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Abstract Short-term wind speed prediction is beneficial to guarantee the safety of wind
power utilization and reduce the cost of wind power generation. As a kind of the power-
ful artificial intelligent algorithms, support vector regression (SVR) has been successfully
employed in solving forecasting problems. However, due to the intrinsic complexity and
multi-patterns of wind speed fluctuations, it is regarded as one of the most challenging appli-
cations for wind speed prediction. To alleviate the influence of complexity and capture these
different patterns, this study proposes a novel approach named SIE–WDA–GA–SVR for
short-term wind speed prediction, which applies the seasonal information extraction (SIE)
and wavelet decomposition algorithm (WDA) into hybrid model that integrates the genetic
algorithm (GA) into SVR. First, the proposed approach uses SIE to decompose the original
wind speed into seasonal and trend components, and the seasonal indices are calculated by
SIE. Second, the proposed approach uses WDA to decompose the trend component into
both the approximate and the detailed scales. Third, the proposed approach uses GA–SVR to
forecast the approximated and detailed scales, respectively. Then, the prediction values of the
trend component can be obtained by integrating the prediction values of the approximated
scale into the prediction values of the detailed scale. By integrating the seasonal indices
into the prediction values of trend component, we can obtain the final forecasting results of
the original wind speed. Moreover, the partial autocorrelation function is used to determine
the number of input dimension for the SVR, and the GA is used to select the parameters
of the SVR. Four real wind speed datasets are used as test samples to verify the proposed
approach. Experimental results indicate that the proposed approach outperforms other bench-
mark models in four statistical error measures, and can improve the forecasting accuracy of
wind speed.
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1 Introduction

As one kind of the most promising green energy, wind power is rapidly growing around the
world [1]. In the past 3 years, it has been doubled for the accumulative installed capacity
of wind energy generation. It is estimated that in 2020, approximately 12% of total world
electricity demands will be supplied from wind power [2]. With the large scale penetration
of wind energy in the power grids, a number of challenges have been posed because of the
intermittent and stochastic natures of wind speed fluctuations [3,4]. These uncertainties of
wind speed fluctuations can put the system reliability and power quality at risk [5]. In order
to deal with the problem and improve the utilization efficiency of wind energy, accurate wind
speed prediction is indispensable [6].

In general, there are two main categories for wind speed prediction in the time scales:
short-term prediction and long-term prediction [7]. The time scales of short-term prediction
are minutes, hours and days, and the time scales of long-term prediction are months and
years. It is very important to improve the short-term prediction precision for guaranteeing
the safety of power grid and reduce the cost of wind power generation [8]. It is beneficial to
improve the long-term prediction precision for planning the windmills [9]. In this study, we
mainly focus on the prediction issue of short-term wind speed.

Extensive efforts have been devoted for enhancing the prediction ability of short-term
wind speed in recent years. According to existing literatures, there are two main categories
for the short-term wind speed forecasting [10–12]. The first category can be referred to
conventional statistical models, such as autoregressive moving average model (ARMA),
Kalmanfilter, stochasticmodel,Markov chain, and so on [13–17]. These approaches try to use
the historical wind speed data to construct prediction models, and the statistical regularities
of wind speed fluctuations are described. They have been successfully used to predict the
short-term wind speed. For example, Lalarukh and Yasmin used the ARMAmodel to predict
the short-term wind speed in Quetta, Pakistan [13]. Louka et al. [14] used the Kalman filter
technique to predict the short-term wind speed. Bivona et al. [16] presented a stochastic
model to forecast the short-term wind speed. Shamshad et al. [17] presented the Markov
chain models to forecast the short-term wind speed. All empirical results indicated that
these conventional statistical models are suitable for forecasting the short-term wind speed.
However, the prediction performance of these models will be worse if the nonlinear features
of wind speed fluctuations are obvious. In other words, these statistical models may be
insufficient to capture the hidden nonlinear features in wind speed.

To overcome the drawbacks of the conventional statistical models, artificial intelligence
(AI) techniques with powerful nonlinear self-learning capacities, including artificial neural
networks (ANNs), support vector regressions (SVRs), fuzzy logicmethods, etc., have become
increasingly popular for wind speed forecasting [18–23]. For example, Cadenas and Rivera
[18] used the ANN to forecast the wind speed in the region of La Venta, Oaxaca, Mexico, and
the empirical results indicated that the ANN could increase the prediction ability of short-
term wind speed. Li and Shi [19] applied three ANNs to the hourly wind speed forecasting.
In Ref. [20], Flores et al. used a back-propagation neural network (BPNN) to forecast the
wind speed, and the conclusion indicated that the BPNN could increase the accuracy of wind
speed forecasting. Zhou et al. [21] applied the SVR with fine tuning parameters to forecast
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the wind speed, and the conclusion indicated that the proposed model outperformed the
persistence model for predicting the short-term wind speed. Hu et al. [22] presented a control
algorithm based on ν-support vector regression and augmented Lagrange multiplier method
for wind speed forecasting, and the results indicated that the proposed control algorithm
could increase the forecasting effectiveness. Kavousi-Fard et al. [23] proposed a fuzzy-based
prediction interval for wind power prediction.More introductions toAImethods can be found
in [24–31].

Even though AI methods (e.g., ANN, SVR, and fuzzy logic) provide a great deal of
promise, they also suffer from a number of shortcomings such as the time wasting, slow con-
vergence, local minima, and the risk of model over-fitting [32,33]. In order to overcome these
drawbacks, intelligent optimization algorithms, mainly including genetic algorithm (GA)
and particle swarm optimization (PSO), have been successfully used to optimize the model
parameters of AI and enhance the prediction performance of them [34–36]. For instance, Hu
et al. proposed a short-term traffic flow hybrid forecasting method based on PSO and SVR.
Experimental results showed that the hybrid method could get accurate forecasting results
than individual models [34]. Cao and Parry [35] examined the relative effectiveness of hybrid
model based onANN andGA in forecasting future earnings per share. Gu et al. [36] proposed
a housing price forecasting based on GA and SVR.

As a climate-driven renewable resource, the seasonal variations and trend variations of
wind speed fluctuations are two most commonly encountered phenomena. Generally speak-
ing, twokinds of variations inwind speed aremutual penetration, and the seasonal information
of wind speed is often neglected in the most existing researches. The phenomena will cause
large deviation in wind speed prediction. According to Zhang and Qi [37], seasonal informa-
tion extraction (SIE) can extremely reduce the prediction error in many seasonal time series.
The SIE can decompose the seasonal time series into seasonal and trend components, and
can help extract the seasonal information and make forecasting more efficient. Therefore, In
order to increase the accuracy of wind speed forecasting, this study uses the SIE technique
to extract the seasonal information from wind speed.

On the other hand, the multi-patterns of wind speed fluctuations are the other commonly
encountered phenomena because of wind being a climate-driven green energy which is influ-
enced bymanymeteorological parameters. Thus, accuratewind speed forecasting is a difficult
task if these forecasting models are directly constructed by the original wind speed. In order
to improve the predictive accuracy, it is necessary to consider and analyze the multi-patterns
characteristics of wind speed fluctuations. Thus, a multi-patterns decomposition technique
is indispensable to construct a suitable wind speed prediction model [38]. As a relatively
novel multi-patterns decomposition technique, wavelet decomposition algorithm (WDA)
can decompose a complicated multi-patterns signal into an approximate part associated with
low frequency and a detailed part associated with high frequency, which can show the local
and global dynamic properties of a signal at specific timescales [39,40]. It has been widely
applied in the prediction issues [41]. Thus, this study tends to construct a suitable forecasting
model for wind speed using WDA.

Based on the above consideration, this study proposes a new method named SIE–WDA–
GA–SVR for forecasting the short-term wind speed, which applies the SIE and WDA into
hybrid model that integrates the GA into the SVR. First, the proposed approach uses SIE to
decompose the original wind speed into seasonal and trend components, and the seasonal
indices are calculated by SIE. Second, the proposed approach uses WDA to decompose
the trend component into both the approximate and the detailed scales. Third, the proposed
approach uses GA–SVR to forecast the approximated and detailed scales, respectively. Then,
the prediction values of the trend component can be obtained by integrating the prediction
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values of the approximated scale into the prediction values of the detailed scale. By integrating
the seasonal indices into the prediction values of trend component, we can obtain the final
forecasting results of the original wind speed. Moreover, the partial autocorrelation function
(PACF) is used to determine the number of input dimension for the SVR, and the genetic
algorithm (GA) is used to select the parameters of the SVR. Four real wind speed datasets
are used as test samples to verify the proposed approach. Experimental results indicate
that the proposed SIE–WDA–GA–SVR model outperforms other benchmark models in four
statistical errormeasures, and can improve the prediction ability of the short-termwind speed.

In addition, the main contribution of this paper can be summarized as follows:

(1) Considering the seasonal variation and multi-patterns characteristics of wind speed fluc-
tuations, a comprehensive signal preprocessing technique is proposed to extract the
useful information of wind speed fluctuations.

(2) Instead of determining the input and output relationship of wind speed series by expe-
rience way, this study employs partial autocorrelation function (PACF) to find the lag
length of wind speed series and determine the number of input dimension for the SVR.

(3) A novel approach named SIE–WDA–GA–SVR is proposed to predict the short-term
wind speed. The proposed strategy can provide higher prediction accuracy compared
with the traditional methods.

The rest of this paper is organized as follows. The formulation process of the novel SIE–
WDA–GA–SVR model can be described in Sect. 2. Section 3 presents the different error
criteria and numerical results obtained from four real datasets. Finally, the conclusions and
future researches are summarized in Sect. 4.

2 Proposed Approach

This section presents a novel approach named SIE–WDA–GA–SVR for wind speed forecast-
ing, which feeds SIE andWDA into hybrid model that combines GA and SVR. The proposed
approach is briefly described as follows, and the flowchart is shown in Fig. 1.

Step 1: The original wind speed are decomposed into seasonal and trend components, and
calculate the seasonal indices by SIE.

Step 2: The trend component can be decomposed into both approximate part associated with
low frequency and detailed part associated with high frequency by WDA.

Step 3: By employ the PACF, we can find the input and output relation of the wind speed
series, and determine the number of the input dimension of the SVR model for both
approximate part and detailed part.

Step 4: Train the SVR model based on the optimal parameters obtained from GA.
Step 5: Forecast both low frequency and high frequency using the constructed SVRmodels.
Step 6: By the sum of the prediction values of both approximate part and detailed part, we

can get the forecasting values of the trend component.
Step 7: By aggregating the prediction values of seasonal component to the prediction values

of trend component, we can obtain the final forecasting result of the wind speed.

2.1 Seasonal Information Extraction (SIE)

As a climate-driven renewable resource, the seasonal variations and trend variations of wind
speed are two most commonly encountered phenomena. The SIE technique can decom-
pose the original wind speed datasets into seasonal and trend components, and calculate the
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Fig. 1 SIE–WDA–ESVR flowchart

seasonal indices. Generally, addition and multiplication operations are used to generate com-
posite SIE models with seasonal and trend components. According to Zhang and Qi [37],
the multiplicative decomposition of the SIE technique is widely used to extract the seasonal
information in real datasets. Therefore, the multiplicative composite model is adopted to
extract the seasonal information of original wind speed in this study. The concrete process
of the algorithm can be described as follows [42]:

Assuming that T = m×l, andm and l denote the number of cycles and the number of data
items in each cycle, respectively. Let xt denote the wind speed at time t (t = 1, 2, . . . , T ),
S· j and Tri j represent the seasonal and trend components, respectively. Then, xi j denotes
the j-th datum of the i-th cycle (i = 1, 2, . . . ,m ; j = 1, 2, . . . , l), and

xi j = Tri j × S· j , (1)

Then, the seasonal index S· j can be obtained by

S· j = xi j/Tri j . (2)
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Because the trend component Tri j is unknown, it is need to be approximate by the average
of xi j in each cycle.

In fact, the average of the i-th cycle can be derived as follows:

x̄i = (xi1 + xi2 + · · · xil)/ l (i = 1, 2, . . . ,m). (3)

If Si j denotes the normalization data for items xi j , then

Si j = xi j
x̄i

(i = 1, 2, . . . ,m; j = 1, 2, . . . , l). (4)

Then, S· j can be defined as follows:

S· j = S1 j + S2 j + · · · Smj

m
( j = 1, 2, . . . , l). (5)

This definition of S· j conforms to the normalization process and is demonstrated as fol-
lows:

l∑

j=1

S· j = 1

m

m∑

i=1

l∑

j=1

Si j = 1

m

m∑

i=1

⎛

⎝
l∑

j=1

xi j/x̄i

⎞

⎠ = 1

m

m∑

i=1

l = l. (6)

Then, the trend component can be obtained as follows:

Tri j = xi j
S· j

(i = 1, 2, . . . ,m; j = 1, 2, . . . , l). (7)

Considering the cycle influence of wind speed data, in this paper, l = 24 is as a cycle and
m = [T/ l].
2.2 Wavelet Decomposition Algorithm (WDA)

As a relatively novel signal processing technique, wavelet decomposition algorithm (WDA)
can decompose a complex signal into both the low and high frequencies. The low and high
frequencies which are associated with the approximate part and detailed part, respectively,
can show the local and global dynamic properties of the signal at specific timescales [39,40].
So the WDA has been widely used for signal decomposition and complex data processing
[43–48]. In this section, the WDA is used for wind speed decomposition, and the brief
introduction of the WDA is described as follows.

In general, theWDAcan be classed into two categories: continuouswavelet decomposition
(CWD) and discrete wavelet decomposition (DWD). Let ψ(t) denote a mother wavelet
function, the definition of the CWD can be described as follows [49]:

CWTψ
x (b, a) = φψ

x (b, a) = 1√|a|
∫

x(t) · ψ•
(
t − b

a

)
dt (8)

where ψ•(t) denotes the complex conjugate of ψ(t), and a and b denote the scale and
translational parameters, respectively. When a = 1/2s and b = k/2s , a discrete version of
Eq. (8) can be described as follows:

DWTψ
x (k, s) = φψ

x

(
k

2s
,
1

2s

)
=

∫ ∞

∞
x(t) · ψ•

(
t − k/2s

1/2s

)
dt, (9)

where s and k meet the following constrained form
⎧
⎨

⎩

T = 2s + k
0 ≤ s ≤ log2 T, s ∈ Z
k ∈ Z
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In general, the mother wavelet function needs to be set at the beginning of WDA. Due
to the high computing efficiency of the daubechies wavelet filters of order 3 (db3), it is
widely applied in data analysis issues. Considering the advantages of db3, this study selects
it as a mother wavelet function to generate a set of wavelet basis functions {ψ(t)}s,k by
the scale and translational transformations of the mother wavelet. In general, the number of
these basis functions depends on the length of the signal. In this study, log2 T wavelet basis
functions can be used to decompose the complex wind speed signal into both the low and
high frequencies which can show the local and global dynamic properties of the wind speed
at specific timescales. The low frequency is associated with the approximate part and can
reveal the trend of wind speed, and the high frequency is associated with the detailed part and
tends to be related to exogenous variables effect. For more detail information about WDA,
please refer to [43–49].

2.3 Support Vector Regression (SVR)

As a novel machine learning technique, SVR has been superior in minimizing the expected
error of a learning machine and reducing the problem of over-fitting [50]. This algorithm has
been widely applied in prediction issues [21,22,24,34,36]. The notion of an SVR model can
be briefly described as follows.

Given a data set {Xi , yi }sni=1, where Xi ∈ Rn is the input vector, yi ∈ R is the actual output
value, and sn is the sample number. The basic idea of the SVR is to map the input vector
space into a higher dimensional feature space via a nonlinearly mapping ϕ(Xi ), and find a
linear function of the higher dimensional feature space to show the nonlinear relationship
between input data and output data. The linear function f (Xi ) named SVR function can be
described as

f (Xi ) = ωTϕ(Xi ) + b, (10)

where ω and b are the coefficients.
The values of coefficients ω and b can be estimated by minimizing the following penalty

function R(C, ε)

R(C, ε) = 1

2
‖ω‖2 + C · 1

sn

sn∑

i=1

|yi − f (Xi )|ε, (11)

where C is the penalty parameter, ε is the non-sensitivity coefficient and denotes the radius
of the tube located around the regression function f (Xi ), and

|yi − f (Xi )|ε =
{
0, |yi − f (Xi )| ≤ ε

|yi − f (Xi )| − ε, otherwise

By introducing two slack variables ξi and ξ∗
i , the infeasible constraints of the optimization

problem Eq. (11) can be transformed into the following constrained form

min(ω, b, ξ, ξ∗) = 1

2
‖ω‖2 + C

sn∑

i=1

(ξi + ξ∗
i )

subject to

⎧
⎪⎨

⎪⎩

yi − ωTϕ(Xi ) − b ≤ ε + ξ∗
i

− yi + ωTϕ(Xi ) + b ≤ ε + ξi

ξi , ξ
∗
i ≥ 0

(12)
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Let αi and α∗
i denote the Lagrange multipliers. By using the Lagrange equation, the

maximal dual function can be described as

max(αi , α
∗
i ) =

sn∑

i=1

yi (αi − α∗
i )−ε

sn∑

i=1

(αi + α∗
i ) − 1

2

sn∑

i, j=1

(αi − α∗
i )(α j − α∗

j )k(Xi , X j )

subject to
sn∑

i=1

(αi − α∗
i ) = 0 and αi , α

∗
i ∈ [0,C]. (13)

By exploiting the optimality constraints, the SVR function can be obtained as follows,

f (x j ) =
sn∑

i=1

(αi − α∗
i )k(Xi , X j ) + b, (14)

where k(Xi , X j ) is the kernel function. In general, the Gaussian radial basis function (RBF)
is the most frequently adopted for SVR modeling. In this study, the RBF function is also
chosen as the kernel function of SVR model, which is defined as follows:

k(Xi , X j ) = exp
(
− ∥∥X j − Xi

∥∥2 /2σ 2
)

. (15)

whereσ denotes thewidth of theRBF.Thus, in themodeling process of SVR, three parameters
need to be chosen including the penalty parameter C , the width of the RBF σ , and the non-
sensitivity coefficient ε. In this study, the GA is used to determine the appropriate parameter
values of the SVR model.

2.4 The Forecasting Model of GA–SVR

In themodeling process of SVR, the choice of three parameterswill influence the performance
of the model including the penalty parameter C , the width of the RBF σ , and the non-
sensitivity coefficient ε. It is a challenge task to select the appropriate parameters of the
SVR model [21,34]. Genetic algorithm (GA) based on the theories of natural selection
mechanisms and Darwin’s main principle, has been successfully applied in optimization
problems [35,36]. In this study, GA is used to optimize three parameters of the SVR and
the partial autocorrelation function (PACF) is used to determine the number of the input
dimension for the SVR. The structure of the proposed GA–SVR model for wind speed
prediction is shown in Fig. 2 and the operational process of the model can be described as
follows.

Step 1: Divide the wind speed data into the training samples and test samples. The training
samples are used to train the forecasting model, and the test samples are used to
evaluate the performance and effectiveness of the forecasting model.

Step 2: Determine the number of the input dimension for the prediction model. Generally,
the number of the input dimension can influence the performance of AI techniques
directly. As a special kind of AI techniques, the forecasting precision of SVR is also
affected by the number of the input dimension. It is a challenging task to select the
appropriate number of the input dimension for the SVR model. The partial autocor-
relation function (PACF) is used to determine the number of the input dimension for
the SVR model.

Step 3: Randomly generate an initial population of the chromosomes. In the modeling pro-
cess of theGA–SVRmodel, three parameters need to be chosen including the penalty
parameter C , the width of the RBF σ , and the non-sensitivity coefficient ε. In this
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Fig. 2 The structure of the proposed GA–SVR model

study, the size of the initial population is set to 20 chromosomes and each chro-
mosome is consisted of three segments corresponding three parameters of the SVR
model.

Step 4: Calculate the fitness function. The fitness function is used to evaluate the optimal
chromosome. In this study, the fitness function is defined as 2

/∑ts
i=1 (yi − ŷi )2,

where ts denotes the number of training samples, yi and ŷi represent the actual value
and validation value at time i , respectively.

Step 5: Generate a new population of the chromosomes by selection operation, crossover
operation andmutationoperation. In this study, the roulettewheel is used for selecting
the excellent chromosomes to reproduce. The probability of crossover operation and
the rate of mutation operation are set to 0.8 and 0.01, respectively.

Step 6: If stopping criteria have not been met, return to Step 4.

2.5 Partial Autocorrelation Function (PACF)

In time series analysis issues, the correlation between a variable series and its different lags
can be measured by partial autocorrelation function (PACF) method. Inspired by it, this study
also uses the PACF method to determine the number of the input dimension for SVR model
instead of the experience way. The brief introduction of the PACF is described as follows
[51,52].

If xt (t = 1, 2, . . . ,T) is the wind speed at time t and γk denotes the covariance at lag k,
then we can get the estimation value γ̂k of γk as follows:

γ̂k = 1

T

T−k∑

t=1

(xt − x̄)(xt+k − x̄), k = 0, 1, . . . , L (16)
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where x̄ is the average value of time series xt , T is the data size, and L is the maximum lag.
The choice of L depends on the length of the data. In general, L = T/4.

If ρk denotes the autocorrelation function (ACF) at lag k, then we can get the estimation
value ρ̂k of ρk as follows:

ρ̂k = γ̂k

γ̂0
(17)

If βk,k denotes the PACF at lag k, then the estimation value β̂k,k of the βk,k can be derived
as follows:

β̂1,1 = ρ̂1

β̂k+1,h = β̂k,h − β̂k+1,k+1 . . . β̂k+1,k−h+1 (h = 1, 2, . . . , k)

β̂k+1,k+1 = ρ̂k+1−∑k
h=1 ρ̂k+1−h β̂k,h

1−∑k
h=1 ρ̂h β̂k,h

(18)

where k = 1, 2, . . . , L .
To assess the significance of autocorrelation between lags, the confidence intervals have

been widely adopted. In this study, the 95% confidence interval is employed to determine
the optimal lags of wind speed for all models. The definition can be described as follows:

r+
0.95 = + 2√

T

r−
0.95 = − 2√

T
(19)

where T is the data size, r+
0.95 and r

−
0.95 denote the upper and lower critical values, respectively.

If β̂k,k ∈ (r−
0.95, r

+
0.95), then xt−k is one of input variable. Otherwise, it is not.

3 Experimental Design and Comparison Results

3.1 Evaluation Criteria

In order to evaluate the performance of all involved prediction models, four error measures
are adopted including themean absolute error (MAE), root mean-square error (RMSE), mean
absolute percentage error (MAPE) and standard deviation (SD). These error measures are
defined as follows:

MAE = 1

f s

f s∑

i=1

|ei |, (20)

RMSE =
√√√√ 1

f s

f s∑

i=1

e2i , (21)

MAPE = 1

f s

f s∑

i=1

∣∣∣∣
ei
yi

∣∣∣∣, (22)

SD =
√√√√ 1

f s

f s∑

i=1

(et − μ)2 (23)
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Fig. 3 Four wind speed Cases: a Spring, b Summer, c Fall, and d Winter

Table 1 Statistical measures of four cases

Cases Mean (m/s) SD (m/s) Maximum (m/s) Median (m/s) Minimum (m/s)

Spring 3.32 2.21 11.50 2.80 0.00

Summer 3.22 2.49 16.30 2.65 0.00

Fall 2.53 2.24 13.50 1.80 0.00

Winter 4.02 2.94 15.10 3.20 0.00

where ei = yi − ŷi , μ = 1
f s

∑ f s
i=1 et , and f s denotes the number of forecasting samples. yi

and ŷi represent the actual value and forecasting value of wind speed at time i , respectively.

3.2 Datasets

The mean hourly wind speed datasets of wind farm in the province of Gansu, China, are
collected to evaluate the proposed model. In order to further verify the generalization ability
of the proposed model, four wind speed Cases inMay 2010, August 2010, October 2010, and
January 2011 are randomly selected as the four seasons in a year. Each dataset has 744 wind
speed records. In the modeling process, the top 80% of each dataset (about 600 wind speed
records) is called as the training dataset which is used to train the proposed model, and the
remaining 20% of each dataset (about 144 wind speed records) is called as validation dataset
which is used to evaluate the performance and effectiveness of the proposed model. Figure 3
shows four real mean hourly wind speed datasets. Table 1 shows the statistical measures
results of four Cases.

3.3 SIE of Wind Speed Datasets

As a climate-driven renewable resource, the seasonal variations and trend variations of wind
speed are two most commonly encountered phenomena. In this study, The SIE is used to
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Fig. 4 SIE results in Spring and Summer

Fig. 5 SIE results in Fall and Winter

decompose the seasonal time series into seasonal and trend components, and extracts the
seasonal information of wind speed fluctuations. Figures 4 and 5 show the SIE process of
four wind speed datasets. From Figs. 4 and 5, we can see that the seasonal and trend variations
of each Case can be obtained by SIE.
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Fig. 6 WDA results in Spring and Summer

3.4 WDA of Trend Components

Due to the intrinsic complexity and multi-patterns of wind speed fluctuations, this study
adopts the WDA to decompose the complex trend components of original wind speed
signals into both the low and high frequencies. The low and high frequencies which are
associated with the approximate part and detailed part, respectively, show the local and
global dynamic properties of the wind speed at specific timescales. Figures 6 and 7 show
the decomposition process of four Cases by WDA. From Figs. 6 and 7, we observe that
the complex trend component of each wind speed signal has been decomposed into both
low frequency and high frequency, which are used to establish the corresponding SVR
model.

3.5 The Modeling Process of GA–SVR

3.5.1 Input Structure Determination

The number of the input dimension for the SVR has an important influence for forecasting
performance. If we ignore the relationship between the wind speed series, this will lead to a
bad prediction performance and a slow convergence speed. In order to enhance the prediction
ability of the SVR model, we adopt the PACF method to extract the relation of wind speed
series, and determine the number of the input dimension for the SVR model. The plots of
PACF against the lag length in four Cases can be shown in Fig. 8. The number of the input
dimension of each SVR is obtained by the plots of PACF against the lag length, and they can
be shown in Table 2. The sample pairs of data can be determined according to the prediction
horizon and the number of the input dimension for the model. In this study, we mainly focus
on the one-step ahead wind speed prediction, and the prediction horizon is set as one. As an
example, the sample pairs of the low frequency in Spring can be shown in Fig. 9. As is shown
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Fig. 7 WDA results in Fall and Winter

Fig. 8 Plots of PACF against the lag length in four seasons

in Fig. 9, 738 sample pairs can be obtained for the low frequency in Spring. The sample pairs
for other wind speed data can be also got in a similar way.

3.5.2 Model Parameters Determination

Three parameters of the SVR models need to be chosen including the penalty parameter C ,
the width of the RBF σ , and the non-sensitivity coefficient ε. In this study, the GA is used to
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Table 2 The number of the input dimension for the SVR model by the PACF

Cases Datasets Cases Datasets

Trend
component

Low
frequency

High
frequency

Trend
component

Low
frequency

High
frequency

Spring 2 6 12 Fall 2 8 13

Summer 2 8 12 Winter 2 6 12

Fig. 9 The sample pairs of the low frequency in Spring

determine the appropriate parameter values of the SVR model. In the modeling process, the
sample pairs of data first are determined according to the prediction horizon and the number
of the input dimension for model. Then, these sample pairs are randomly partitioned into
training set (80%) and validation set (20%). The training set is used to train the GA–SVR,
and the validation set is used to test the prediction performance of this model. Note that
the training set and validation set are randomly re-partitioned during each simulation, and
they are different from each other in multiple simulations. Each simulation can establish
a prediction model and obtain a set of model parameters. In this study, the mean of these
parameters for the repeated 30 times simulations is used to establish the appropriate model
for obtaining the stable result of wind speed prediction. Table 3 shows the final parameters
of GA–SVR models for each wind speed series.

3.6 Final Prediction Results of Wind Speed

According to the corresponding SVR model by building in this previous section, both low
frequency and high frequency can be predicted. Then, the prediction values of trend compo-
nent can be obtained by sum the prediction values of both low frequency and high frequency.
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Table 3 The final parameters of GA–SVR models for each wind speed series

Cases Optimal parameters Cases Optimal parameters

C σ ε C σ ε

Spring Fall

Trend component 4.32 1.25 0.00002 Trend component 6.52 1.44 0.00003

Low frequency 4.14 1.17 0.00002 Low frequency 5.59 1.72 0.00003

High frequency 3.81 2.54 0.00005 High frequency 2.95 2.16 0.00004

Summer Winter

Trend component 7.21 2.31 0.00006 Trend component 9.76 2.76 0.00001

Low frequency 8.32 2.01 0.00005 Low frequency 8.57 2.65 0.00002

High frequency 5.78 3.19 0.00001 High frequency 6.04 3.12 0.00004

Fig. 10 The final forecasting results of the proposed SIE–WDA–ESVR model

By aggregating the prediction values of seasonal component to the prediction values of trend
component, we can obtain the final forecasting results of thewind speed. The final forecasting
results of the proposed SIE–WDA–GA–SVR model can be shown in Fig. 10. From Fig. 10,
we can see that the prediction values of the proposed approach can approximately describe
the characteristics of four wind speed datasets.

3.7 Model Comparisons

In wind speed forecasting issues, the back-propagation neural network (BPNN) which is a
benchmark predictor, is often selected as a reference to assess the other forecasting methods.
Generally, a novel model is first compared with the BPNN to assess the forecasting ability
of it. In the modeling process of the BPNN model or the BPNN part of the hybrid model,
the hidden nodes number is determined by Kolmogorov theorem, and the logsig and purelin
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Table 4 The comparisons results of these different models

Cases Errors Models

BPNN SVR SIE–BP SIE–SVR SIE–WDA–
GA–SVR

Spring MAE 1.3401 1.0221 0.9477 0.8963 0.5472

RMSE 1.8600 1.3916 1.2735 1.1834 0.6872

MAPE 0.4331 0.4014 0.3528 0.3189 0.1764

SD 1.7703 1.3828 1.2432 1.1834 0.6479

Summer MAE 2.0523 1.1538 1.1229 0.9592 0.8849

RMSE 2.6778 1.7315 1.5843 1.2258 1.1126

MAPE 0.6058 0.4345 0.3696 0.2938 0.2412

SD 2.5266 1.7315 1.5459 1.2254 1.0605

Fall MAE 1.1360 0.9388 0.5639 0.4637 0.3516

RMSE 1.4365 1.1411 0.7391 0.6294 0.4372

MAPE 0.8531 0.7065 0.6513 0.3293 0.3043

SD 1.0723 0.8781 0.7390 0.6288 0.4349

Winter MAE 1.0272 0.9727 0.9275 0.8025 0.6876

RMSE 1.3748 1.2484 1.2445 1.0582 0.9115

MAPE 0.2924 0.2849 0.2402 0.2516 0.1998

SD 1.3577 1.2145 1.0709 1.0400 0.8841

functions are selected as the activation functions of both hidden layer and output layer,
respectively. The learning velocity is set as the default values 0.01.

In this study, four models of BPNN, SVR, SIE–BP (hybrid SIE and BPNN) and SIE–SVR
are selected as the benchmarks to evaluate the forecasting ability of the proposed SIE–WDA–
GA–SVRmodel. The number of the inputs dimension for all models is determined by PACF.
The comparisons results of these models are shown in Table 4. From Table 4, we can clearly
observe that four statistical errors of the proposed model are the minimum compared with
other benchmarkmodels. These results can be explained below. First, the proposedmodel has
the better prediction performance compared with the BPNN and SVR. This result indicates
that the proposed approach can fully capture the seasonal information and different patterns
of wind speed fluctuations. In addition, the proposed model can considers all linear and
non-linear structures of wind speed fluctuations, and has the higher prediction precision
compared SIE–BP and SIE–SVR. Thus, it is concluded that the SIE–WDA–GA–SVRmodel
can enhance the forecasting ability of wind speed and is an effective approach.

4 Conclusions

To guarantee the security of wind energy utilization and lower the cost of wind power gen-
eration, it is very essential to enhance the prediction ability of wind speed fluctuations. In
consideration of the intrinsic complexity and multi-patterns features of the wind speed, a
novel SIE–WDA–GA–SVR model is proposed for forecasting the short-term wind speed,
which feeds SIE andWDA into hybrid model that combines GA and SVR. The performance
of the SIE–WDA–GA–SVR model is comprehensively evaluated using four real prediction
cases of wind speed, and compared with a number of benchmark algorithms and baselines.
Experimental results indicate that the proposed approach outperforms other benchmarkmod-
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els in four statistical error measures, and is effective to improve the forecasting accuracy of
wind speed.
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