity, hydrogeological type, average annual rainfall
after earthquake, daily rainfall and cumulative precipitation in previous 7 days (Table 1). It
was laid the foundation to further study of meteorological early warning model of landslides
in Wenchuan earthquake affected area.

2.3 Data Selection

In this paper, the sample data of landslide disasterswas obtained fromgeological environment
monitoring institution of China. The rainfall data was from China Meteorological Admin-
istration. We used 5000 history landslide disaster data from 2009 to 2013 in Wenchuan
earthquake affected area as our experimental samples. All samples were divided into two
parts, 80% of them were used as the training samples, the remaining 20% were as the testing
samples; that is, 4000 items were selected as the training samples and other 1000 items were
as the testing samples. The model of meteorological early warning of landslides based on
DBN can be created with the training samples. And then the performance of the model can
be tested and evaluated by using the testing samples.

2.4 Data Quantization and Preprocessing

For the disaster pregnant environment factors, CF values of each factors can be calculated
using certainty factor (CF) method [21]. Firstly, each layer of disaster pregnant environment
factors was divided into different subsets according to certain classification rules. Then with
the spatial analysis technology of geographic information system (GIS), each data layer of
disaster pregnant environment factor was overlaid with landslide data layers. Moreover, the
CF value of each subset was obtained respectively by use of certainty factor method.
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The CF expression can be represented as follows:

CF =
⎧
⎨

⎩

PPa−PPs
PPa(1−PPs )

, PPa ≥ PPs
PPa−PPs

PPs (1−PPa)
, PPa ≤ PPs

(1)

where CF is the certainty coefficient, its value range is [−1, 1]; PPa is the conditional
probability of landslide disaster events in set a; PPs is the prior probability of landslide
disaster events in the whole study area.

Using the CF probability model, we can get the deterministic coefficient of the classifi-
cation of each disaster pregnant environmental factor. The results are shown in Table 2.

For the disaster inducing factors, the rainfalls during main flood season (from May till
September each year) were chosen as the meteorological factors. For daily rainfall and cumu-
lative precipitation in previous 7 days, their actual rainfall values were as the quantitative
values.

Based on the index system of influencing factors in the study area, the CF values of the
disaster pregnant environment factors were calculated, and the normalized process to the
factors can made by using the expression as follows. The sample data can be mapped to [0,
1].

y = x − MinValue

MaxValue − MinValue
(2)

where x is the value before conversion and y is the value after conversion; MaxValue and
MinValue represent the maximum and minimum value of the samples, respectively.

The disaster pregnant environment factors and disaster inducing factors were taken as
input for training and simulation of DBN network model.

At present, there has not yet been a unified prediction evaluation criteria of landslide
hazard in academic circles. Generally speaking, landslide activity intensity mainly includes
the frequency, scale and movement speed of the landslides. In this paper, according to the
disaster degrees and scales of landslide in the data samples, the level of landslides was divided
into 4 types inWenchuan earthquake affected area: minor landslide, medium-sized landslide,
large-scale landslide and huge landslide (Table 3).

3 Adopted Methodology

3.1 Deep Belief Network (DBN)

Deep Belief Network was a probabilistic generative model proposed by Professor Hinton in
2006. It is a deep network structure stacked by a series of restricted Boltzmann machines
(RBM) [22]. In this paper, we used the greedy unsupervised learning algorithm of DBN for
data pre-training to obtain a better distributed representation of the input data. BP algorithm
was used to adjust the parameters of thewhole network to get the optimal result. The algorithm
presented in the paper effectively overcomes the shortcoming of unsuitable for multi-layer
network in the traditional neural network training method. The model structural diagram of
DBN can be constructed as follows.

As shown in Fig. 2, the training process of DBN can be divided into two processes:
pre-training and fine-tuning.
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Table 2 CF values of disaster pregnant environment factors

Index Disaster pregnant environment factor Subset CF values

x1 Geomorphological type Plain 0.145

Hill 0.0450

Highland region − 0.907

River valley basin − 0.542

Lake 0.807

Mountain − 0.595

Medium mountain 0.277

Low mountain 0.430

x2 Rock type and soil mass Igneous − 0.563

Sedimentary 0.344

Metamorphic − 0.544

Others − 0.227

x3 Elevation Interval value

< 500 0.260

[500, 1000) 0.503

[1000, 1500) 0.493

[1500, 2000) 0.124

[2000, 2500) − 0.363

[2500, 3000) − 0.528

> 3000 − 0.940

x4 Slope Interval value

[0, 5) 0.029

[5, 10) 0.104

[10, 20) 0.228

[20, 30) 0.270

[30, 40) 0.023

[40, 50) − 0.295

[50, 60) − 0.498

x5 Seismic intensity VI − 0.674

VII 0.197

VIII 0.025

IX 0.541

X 0.707

XI 0.604

x6 Hydrogeological type Pore phreatic water in loose rock mass 0.065

Carbonate karst fissure of water − 0.168

Intrusion −0.705

Rock crevice water of magmatic rock 0.198

Karst fracture water − 0.026
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Table 2 continued

Index Disaster pregnant environment factor Subset CF values

x7 Average annual rainfall after earthquake Interval value

[0, 500) − 0.456

[500, 600) 0.084

[600, 700) − 0.130

[700, 800) − 0.383

[800, 900) − 0.514

[900, 1000) 0.134

[1000, 1100) 0.564

[1100, 1200) 0.467

[1200, 1300) 0.067

[1300, 1400) 0.342

[1400, 1500) − 0.716

[1500, 1600) − 0.636

[1600, 1700) − 0.406

> 1700 − 0.758

Table 3 Coding table of meteorological warning level for landslides

Scale of landslide Classification criteria Coding

Minor landslide < 0.1 million cubic metres 0 0 0 1

Medium-sized landslide 0.1 ∼ 1 million cubic metres 0 0 1 0

Large-scale landslide 1 ∼ 10 million cubic metres 0 1 0 0

Huge landslide > 10 million cubic metres 1 0 0 0

3.1.1 Pre-training

Through the greedy unsupervised learning for RBM from low to high layer by layer, the
weights and bias values of the network can be obtained by pre-training. The feature vectors are
mapped into different feature spaces to retain characteristic information by greatest possibility
and thus formed more conceptual features. A RBM unit consists of two layers, the visual
layer (V ) and the hidden layer (H).

As a system, RBM is a model based on energy. Between the input layer vector (v) and the
output vector of the hidden layer (h), it can be described by the joint configuration energy
function as follows:

E(v, h|θ) = −vT Wh − aT v − bT h

= −
n∑

i=1

m∑

j=1

wi jvi h j −
n∑

i=1

aivi −
m∑

j=1

b j h j (3)

where vi and h j are for the state of the visual layer (V ) and hidden layer (H) of each node;
θ = {wi j , ai , b j } represents the parameters to be optimized in which the three parameters
determine the performance of RBM network during the whole RBM network training stage;
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Fig. 2 The model structural diagram of DBN

wi j is the connection weights between the visual layer node i and the hidden layer node j; ai
and b j are the bias of visual layer nodes and hidden layer nodes, respectively.

According to the energy function, the joint probability distribution of (v, h) canbeobtained
when the parameters θ of is given.

P(v, h|θ) = 1

Z(θ)
exp(−E(v, h|θ)) (4)

where Z(θ) is the normalization factor, it is also called partition function.

Z(θ) =
∑

v,h

exp(−E(v, h|θ)) (5)

To obtain the marginal distributions of P(v, h) to h, we can get the probability that RBM
model assigned to visual node.

P(v|θ) = 1

Z(θ)

∑

h

exp(−E(v, h|θ)) (6)

The purpose of using RBM is to obtain the parameter of θ and to fit training data to the
best extent possible. In order to get the parameter of θ , we use the minimum logarithmic
likelihood P(v), which equivalents to maximize logP(v). Now considering that there are
N samples, let L(θ) = logP(v), the key step is to calculate the partial derivatives of each
parameters of the model as follows:
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∂L(θ)

∂θ
=

N∑

n=1

⎛

⎝

〈
∂(−E(v(n), h|θ))

∂θ

〉

P(h|v(n),θ)

−
〈
∂(−E(v, h|θ))

∂θ

〉

P(v,h|θ)

⎞

⎠ (7)

where < · >P is the mathematic expectation about distribution P.P(h|v(n), θ) is the proba-
bility distribution of the hidden layers when the known training sample of visual layer units
is v(n); P(v, h|θ) is the joint distribution of the visual layer units and the hidden layer units.

The “data” and “model” are respectively used to indicate P(h|v(n), θ) and P(v, h|θ).
Then taking partial derivative of L(θ) to wi j , ai and b j can be derived as follows:

∂ log P(v|θ)

∂Wi j
= 〈

vi h j
〉

data − 〈
vi h j

〉

mod el (8)

∂ log P(v|θ)

∂ai
= 〈vi 〉data − 〈vi 〉 mod el (9)

∂ log P(v|θ)

∂b j
= 〈

h j
〉

data − 〈
h j

〉

mod el (10)

where<·>data is themathematic expectation of the data set and<·>model is themathematic
expectation defined in the model.

For the calculation of the gradient of L(θ) with respect to θ , the CD (Contrastive Diver-
gence) algorithm is introduced in this paper. The steps can be summarized as follows.

• Let the initial state of the visual layer unit v0 equals x0. The connection weightsW needs
to be initialized. The bias a and b of the visual and hidden layers should be small random
numbers obeyed the Gaussian distribution. Then the maximum number of iterations for
each layer of RBM is also needed to be specified.

• For all hidden layer units, P(h1 j = 1|v1) can be calculated according to the formula as
follows:

P(h1 j = 1|v1) = σ

(

b j +
∑

i

v1iWi j

)

(11)

where σ(x) is the sigmoid function.
• For all visual layer units, P(v2i = 1|h1) can be calculated according to the formula as

follows:

P(v2i = 1|h1) = σ

⎛

⎝ai +
∑

j

h1 jWi j

⎞

⎠ (12)

where v2i ∈ {0, 1} can be extracted from conditional distribution P(v2i = 1|h1).
• For all hidden layer units, P(h2 j = 1|v2) can be calculated according to the formula as

follows:

P(h2 j = 1|v2) = σ

(

b j +
∑

i

v2iWi j

)

(13)

• Each parameter needs to be upgraded according to the following formulas:

W ← W + ε
(
P (h1 = 1|v1) vT1 − P (h2 = 1|v2) vT2

)
(14)

a ← a + ε (v1 − v2) (15)

b ← b + ε (P (h1 = 1|v1) − P (h2 = 1|v2)) (16)
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3.1.2 Fine-Tuning

Fine-tuning is a supervised training process with labeled data, which use the BP neural net-
work algorithm to optimize the parameters of each layer so that the predication performance
of the network is better. After the process of pre-training, the initialization parameters of
each RBM can be obtained. Then parameters of DBN must to be tuned and trained, the
network parameters of each layer can be optimized, bringing the performance of neural net-
work forecasting more effective. By receiving the output feature vector of RBM with BP
neural network algorithm as the input feature vector, the entity relationship classifier can be
supervised trained with labeled data. What follows are the characteristics of RBM network
learning can be combined and classified, and the error information can be transferred to all
the RBM networks based on the error function. Then the parameters of the whole DBN
network can be fine-tuned to ensure that the final results are the optimal parameters of the
DBN network.

3.2 Softmax Regression

Softmax regression is a generalization of logistic regression, it is adapt to solve the nonlinear
multiple classification problems. In this paper, the Softmax classifier was added to the top
layer of DBN neural network. It combined the supervised Softmax regression model with the
unsupervised learning parts of DBN neural network to make a better judgment performance.

Suppose the Softmax regression model is a training set consisting of m training samples
{(x (1), y(1)), . . ., (x (m), y(m))}, any of the sample x (i) ∈ Rn+1, its corresponding classifica-
tion label y(i) ∈ {1, 2, . . ., k}. The hypothesis function of Softmax regression is represented
as follows.

hθ (x
(i)) =

⎡

⎢
⎢
⎢
⎣

p(y(i) = 1|x (i); θ)

p(y(i) = 2|x (i); θ)
...

p(y(i) = k|x (i); θ)

⎤

⎥
⎥
⎥
⎦

= 1
∑k

j=1 e
θTj x

(i)

⎡

⎢
⎢
⎢
⎢
⎣

eθT1 x (i)

eθT2 x (i)

...

eθTk x (i)

⎤

⎥
⎥
⎥
⎥
⎦

(17)

where the hypothesis vector hθ (x (i)) is used to calculate the probability value p(y(i) = j |x (i);
θ ) of which classification result j the test sample x (i) belongs to. θ is the parameter vector
of the model, which can be expressed as a matix as follows.

θ =

⎡

⎢
⎢
⎢
⎣

−θT1 −
−θT2 −

...

−θTk −

⎤

⎥
⎥
⎥
⎦

(18)

The cost function of model is defined as follows.

J (θ) = − 1

m

⎡

⎣
m∑

i=1

k∑

j=1

1{g(i) = j} log eθTj x
(i)

∑k
l=1 e

θTl x (i)

⎤

⎦ (19)

where 1{·} is indicator function. Its value rule is that 1{when the value of the expression is ture
} = 1, otherwise 1{when the value of the expression is false} = 0. Iterative optimal algo-
rithm is usually used to solve the minimization problem. Through the derivation, we can get
the cost function gradient formula is as follows.
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Fig. 3 Deep neural network
architecture of Dropout

∇θ j J (θ) = − 1

m

m∑

i=1

[
x (i)(1{y(i) = j} − p(y(i) = j |x (i); θ))

]
(20)

where �θ j J (θ) is a vecor as the symbol for the partial derivative of J (θ) with respect to the
l component θ j .

3.3 Dropout Technology

Dropout is a random retreat mechanism to overcome the data problem of over-fitting, which
is proposed by Hinton in 2012 [23]. Dropout mechanism is introduced in the DBN training
process in this study. In the pre-training process of DBN network, random sampling of
the hidden layer nodes weights with a certain probability, with the input and output nodes
remaining constant. Such a thinner network is set each time, and some neurons are not
involved in the forward propagation training process. In this paper, the random probability
of Dropout was set at 50%. It can raise the generalization ability and improve the time-
consuming problem of network training effectively so that the precision of forecasting can
be improved distinctly. The deep neural network architecture of Dropout is shown in Fig. 3.

3.4 Model Setting

In this study, we construct the meteorological early warning model in Wenchuan earthquake
affected area based on Dropout DBN-Softmax. As mentioned in Sect. 2.2, the inputs of the
DBNneural network are the 9 factors which influence the landslides ofWenchuan earthquake
affected area.Dropoutmechanism is introduced into the pre-training process ofDBNnetwork
raining process, random sampling of the hidden layer nodesweightswith a certain probability.
Trained by multi-layer RBM, we use the BP algorithm to optimize the parameters of each
layer. At last, the outputs after Softmax classifier are the probability values of which kind the
corresponding sample belongs to. The meteorological warning model of landslide disaster
based on Dropout DBN-Softmax is shown in Fig. 4.
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Fig. 4 The meteorological warning model of landslide disaster based on Dropout DBN-Softmax

The proposed method for meteorological early warning of landslide based on Dropout
DBN-Softmax is as follows: (1) A large number of unlabeled data is used as input. The
initialization parameters of the model are set to small random numbers which obeys the
Gauss distribution. The CD algorithm is introduced to unsupervised pre-training process of
the underlying RBM with pre-training samples. The Dropout method is used in the RBM
hidden layer structure to unsupervised pre-train the network parameter W0. (2) The hidden
layer of the first RBM is used as the input of the second RBM, with the second hidden layer to
form the second RBM. Similarly, the Dropout mechanism is used in the second RBM hidden
layer structure to train the network parameter W1. (3) Likewise, according to the training
samples to unsupervised learn the RBM in the DBN layer by layer. The network parameter
W of each RBM can be also trained and obtained. (4) Taking the trained network parameters
as input of the Softmax classifier, and then training the network parameter of the Softmax
classifier with labeled data. The cost function of the Softmax classifier can be calculated. (5)
BP algorithm is used to train and learn the entire DBN network with labeled data. Then fine
tune the parameters of each RBM and Softmax layer. In the Softmax layer, the parameter of
the minimum value of the cost function in the Softmax classifier is obtained. In each RBM
layer, the network parameters of each RBM in the whole DBN can be tuned to get the optimal
parameters. (6) The well trained neural network was then taken as a prediction model to get
the predict results of the landslide.
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4 Experiments and Performance Assessments

In order to demonstrate the feasibility and assess the performance, a series of experiments
were conducted and the detailed experimental data was given out. The testing server is
composed of Intel Core I7-2600 at 3.4G HZ and 4GB of memory. The operating system of
the experimental computer is Windows 10. We compiled with MATLAB R2015a.

In this experiment, the parameter setting of themeteorological warningmodel of landslide
disaster based on Dropout DBN-Softmax is as follows:

• The visual note number of DBN is 9.
• The output note number of DBN is 4.
• Iteration number of each RBM layers is 10.
• Drop value is 0.5.
• The learning rate of BP neural network layer is 0.01.
• The accuracy of landslide disaster prediction is selected as the evaluation index of the

prediction performance in the model.

Using the preprocessed training data set of landslides in Wenchuan earthquake affected area,
the following experiments were carried out based on the Dropout DBN-Softmax model.

4.1 Different Number of Pre-training Samples and Different RBM Layers Effect

Under different number of pre-training samples and different RBM layers, some experiments
were conducted to look in their relationships with the prediction accuracy of landslides. A
series of experiments were carried out when the pre-training sample data were taken as 1000,
2000, 3000, 4000, 5000 for different network layers and the number of RBM network layers
was taken as the different value of 1–8. The accuracy rate of the meteorological early warning
of landslides is taken as the evaluation index. The experimental results are shown in Table 4.

It is found out in the experiments that the prediction accuracy of landslides is related to
both the number of pre-training samples and the layers of RBM. After extensive experiments
based on the experimental data, we plot the graph of the relation diagram among the number
of pre-training samples, the layers of RBM and the prediction accuracy of landslides (Fig. 5).

As shown in Fig. 5, the trend of the x axis indicated the relationship between the number
of pre-training samples and the accuracy of prediction when the RBM layer was constant.
As the number of pre-training samples increased from 1000 to 5000, the prediction accuracy
improved. It was consistent with the basic characteristics of deep learning. The results indi-
cated that the prediction performancewould be better withmore sample data trained andmore
characteristics learned from DBN network. When the extracted features were good enough,
the predicted results were gradually stabilized. The trend of the y axis showed the relationship
between different layers of RBMand the accuracy of prediction when the pre-training sample
number was given. The accuracy of the prediction of the landslide was obviously increased
with the increase of the number of RBM. When the RBM layer reached 5, the trend became
slow gradually.

4.2 Different RBM Layers and Different Nodes of RBM Effect

When the training samples kept constant as 5000, the influence of different RBM layers and
nodes of RBM on prediction accuracy was studied experimentally. As shown in Table 5, as
the RBM layers increased in the ranges from 1 to 8 and the nodes of each RBM changed, the
prediction accuracy of landslides was a trend of rising with the rising of the RBM layers, and
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Table 4 Table of pre-training sets and RBM layer parameters

RBM layers Pre-training sets Accuracy rate (%) RBM layers Pre-training sets Accuracy rate (%)

1 1000 60.2 5 1000 70.5

1 2000 67.5 5 2000 76.5

1 3000 71.3 5 3000 84.2

1 4000 74.6 5 4000 89.5

1 5000 78.3 5 5000 92.5

2 1000 63.8 6 1000 73.5

2 2000 69.9 6 2000 81.5

2 3000 73.6 6 3000 86.4

2 4000 78 6 4000 90.6

2 5000 82.8 6 5000 92.6

3 1000 66.4 7 1000 75.1

3 2000 73.5 7 2000 84.1

3 3000 77.3 7 3000 88.5

3 4000 82.1 7 4000 90.8

3 5000 86.5 7 5000 92.7

4 1000 68.5 8 1000 77

4 2000 74.9 8 2000 87.5

4 3000 81.5 8 3000 90.8

4 4000 85.7 8 4000 91.8

4 5000 90.2 8 5000 92.7

Fig. 5 The impact on prediction of landslides from different RBM layers and pre-training sets
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Table 5 Prediction of landslides in the case of different hidden layers

Layers
of RBM

Nodes of each
RBM

Accuracy
rate (%)

Layers
of RBM

Nodes of each
RBM

Accuracy
rate (%)

1 20 78.3 5 20, 40, 40, 80, 40 92.5

2 20, 40 82.8 6 20, 40, 40, 80, 40, 20 92.6

3 20, 40, 40 86.5 7 20, 40, 40, 80, 40, 20, 20 92.7

4 20, 40, 40, 80 90.2 8 20, 40, 40, 80, 40, 20, 20, 20 92.7

then increases slowly. When the number of RBM layers was 5, the prediction accuracy of the
landslide disaster was up to 92.5%. And later, it would not increase with the number of RBM
layers and the nodes of each RBM increased. Therefore, when the number of RBM layers
was 5, the prediction accuracy of Dropout DBN- Softmax model was obviously increased
with the increase of the number of RBM. When the RBM layer reached 5, the trend became
slow gradually. So the optimal structure of the Dropout DBN- Softmax prediction model
could be determined.

4.3 Three Models Selected for Comparison

In order to evaluate the predictive effect of DBN, a comparison was made on traditional
BP neural network model, BP neural networks learning algorithm based on Particle Swarm
Optimizer (PSO-BP) model and the proposed Dropout DBN- Softmax model. When the
training sets range from 1000 to 5000, the comparison of prediction results is shown in
Table 6 and Fig. 6.

As shown in Table 6 and Fig. 6, when the training set is small, the average accuracy of the
threemodels was basically equivalent. However, as the number of training samples increased,
the average accuracy of the Dropout DBN-Softmax model was significantly higher than the
BP and PSO-BP models. It was further verified the deep learning model was a kind of high
efficient data processing method. The Dropout DBN-Softmax model could make full use
of data information and could extract automatically the main factors affected the landslide
disasters so as to improve the prediction accuracy effectively. Therefore, compared with the
traditional shallow learningmodel (BPmodel and PSO-BPmodel), the deep learningmethod
(Dropout DBN-Softmax model) was more applicable in a large number of sample data of
landslide hazard prediction and training.With themost stable, the highest prediction accuracy
and good scalability, it could better meet the actual needs.

5 Summary and Conclusions

Considering the unsatisfactory results achieved with the probability and mathematical statis-
tics and the shallow neural networks, we introduced a deep learning technique to improve
the results of rainfall-triggering landslide forecast. The study has demonstrated that, at least
for the study area, the new meteorological early warning method of precipitation-induced
landslides based on Dropout DBN- Softmax is feasible and effective.

Deep Belief Network is a deep network structure stacked by a series of restricted Boltz-
mann machines (RBM). With the greedy unsupervised learning algorithm of DBN for data
pre-training, a better distributed representation of the input data can be obtained. And then
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Table 6 Prediction of landslide hazards in different training sets

Model Training sets Test sets Accuracy rate (%)

BP 1000 1000 59.4

PSO-BP 60.23

Dropout DBN-Softmax 60.2

BP 2000 1000 61.56

PSO-BP 63.1

Dropout DBN-Softmax 67.5

BP 3000 1000 64

PSO-BP 67

Dropout DBN-Softmax 80.33

BP 4000 1000 66

PSO-BP 71.31

Dropout DBN-Softmax 90.52

BP 5000 1000 69.4

PSO-BP 76.84

Dropout DBN-Softmax 92.5

Fig. 6 Predictions of BP, PSO-BP and Dropout DBN- Softmax models

using the BP neural network algorithm to optimize the parameters of each RBM layer, thus
enabling the predictive performance of the network is optimal. The Softmax classifier is
added to the top layer of DBN neural network, which combined the supervised Softmax
regression model with the unsupervised learning parts of DBN neural network, to make a
better judgment performance. Dropout mechanism is introduced in the DBN training process
in this study to overcome the data problem of over-fitting.
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Moreover, the meteorological early warning model based on Dropout DBN-Softmax was
constructed. Using 9 factors influenced the landslides of the study area as the inputs of the
DBN neural network. Dropout mechanism is introduced in the pre-training process to sample
the hidden layer nodes weights with a probability of 50%. Trained by multi-layer RBM, we
use the BP algorithm to optimize the parameters of each layer. Eventually, the outputs after
Softmax classifier are the probability values of which kind the corresponding sample belongs
to.

Finally, on the basis of several sets of experiments, the proposed method of precipitation-
induced landslides based on Dropout DBN-Softmax is proved to be feasible with satisfactory
result. Comparedwith the traditionalBPandPSO-BPmodel, the newmethodproposedmakes
better prediction accuracy. Experiments show that as pre-training set rises, the prediction
accuracy is increased. Therefore, the method proposed in this paper applies to training of a
large number of data samples. And it has good scalability and great accuracy to meet the
actual demand.

In the future research work, it needs to research other deep learning models in order to
find a more suitable data model for landslide hazard prediction in our next study.
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