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Abstract In this paper, the almost periodic dynamical behaviors are considered for delayed
complex-valued neural networks with discontinuous activation functions. We decomposed
complex-valued to real and imaginary parts, and set an equivalent discontinuous right-hand
equation. Depended on the differential inclusions theory, diagonal dominant principle, non-
smooth analysis theory and generalized Lyapunov function, sufficient criteria are obtained
for the existence uniqueness and global stability of almost periodic solution of the equivalent
delayed differential system. Especially, we derive a series of results on the equivalent neural
networks with discontinuous activations and periodic coefficients or constant coefficients,
respectively. Finally, we give one numerical example to demonstrate the effectiveness of the
derived theoretical results.

Keywords Almost periodic solution ·Discontinuous activation function ·Global exponential
stability · Complex-value

1 Introduction

Recurrently, connected neural network has been extensively investigated in various science
and engineering fields such as pattern classification, parallel computation, signal processing,
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associative memories, and solving some complicated optimization problems [1–4]. In these
applications, which are depended on the dynamical behaviors of neural networks. Hence, it
is extremely important to study the dynamical behaviors of neural networks in the practical
design. For instance, when solving a periodic oscillation problem by neural networks, there
must translate into considering dynamical behaviors for networks. As is well known that
the research on neural networks not only involve discussion of stability property, but also
involve other dynamical behaviors as bifurcation, periodic oscillatory, and chaos. In some
applications, the properties of almost periodic solutions are very interest and important. Thus,
it is great significant to study the almost periodic solution of the neural networks.

The complex-valued neural networks is an extension of real-valued neural networks,
which have been presented and investigated, see [5–22]. Compared with real-valued neural
networks, complex-valued neural networks have specific different from those in real-valued
connected neural networks. In general, complex-valued neural networks have more compli-
cated than the real-valued ones in some aspects. For the practical applications in physical
systems, complex-valued neural networks become strongly desired. For example, light, quan-
tum waves, ultrasonic, and electromagnetic [23,24]. Therefore, it is necessary and vital to
discuss the dynamical behaviors of complex-valued neural networks such as the stability of
almost periodic solution. However, to the best of the authors’ knowledge, almost periodic
solution for delayed complex-valued neural networks was seldom investigated.

It is well known that activation functions play a vital part in the dynamical behaviors of
neural networks. As often, activation functions of neural networks are assumed to be con-
tinuous, bounded, globally Lipschitz, even smooth. Dynamical behaviors of neural networks
depend on the structures of activation functions. In the past few years, there have two kinds
of activation functions considered for neural network, i.e. continuous activation function and
discontinuous activation functions. As pointed by Forti and Nistri [25], connected neural
networks with discontinuous activation functions are important and do frequently arise in
practical application when handling with dynamical systems with discontinuous right-hand
sides. For this reason, much efforts has been committed to analyzing the dynamical behavior
of the neural networks with discontinuous activation functions [26–29]. However, almost
periodic dynamical behaviors for delayed complex-valued neural networks with discontinu-
ous activation functions was seldom investigated.

Unfortunately, time delays are often arise inmanypractical applications of neural networks
because of the finite switching speed of amplifiers and propagation time, such as control,
signal processing, associative memory, and pattern recognition. In the past few years, there
have a lot of articles on considering the dynamical behaviors for delayed complex-valued
neural networks, see [30–32]. Time delays is a origin of instability and oscillation in neural
networks. Moreover, the stability analysis is a prime research topic in neural networks theory.
Therefore, it is important and necessary to study the dynamical behaviors of complex-valued
neural networkswith timedelays, as the existence, uniqueness, and stability of almost periodic
solutions.

From many applications, we know that almost periodic oscillatory is an universal phe-
nomenon in the real world, it is more actual than others. In the dynamical behavior point of
view, periodic parameters of dynamical networks often turn out to experience uncertain per-
turbations. That is, parameter can be taken as a periodic small error. The almost periodic neural
networks are regard as a natural extension of the periodic ones, and which is more accordant
with reality. Considering the importance of almost periodic property, much more efforts have
been devoted to researching almost periodic the dynamical behaviors of connected neural
networks, see [30,31,33–38]. Based on a fixed theorem and stability definition,Huang andHu
considered the multistability problem of delayed complex-valued neural networks with dis-
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continuous real-imaginary-type activation functions [39]. In [40], Liang et al. study the mul-
tistability of complex-valued neural networks with discontinuous activation functions. Wang
et al. researched the dynamical behavior of Complex-Valued Hopfield neural networks with
discontinuous activation functions [41]. In [42], Yan researched the almost periodic dynamics
of the delayed complex-valued recurrent neural networks with discontinuous activation func-
tions. Comparedwith the almost periodic dynamics of real-valued neural networks, complex-
valued are more complicated and suitable. However, to the best of our knowledge, almost
periodic dynamics for complex-valued recurrent neural networks was seldom considered.

This paper investigates the almost periodic dynamical behaviors for complex-valued neu-
ral networks with discontinuous activation functions. The highlights of this paper are listed
as follows: Firstly, The almost periodic solution is proposed in the complex domain, which
is more feasible in practice compared to the periodical scheme. Furthermore, we consid-
ered decomposing complex-valued neural networks into real-valued, which the activation
function has continuous real part and discontinuous imaginary. Secondly, the decomposed
activation function is not assumed monotonous. Under these circumstances, we reconsider
almost periodic dynamical behaviors by generalized Lyapunov function method. Lastly, the
almost periodic dynamics for complex-valued neural networks with discontinuous functions
is investigated, and some judgment conditions are obtained. the issue of time-varying delay
is also considered, which make our research have more general significance.

The structure of the remaining paper is organized as follows. In Sect. 2, Complex-valued
neural networks is formulated, and some preliminaries are presented. In Sect. 3, the existence
of almost periodic solution for the dynamic system is obtained via some assumptions of
activation functions. In Sect. 4, the uniqueness and global exponential stability of almost
periodic solution are achieved. In Sect. 5, an example is presented to explicate the validity
of our theoretical results. Lastly, some conclusions are shown in Sect. 6.
Notations The notations are quite standard in this paper. ‖z‖ denote the 1-norm of vec-

tor z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ C
n, ‖z(t)‖ =

{∑n
j=1 ξ j |zR

j (t)| +∑n
j=1 φ j |z I

j (t)|
}

where ξ j , φ j > 0, j = 1, 2, . . . , n. co(E) is the closure of the convex hull of some set
E . B(x, δ) denotes the open δ-neighborhood of a set x ⊂ Rn : B(x, δ) = {y ∈ Rn :
inf
z∈x

‖y − z‖ < δ} for some ‖ · ‖, C([0, T ], Rn), L1([0, T ], Rn), and L∞([0, T ], Rn) are

the spaces of continuous vector function, square integrable vector function, and essentially
bounded function on [0, T ], respectively. Z denotes the integer.

2 Model Formulation and Preliminaries

Consider the complex-valued dynamical networkswith almost periodic coefficients described
by the following delayed integro-differential equations:

dz j (t)

dt
= − d j (t)z j (t) +

n∑
k=1

a jk(t) fk(zk(t))

+
n∑

k=1

∫ ∞

0
fk(zk(t − s))ds K jk(t, s) + u j (t), j = 1, 2, . . . , n, (1)

where j = 1, 2, . . . , n z j (t) ∈ C is the state of the j-th neuron at time t ; d j (t) > 0
represents the positive rate with which the j-th unit will reset its potential to the resting
state in isolation when disconnected from the network; f j (·) : C → C are complex-valued
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activation functions; a jk(t) ∈ C are the connection strength of the k-th neuron on the j-th
neuron; ds K jk(t, s) are Lebesgue-Stieltjes measures with respect to s.

Assumption 1 Let z = zR + i z I , f j (z) can be decomposed to its real and imaginary parts
as f j (z) = f R

j (zR)+ i f I
j (z I ), where f R

j (·) is continuous on any compact interval of R, and

f I
j (·) is continuous except on a finite number set of isolation points {ρ j

k : ρ
j
k < ρ

j
k+1, k ∈ Z},

where f I
j (·) = g j (·)+h j (·), g j is a monotonic continuous on R and h j is continuous except

on a countable set of isolation points {ρ j
k }, f R

j (·), g j (·) are local Lipschizan, i.e., for any

ζ, ς ∈ (ρ
j
k , ρ

j
k+1) there exists positive constants L f

j and Lg
j , j = 1, 2, . . . , n, such that

| f R
j (ζ ) − f R

j (ς)| ≤ L f
j |ζ − ς |, |g j (ζ ) − g j (ς)| ≤ Lg

j |ζ − ς |.

Denote z j (t) = x j (t)+iy j (t)with x j (t) and y j (t) ∈ R, then the network (1) can be rewritten
in the equivalent forms as follows:

dx j (t)

dt
= − d j (t)x j (t) +

n∑
k=1

aR
jk(t) f R

k (xk(t)) −
n∑

k=1

aI
jk(t) f I

k (yk(t))

+
n∑

k=1

∫ ∞

0
f R
k (xk(t − s))ds K jk(t, s) + u R

j (t), (2a)

dy j (t)

dt
= − d j (t)y j (t) +

n∑
k=1

aR
jk(t) f I

k (yk(t)) +
n∑

k=1

aI
jk(t) f R

k (xk(t))

+
n∑

k=1

∫ ∞

0
f I
k (yk(t − s))ds K jk(t, s) + uI

j (t). (2b)

The following assumptions are also needed for the systems (2a)–(2b).

Assumption 2 d j (t), aR
jk(t), aI

jk(t), u R
j (t), uI

j (t), ds K jk(t, s) are all continuous almost
functions on R. i.e., for any ε > 0, there exists l = l(ε) > 0, for any interval [α, α + l]
containing ω, such that

|d j (t + ω) − d j (t)| < ε,

∣∣∣a R
jk(t + ω) − a R

jk(t)
∣∣∣ < ε,

∣∣∣aI
jk(t + ω) − aI

jk(t)
∣∣∣ < ε,

∣∣∣u R
j (t + ω) − u R

j (t)
∣∣∣<ε,

∣∣∣u R
j (t + ω) − u R

j (t)
∣∣∣<ε,

∫ ∞
0

∣∣ds K jk(t + ω) − ds K jk(t, s)
∣∣ < ε,

hold for all j, k = 1, 2, . . . , n and t ∈ R. Moreover, ds K jk(t, s) is dominated
by some Lebesgue-Stieltjes d K jk(s) independent of t , i.e.,

∫ +∞
0 f (s)|ds K jk(t, s)| <∫ +∞

0 f (s)|d K jk(s)|, where f (s) is any nonnegative measurable function.

Assumption 3 There exist positive constant ξ j , φ j > 0 and d j (t) > δ > 0 such that
�1

j (t) < 0, �2
j (t) < 0 and ϒ1

j (t) < 0,
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where j = 1, 2, . . . , n

�1
j (t) = (− d j (t) + δ)ξ j + ξ j a

R
j j (t)L f

j +
n∑

k=1,k �= j

ξk L f
j

∣∣∣aR
k j (t)

∣∣∣+
n∑

k=1

φk L f
j

∣∣∣aI
k j (t)

∣∣∣

+
n∑

k=1

ξk L f
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣

�2
j (t) = (− d j (t) + δ)φ j + φ j a

R
j j (t)Lg

j +
n∑

k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣ Lg
j +

n∑
k=1

ξk Lg
j

∣∣∣aI
k j (t)

∣∣∣

+
n∑

k=1

φk Lg
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣

ϒ1
j (t) = ξ j a

I
j j (t) +

n∑
k=1,k �= j

ξk

∣∣∣aI
k j (t)

∣∣∣+ φ j a
R
j j (t) +

n∑
k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣

+
n∑

k=1

φk

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣

Definition 1 For given continuous functions θk(s) and ϕk(s) defined on (−∞, 0] as well as
the measurable functions υk(s) ∈ co[ f I

k (ϕk(s))] for almost all s ∈ (−∞, 0], the absolute
continuous function z(t) = x(t) + iy(t) with xk(s) = θk(s), yk(s) = ϕk(s) for all s ∈
(−∞, 0] is said to be a solution of the systems (2a)–(2b) on [0, T ] if there exist measurable
function γ I

k (t) ∈ co[ f I
k (yk(t)] for almost all t ∈ [0, T ] such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx j (t)
dt = − d j (t)x j (t) +

n∑
k=1

aR
jk(t) f R

k (xk(t)) −
n∑

k=1
aI

jk(t)γk(t)

+
n∑

k=1

∫∞
0 f R

k (xk(t − s))ds K jk(t, s) + u R
j (t) a.e. t ∈ [0, T )

dy j (t)
dt = − d j (t)y j (t) +

n∑
k=1

aR
jk(t)γk(t) +

n∑
k=1

aI
jk(t) f R

k (xk(t))

+
n∑

k=1

∫∞
0 γk((t − s))ds K jk(t, s) + uI

j (t) a.e. t ∈ [0, T )

(3)

and γk(s) = υk(s) for almost all s ∈ (−∞, 0], where k = 1, 2, . . . , n.

Definition 2 Let z∗(t) = (
z∗
1(t), z∗

2(t), . . . , z∗
n(t)

)T is a solution of the given initial value
problem of system (1), z∗(t) is called to be globally exponentially stable, if for any solution
z(t) = (z1(t), z2(t), . . . , zn(t))T of the dynamical system (1), i.e. there exist constants
M > 0, and δ > 0 such that

‖z(t) − z∗(t)‖ ≤ Me−δt , t ≥ t0 ≥ 0.

As introduced by Fink [43] and He [44], the following concept of almost periodic solution
is presented.

Definition 3 [37] A continuous function z(t) : R → C
n is said to be almost periodic

function on R, if for any ε > 0, it is possible to find a real number l = l(ε) > 0, for any
interval with length l(ε), there exist a number ω = ω(ε) in this interval [α, α + l], such that
‖z(t + ω) − z(t)‖ < ε, for all t ∈ R.
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A chain rule for computing the time derivative of the composed function V (q(t)) :
[0,+∞) → R, where q(t) : [0,+∞) → Rn is absolutely continuous on any compact
interval [0,+∞).

Lemma 1 (Chain Rule) [37] Assume that V (t) : Rn → R is C − regular , and that q(t) is
absolutely continuous on any compact interval of [0,+∞), then q(t) and V (t) : [0,+∞) →
Rn are differential for a.e. t ∈ [0,+∞) and we have

dV (q(t))

dt
=
〈
ς(t),

dq(t)

dt

〉
ς(t) ∈ ∂V (q(t)).

3 The Existence of Almost Periodic Solution for the Dynamic System

In this section, the existence of almost periodic solution of system (1) is considered primarily.
We applied with a suitable Lyapunov function that some sufficient criteria are obtained to
guarantee the existence of the almost periodic solution.

Lemma 2 Suppose that the Assumptions 1–3 are satisfied, then for any initial value of the
dynamical system (1), there exists a solution z(t) = x(t)+ iy(t) associated with a measurable
function γ (t) a.e. t ∈ R. Moreover, for any solution there exists constant M > 0, such that
‖z(t)‖ < M, for t ∈ R and ‖γ (t)‖ < M for a.e. t ∈ R.

Proof Define set-valued map as follows:

dx j (t)

dt
→ − d j (t)x j (t) +

n∑
k=1

aR
jk(t) f R

k (xk(t)) −
n∑

k=1

aI
jk(t)co

[
f I
k (yk(t))

]

+
n∑

k=1

∫ ∞

0
f R
k (xk(t − s))ds K jk(t, s) + u R

j (t)

dy j (t)

dt
→ − d j (t)y j (t) +

n∑
k=1

aR
jk(t)co

[
f I
k (yk(t))

]
+

n∑
k=1

aI
jk(t) f R

k (xk(t))

+
n∑

k=1

∫ ∞

0
co
[

f I
k (yk(t − s))

]
ds K jk(t, s) + uI

j (t),

it is easy to see that this set-valued map are upper semi-continuous with nonempty compact
convex values, which implies that the local solution x(t), y(t) of the (2a)–(2b) are obviously
exist. That is to say that the initial valued problem of the systems (2a)–(2b) have at least a
solution (x(t), y(t)) on [0, T ) for some T ∈ (0,+∞]. ��

Next, we will show that limt→T − ‖z(t)‖ < +∞ if T < +∞, which means that the
maximal existing interval of z(t) can be extend to +∞. Note that f I

k (yk(t)) = gk(yk(t)) +
hk(yk(t)). There exists a vector function η(t) = (η1(t), η2(t), . . . , ηn(t))T : (−∞, T ) →
Rn , such that ηk(t) + gk(yk(t)) = γk(t)(k = 1, 2, . . . , n) where ηk(t) ∈ co[hk(yk(t))], for
a.e. t ∈ (−∞, T ).

Construct a function as follows:

V (t) = V1(t) + V2(t),
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where

V1(t) =
n∑

j=1

ξ j e
δt |x j (t)| +

n∑
j=1

φ j e
δt |y j (t)|

V2(t) =
n∑

j,k=1

ξ j

∫ ∞

0

∫ t

t−s

∣∣∣ f R
k (xk(ρ))

∣∣∣ eδ(ρ+s)dρ
∣∣d K jk(s)

∣∣

+
n∑

j,k=1

φ j

∫ ∞

0

∫ t

t−s
[|gk(yk(ρ))| + |ηk(ρ)|]eδ(ρ+s)dρ

∣∣d K jk(s)
∣∣

From (3), we obtained

ẋ j (t) = − d j (t)x j (t) +
n∑

k=1

aR
jk(t) f R

k (xk(t)) −
n∑

k=1

aI
jk(t)γk(t)

+
n∑

k=1

∫ ∞

0
f R
k (xk(t − s))ds K jk(t, s) + u R

j (t)

= − d j (t)x j (t) +
n∑

k=1

aR
jk(t) f R

k (xk(t)) −
n∑

k=1

aI
jk(t)[gk(yk(t)) + ηk(t)]

+
n∑

k=1

∫ ∞

0
f R
k (xk(t − s))ds K jk(t, s) + u R

j (t)

ẏ j (t) = − d j (t)y j (t) +
n∑

k=1

aR
jk(t)γk(t) +

n∑
k=1

aI
jk(t) f R

k (xk(t))

+
n∑

k=1

∫ ∞

0
γk(t − s)ds K jk(t, s) + uI

j (t)

= − d j (t)y j (t) +
n∑

k=1

aR
jk(t)[gk(yk(t)) + ηk(t)] +

n∑
k=1

aI
jk(t) f R

k (xk(t))

+
n∑

k=1

∫ ∞

0
[gk(yk(t − s)) + ηk(t − s)]ds K jk(t, s) + uI

j (t).

Then, we have

|ẋ j (t)| = v j (t)ẋ j (t), |ẏ j (t)| = w j (t)ẏ j (t),

where v j (t) = sign(x j (t)), if x j (t) �= 0; x j (t) can be arbitrarily select in [−1, 1], if
x j (t) = 0. In particular, we can select v j (t) as follows

v j (t) =
⎧
⎨
⎩
0, x j (t) = γ j (t) = 0,
−sign{η j (t)}, x j (t) = 0, γ j (t) �= 0,
sign{x j (t)}, x j (t) �= 0.

(4)

Thus, we have

v j (t)x j (t) = |x j (t)|, v j (t)η j (t) = −|η j (t)|, j = 1, 2, . . . , n.
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584 M. Yan et al.

Similarly, we can choose w j (t) as follows

w j (t) =
⎧⎨
⎩
0, y j (t) = γ j (t) = 0;
sign{η j (t)}, y j (t) = 0, γ j (t) �= 0;
sign{y j (t)}, y j (t) �= 0.

(5)

We have

w j (t)y j (t) = |y j (t)|, w j (t)η j (t) = |η j (t)|, j = 1, 2, . . . , n.

Calculate the derivation of V (t)with respect to t along the solution trajectories of the systems
(2a)–(2b) in the sense of (3) by using Lemma 1, one gets that

V̇1(t) =
n∑

j=1

δξ j e
δt |x j (t)| +

n∑
j=1

ξ j e
δt d|x j (t)|

dt
+

n∑
j=1

δφ j e
δt |y j (t)| +

n∑
j=1

φ j e
δt d|y j (t)|

dt

=
n∑

j=1

δξ j e
δt |x j (t)| +

n∑
j=1

ξ j e
δtv j (t)ẋ j (t)+

n∑
j=1

δφ j e
δt |y j (t)|+

n∑
j=1

φ j e
δtw j (t)ẏ j (t)

≤
n∑

j=1

ξ j e
δt

⎧⎨
⎩(−d j (t)+δ)|x j (t)| + aR

j j (t)
∣∣∣ f R

j (x j (t))
∣∣∣+

n∑
k=1,k �= j

∣∣∣aR
jk(t)

∣∣∣
∣∣∣ f R

k (xk(t))
∣∣∣

+ aI
j j (t)|η j (t)| +

n∑
k=1,k �= j

∣∣∣aI
jk(t)

∣∣∣ |ηk(t)| +
n∑

k=1

∣∣∣aI
jk(t)

∣∣∣ |gk(yk(t))|

+
n∑

k=1

∫ ∞

0

∣∣∣ f R
k (xk(t − s))

∣∣∣ ds K jk(t, s) +
∣∣∣u R

j (t)
∣∣∣
}

+
n∑

j=1

φ j e
δt {(−d j (t) + δ)|y j (t)|

+
n∑

k=1

∣∣∣aR
jk(t)

∣∣∣ |gk(yk(t))| + aR
j j (t)|η j (t)| +

n∑
k=1,k �= j

∣∣∣aR
jk(t)

∣∣∣ |ηk(t)|

+ aR
j j (t)|g j (y j (t))| +

n∑
k=1

∣∣∣aI
jk(t)

∣∣∣ | fk(xk(t))|

+
n∑

k=1

∫ ∞

0
|γk(t − s)|ds K jk(t, s) +

∣∣∣uI
j (t)
∣∣∣
}

≤
n∑

j=1

eδt

⎧⎨
⎩(−d j (t) + δ)ξ j + ξ j a

R
j j (t)L f

j

+
n∑

k=1,k �= j

ξk L f
j

∣∣∣aR
k j (t)

∣∣∣+
n∑

k=1

φk L f
j

∣∣∣aI
k j (t)

∣∣∣
⎫⎬
⎭ |x j (t)|

+
n∑

j=1

eδt

⎧
⎨
⎩ξ j a

I
j j (t)

n∑
k=1,k �= j

ξk

∣∣∣aI
k j (t)

∣∣∣+ φ j a
R
j j (t)
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+
n∑

k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣
⎫⎬
⎭ |η j (t)|

+
n∑

j=1

eδt
{
(−d j (t) + δ)φ j + φ j a

R
j j (t)Lg

j

+
n∑

k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣ Lg
j +

n∑
k=1

ξk Lg
j

∣∣∣aI
k j (t)

∣∣∣
⎫⎬
⎭ |y j (t)|

+
n∑

j=1

eδt

{
n∑

k=1

ξ j

∫ ∞

0

∣∣∣ f R
k (xk(t − s))

∣∣∣ ds K jk(t, s)

+
n∑

k=1

φ j

∫ ∞

0
|γk(t − s)|ds K jk(t, s)

}

+
n∑

j=1

eδt
{
ξ j

∣∣∣u R
j (t)

∣∣∣+ φ j

∣∣∣uI
j (t)
∣∣∣
}

Let us continue to calculate the derivative of V2(t).

V̇2(t) =
n∑

j,k=1

ξ j

∫ ∞

0

∣∣∣ f R
k (xk(t))

∣∣∣ eδ(t+s)ds
∣∣K jk(s)

∣∣

−
n∑

j,k=1

ξ j

∫ ∞

0

∣∣∣ f R
k (xk(t − s))

∣∣∣ eδt ds
∣∣K jk(s)

∣∣

+
n∑

j,k=1

φ j

∫ ∞

0
[|gk(yk(t))| + |ηk(t)|]eδ(t+s)ds

∣∣K jk(s)
∣∣

−
n∑

j,k=1

φ j

∫ ∞

0
[|gk(yk(t − s))| + |ηk(t − s)|]eδt ds

∣∣K jk(s)
∣∣

Therefore,

V̇ (t) = V̇1(t) + V̇2(t)

≤
n∑

j=1

eδt

⎧
⎨
⎩(−d j (t) + δ)ξ j + ξ j a

R
j j (t)L f

j +
n∑

k=1,k �= j

ξk L f
j

∣∣∣aR
k j (t)

∣∣∣+
n∑

k=1

φk L f
j

∣∣∣aI
k j (t)

∣∣∣

+
n∑

k=1

ξk L f
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣
}

|x j (t)| +
n∑

j=1

eδt

⎧
⎨
⎩ξ j a

I
j j (t) +

n∑
k=1,k �= j

ξk

∣∣∣aI
k j (t)

∣∣∣

+ φ j a
R
j j (t) +

n∑
k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣+
n∑

k=1

φk

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣
⎫
⎬
⎭ |η j (t)|

+
n∑

j=1

eδt

⎧
⎨
⎩(−d j (t)+δ)φ j+φ j a

R
j j (t)Lg

j +
n∑

k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣ Lg
j +

n∑
k=1

ξk Lg
j

∣∣∣aI
k j (t)

∣∣∣
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+
n∑

k=1

φk Lg
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣
}

|y j (t)| +
n∑

j=1

eδt
{
ξ j

∣∣∣u R
j (t)

∣∣∣+ φ j

∣∣∣uI
j (t)
∣∣∣
}

=
n∑

j=1

eδt�1
j (t)|x j (t)| +

n∑
j=1

eδt�2
j (t)|y j (t)| +

n∑
j=1

eδtϒ1
j (t)|η j (t)|

+
n∑

j=1

ξ j e
δt
∣∣∣u R

j (t)
∣∣∣+

n∑
j=1

φ j e
δt
∣∣∣uI

j (t)
∣∣∣ (6)

It follows form the Assumption 3 and (6) that

dV (t)

dt
≤ eδt û, f or a.e. t ∈ [0,+∞),

where û = sup
t≥0

‖u(t)‖ < +∞, u(t) = (u1(t), u2(t), · · · , un(t))T , which implies that

V (t) ≤ V (0) + 1

δ
ûeδt . (7)

Combining the definition of V (t) and (7), one has

‖z(t)‖ ≤ e−δt V (t) ≤ V (0) + 1

δ
û.

Thus, there exists constant M ′ = V (0)+ 1
δ
û, such that ‖z(t)‖ < M ′, for t ∈ R. Furthermore,

lim
t→T − ‖z(t)‖ < +∞, which means T = +∞. That is to say that the dynamical system (1)

has a global solution for any initial valued problem.
Moreover, we have

‖z(t)‖ =
n∑

j=1

ξ j |x j (t)| +
n∑

j=1

φ j |y j (t)| ≤ M0, t ∈ R, (8)

where M0 = V (0) + 1
δ
û + ‖θ‖. ‖θ‖ = sup−∞≤s≤0

{
n∑

k=1
ξk |x j (s)| +

n∑
k=1

φk |y j (s)|
}
.

Due to f I
j (·) have finite number of discontinuous points on any compact interval of R. In

speciality, f I
j (·) have finite number of discontinuous points on compact interval [− M0, M0].

Without loss of generality, we select discontinuous points {ρ j
k : k = 1, 2, . . . , l j } of f I

j (·)
on the interval [− M0, M0], and satisfied − M0 < ρ

j
1 < ρ

j
2 < · · · < ρ

j
l j

< M0. First, let us

consider a series of continuous function of f I
j (·) as follows:

f 1j (y) =
⎧⎨
⎩

f I
j (y), y ∈

[
−M0, ρ

j
1

)
,

f I
j

(
ρ

j
1 − 0

)
, y = ρ

j
1 ;

f k
j (y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f I
j

(
ρ

j
k−1 − 0

)
, y = ρ

j
k−1,

f I
j (y), y ∈

(
ρ

j
k−1, ρ

j
k

)
,

f I
j

(
ρ

j
k + 0

)
, y = ρ

j
k ;

k = 2, . . . , l j − 1.

f
l j
j (y) =

⎧⎨
⎩

f I
j

(
ρ

j
l j

+ 0
)

, y = ρ
j

l j
,

f I
j (y), y ∈

(
ρ

j
l j
, M0

]
.

123



The Global Exponential Stability of the Delayed… 587

Denote

M1
j = max

⎧
⎨
⎩ max

y∈
[
−M0,ρ

j
1

]
{

f 1j (y)
}

, max
2≤k≤l j −1

⎧
⎨
⎩ max

y∈
[
ρ

j
k−1,ρ

j
k

]
{

f k
j (y)

}
⎫
⎬
⎭ , max

y∈
[
ρ

j
l j

,M0

]
{

f
l j
j (y)

}
⎫
⎬
⎭

and

m1
j = min

⎧
⎨
⎩ min

y∈
[
−M0,ρ

j
1

]
{

f 1j (y)
}

, min
2≤k≤l j −1

⎧
⎨
⎩ min

y∈
[
ρ

j
k−1,ρ

j
k

]
{

f k
j (y)

}
⎫
⎬
⎭ , min

y∈
[
ρ

j
l j

,M0

]
{

f
l j
j (y)

}
⎫
⎬
⎭ .

It easy to see that
∣∣∣co
[

f I
j (y j (t))

]∣∣∣ ≤ max
{∣∣∣M1

j

∣∣∣ ,
∣∣∣m1

j

∣∣∣
}

, j = 1, 2, . . . , n.

Note that γ j (t) ∈ co[ f I
j (y j (t))], for a.e. t ∈ R and j = 1, 2, . . . , n. Thus |γ j (t)| ≤

max{|M1
j |, |m1

j |}, f or a.e. t ∈ R, and j = 1, 2, . . . , n,
which implies that

‖γ (t)‖ ≤ max

⎧⎨
⎩

n∑
j=1

∣∣∣M1
j

∣∣∣ ,
n∑

j=1

∣∣∣m1
j

∣∣∣
⎫⎬
⎭ , j = 1, . . . , n, a.e. t ∈ R. (9)

Let M = max

{
M0,

n∑
j=1

∣∣∣M1
j

∣∣∣ ,
n∑

j=1

∣∣∣m1
j

∣∣∣
}
. Hence, from (8) and (9), we have

‖z(t)‖ ≤ M, t ∈ R, (10)

and

‖γ (t)‖ ≤ M, t ∈ R. (11)

The proof of the Lemma 2 is complete.

Lemma 3 Suppose that the Assumptions 1–3 are satisfied, then any solution of system (1)
in the sense of (3) is asymptotically almost periodic, i.e., for any ε > 0, it is possible to find
a real number l = l(ε) > 0, for any interval with length l(ε), there exist a number ω = ω(ε)

in this interval [α, α + l], such that

‖z(t + ω) − z(t)‖ ≤ ε

hold for all t ≥ T .

Proof Construct the following auxiliary functions

ε1j (t, ω) = u R
j (t + ω) − u R

j (t) − x j (t + ω)[d j (t + ω) − d j (t)]

+
n∑

k=1

[
aR

jk(t + ω) − aR
jk(t)

]
f R
k (xk(t + ω))

−
n∑

k=1

[
aI

jk(t + ω) − aI
jk(t)

]
γk(t + ω)

+
n∑

k=1

∫ ∞

0
f R
k (xk(t + ω − s))[ds K jk(t + ω, s) − ds K jk(t, s)] (12)

123



588 M. Yan et al.

ε2j (t, ω) = uI
j (t + ω) − uI

j (t) − y j (t + ω)[d j (t + ω) − d j (t)]

+
n∑

k=1

[
aR

jk(t + ω) − aR
jk(t)

]
γk(t + ω)

+
n∑

k=1

[
aI

jk(t + ω) − aI
jk(t)

]
f R
k (xk(t + ω))

+
n∑

k=1

∫ ∞

0
γk(t + ω − s)[ds K jk(t + ω, s) − ds K jk(t, s)]. (13)

From the Assumption 2 and the boundedness of z(t), f R(x) and γ (t), it easy to see that for
any ε > 0, there exists l = l(ε) > 0 such that for any interval [α, α + l] containing at least
one point ω with satisfying the following inequalities:

|d j (t + ω) − d j (t)| <
δε

20nM�
,

∣∣∣u R
j (t + ω) − u R

j (t)
∣∣∣ <

δε

20n�
,

∣∣∣uI
j (t + ω) − uI

j (t)
∣∣∣ <

δε

20n�
,

∣∣∣aR
jk(t + ω) − aR

jk(t)
∣∣∣ <

δε

20n2M�
,

∣∣∣aI
jk(t + ω) − aI

jk(t)
∣∣∣ <

δε

20n2M�
,

∫ ∞

0
|ds K jk(t + ω, s) − ds K jk(t, s)| <

δε

20n2M�
.

where � � max
1≤ j≤n

{ξ j , φ j }. Hence, we have
∣∣∣ε1j (t, ω)

∣∣∣ <
δε

4n�
, f or a.e. t ∈ R (14)

∣∣∣ε2j (t, ω)

∣∣∣ <
δε

4n�
, f or a.e. t ∈ R (15)

Denote x̂(t) = x(t + ω) − x(t), ŷ(t) = y(t + ω) − y(t). It follows from (2a) and (2b) that

dx̂ j (t)

dt
= − d j (t )̂x j (t) +

n∑
k=1

aR
jk(t)

[
f R
k (xk(t + ω)) − f R

k (xk(t))
]

−
n∑

k=1

aI
jk(t)[γk(t + ω) − γk(t)]

+
n∑

k=1

∫ ∞

0

[
f R
k (xk(t + ω − s)) − f R

k (xk(t − s))
]

ds K jk(t, s) + ε1j (t, ω)

d ŷ j (t)

dt
= −d j (t)ŷ j (t) +

n∑
k=1

aR
jk(t)[γk(t + ω) − γk(t)]

+
n∑

k=1

aI
jk(t)

[
f R
k (xk(t + ω)) − f R

k (xk(t))
]

+
n∑

k=1

∫ ∞

0
[γk(xk(t + ω − s)) − γk(xk(t − s))]ds K jk(t, s) + ε2j (t, ω)
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Consider the following candidate function:

L(t) = L1(t) + L2(t),

where

L1(t) =
n∑

j=1

ξ j e
δt
∣∣̂x j (t)

∣∣+
n∑

j=1

φ j e
δt
∣∣̂y j (t)

∣∣

L2(t) =
n∑

j,k=1

ξ j

∫ ∞

0

∫ t

t−s

∣∣∣ f R
k (xk(ρ + ω)) − f R

k (xk(ρ))

∣∣∣ eδ(ρ+s)dρ
∣∣d K jk(s)

∣∣

+
n∑

j,k=1

φ j

∫ ∞

0

∫ t

t−s
|gk(yk(ρ + ω)) − gk(yk(ρ))|eδ(ρ+s)dρ

∣∣d K jk(s)
∣∣

+
n∑

j,k=1

φ j

∫ ∞

0

∫ t

t−s
|ηk(ρ + ω) − ηk(ρ)|eδ(ρ+s)dρ

∣∣d K jk(s)
∣∣

Let

d
∣∣̂x j (t)

∣∣
dt

= v j (t) ˙̂x j (t),

d
∣∣̂y j (t)

∣∣
dt

= w j (t) ˙̂y j (t)

where v j (t) = sign(x j (t + ω) − x j (t)), if x j (t + ω) �= x j (t); x j (t + ω) − x j (t) can be
arbitrarily select in [−1, 1], if x j (t +ω) = x j (t). In particular, we can select v j (t) as follows:

v j (t) =
⎧
⎨
⎩
0, x j (t + ω) − x j (t) = γ j (t + ω) − γ j (t) = 0,
−sign{η j (t + ω) − η j (t)}, x j (t + ω) = x j (t), γ j (t + ω) �= γ j (t),
sign{x j (t + ω) − x j (t)}, x j (t + ω) �= x j (t)x j (t).

(16)

Thus, we have

v j (t){x j (t + ω) − x j (t)} = |x j (t + ω) − x j (t)|,
v j (t){η j (t + ω) − η j (t)} = −|η j (t + ω) − η j (t)|, j = 1, 2, . . . , n.

Similarly, we can choose w j (t) as follows:

w j (t) =
⎧⎨
⎩
0, y j (t + ω) − y j (t) = γ j (t + ω) − γ j (t) = 0,
sign{η j (t + ω) − η j (t)}, y j (t + ω) = y j (t), γ j (t + ω) �= γ j (t),
sign{y j (t + ω) − y j (t)}, y j (t + ω) �= y j (t).

(17)

We have

w j (t){y j (t + ω) − y j (t)} = |y j (t + ω) − y j (t)|,
w j (t){η j (t + ω) − η j (t)} = |η j (t + ω) − η j (t)|, j = 1, 2, . . . , n.

By the similar way utilized in Lemma 2, and combining the inequalities (14), (15), one has

d L(t)
dt ≤ δ

2εeδt , f or a.e. t ∈ [ 0,+∞) .

Then

‖z(t + ω) − z(t)‖ ≤ e−δt L(t) ≤ e−δt L(0) + e−δt
∫ t

0
L̇(s)ds.
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Note that L(0) is constant, and we can pick a sufficiently large T > 0 such that

e−δt L(0) <
ε

2
, f or t ≥ T .

Furthermore, we have

‖z(t + ω) − z(t)‖ ≤ e−δt L(0) + ε

2
< ε, f or t ≥ T .

The proof of the Lemma 3 is completed. ��
Theorem 1 Suppose that the Assumptions 1–3 are satisfied, then system (1) has at least one
almost periodic solution in the sense of (3).

Proof Let z(t) be any solution of the neural network system (3). We can select a sequence
{tk}k∈N satisfying limk→+∞ tk = +∞ and such that

∣∣∣ε1j (t, tk)
∣∣∣ ≤ 1

k
, f or t ∈ R, (18)

and
∣∣∣ε2j (t, tk)

∣∣∣ ≤ 1

k
, f or t ∈ R (19)

where j = 1, 2, . . . , n, ε1j (t, tk), ε2j (t, tk) are the auxiliary functions (12) and (13) defined
in the proof of Lemma 3.

It follows from (10) and (11) that there exists M∗ > 0 such that |z′
j (t)| ≤ M∗ for

a.e. t ∈ R. Thus, the sequence {z(t + tk)}k∈N is equi-continuous and uniformly bounded. By
the Arzela-Ascoli theorem and diagonal selection principle, we can choose a subsequence
of {tk} (still denoted by {tk}), such that z(t + tk) converges uniformly to some absolutely
continuous function z∗(t) on any compact interval [0, T ].

Next, we will prove that z∗(t) is an almost periodic solution of system (1) in the sense (3).
Firstly, we prove that z∗(t) is a solution of system (1) in the sense (3).

According to Lebesgue’s dominated convergence theorem, for any t ∈ R, we have

z∗
j (t + l) − z∗

j (t) = lim
k→+∞[z j (t + tk + l) − z j (t + tk)]

= lim
k→+∞

∫ t+l

t
ż j (θ + tk)dθ

= lim
k→+∞

∫ t+l

t
ẋ j (θ + tk)dθ + lim

k→+∞ i
∫ t+l

t
ẏ j (θ + tk)dθ

= lim
k→+∞

∫ t+l

t

[
−d j (θ)x j (θ + tk) +

n∑
k=1

aR
jk(θ) f R

k (xk(θ + tk))

−
n∑

k=1

aI
jk(θ)γk(θ + tk)

]
+

n∑
k=1

∫ ∞

0
f R
k (xk(θ + tk − s))ds K jk(θ, s)

+ u R
j (θ) + ε1j (θ, tk)]dθ

+ lim
k→+∞ i

∫ t+l

t

[
−d j (θ)y j (θ + tk) +

n∑
k=1

aR
jk(θ)γk(θ + tk)

+
n∑

k=1

aI
jk(θ) f R

k (xk(θ + tk))

]
+

n∑
k=1

∫ ∞

0
γk(θ + tk − s)ds K jk(θ, s)
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+ uI
j (θ) + ε2j (θ, tk)]dθ

=
∫ t+l

t

[
−d j (θ)x∗

j (θ) +
n∑

k=1

aR
jk(θ) f R

k (x∗
k (θ)) −

n∑
k=1

aI
jk(θ)γ ∗

k (θ)

+
n∑

k=1

∫ ∞

0
f R
k (x∗

k (θ − s))ds K jk(θ, s) + u R
j (θ)

]
dθ

+ i
∫ t+l

t

[
−d j (θ)y∗

j (θ) +
n∑

k=1

aR
jk(θ)γ ∗

k (θ) +
n∑

k=1

aI
jk(θ) f R

k (x∗
k θ)

+
n∑

k=1

∫ ∞

0
γ ∗

k (θ − s)ds K jk(θ, s) + uI
j (θ)

]
dθ

+ lim
k→+∞

∫ t+l

t

[
ε1j (θ, tk) + iε2j (θ, tk)

]
dθ

From (18) and (19), it is easy to conclude that

lim
k→+∞

∫ t+l

t

[
ε1j (θ, tk) + iε2j (θ, tk)

]
dθ = 0. (20)

Therefore, it implied that the following equations hold

x∗
j (t + l) − x∗

j (t) =
∫ t+l

t

[
−d j (θ)x∗

j (θ) +
n∑

k=1

aR
jk(θ) f R

k (x∗
k (θ)) −

n∑
k=1

aI
jk(θ)γ ∗

k (θ)

+
n∑

k=1

∫ ∞

0
f R
k (x∗

k (θ − s))ds K jk(θ, s) + u R
j (θ)

]
dθ

y∗
j (t + l) − y∗

j (t) =
∫ t+l

t

[
−d j (θ)y∗

j (θ) +
n∑

k=1

aR
jk(θ)γ ∗

k (θ) +
n∑

k=1

aI
jk(θ) f R

k (x∗
k (θ)

+
n∑

k=1

∫ ∞

0
γ ∗

k (θ − s)ds K jk(θ, s) + uI
j (θ)

]
dθ

Thence, z∗(t) = x∗(t) + iy∗(t) is a solution of system (1).
In the following, we claim that γ ∗

j (t) ∈ co[ f I
j (y∗

j (t))] for a.e. t ∈ R, Note that y(t)

converges to y∗(t) uniformly with respect to t ∈ R and co[ f I
j (y∗

j (t))] are upper semi-

continuous set-valued map, for any ε > 0, there exists N > 0 such that f I (y(t + tk)) ∈
B(co[ f I (y(t))], ε) for k > N and t ∈ R. Since that co[ f I (y(t))] is convex and compact,
then γ (t) ∈ B(co[ f I (y(t))], ε), which implies γ ∗

j (t) ∈ B(co[ f I
j (y j (t))], ε) holds for any

t ∈ R. Because of the arbitrary of ε, we know that γ ∗
j (t) ∈ co[ f I

j (y∗
j (t))] for a.e. t ∈ R.

Secondly, we prove that z∗(t) = x∗(t) + iy∗(t) is an almost periodic solution of systems
(1). By the Lemma 3, For any ε > 0, there exist T > 0 and l = l(ε) such that any interval
[α, α + l] contains an ω such that

‖z(t + ω) − z(t)‖ < ε
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hold for all t ≥ T . Therefore, there exists sufficiently large constant K > 0 such that

‖z(t + tk + ω) − z(t + tk)‖ < ε

holds for all k > K and t ∈ R. As k → +∞, we can conclude that‖z∗(t + ω) − z∗(t)‖ < ε

for all t ∈ R. This implies that z∗(t) is an almost periodic solution of the neural network
system (1). The proof is complete. ��

4 The Uniqueness and Global Exponential Stability Analysis for
Dynamical Networks

In this section, we will research the uniqueness and global exponential stability of almost
periodic solution obtained in Sect. 3 for the dynamical networks (1). By utilizing a suitable
Lyapunov function, some sufficient criteria are obtained to guarantee that networks has a
uniqueness and global exponential stability almost periodic solution.

Theorem 2 Suppose that the Assumptions 1–3 are satisfied, then system (1) has a unique
almost periodic solution, which is globally exponentially stable in the sense of (3).

Proof Let z(t) = x(t)+iy(t) and z̃(t) = x̃(t)+i ỹ(t) be any two solutions of neural network
system (1) associated with γ (t), γ̃ (t) and initial value pairs (ψ,μ), (ψ̃, μ̃) respectively. ��

Note that f I
j = g j + h j . There exists two vector functions η(t) = (η1(t), · · · , ηn(t))T ,

and η̃(t) = (̃η1(t), . . . , η̃n(t)) such that η j (t) + g j (y j (t)) = γ j (t), η̃ j (t) + g j (ỹ j (t)) =
γ̃ j (t), ( j = 1, 2, . . . , n), where η j (t) ∈ co[h j (y j (t))], η̃ j (t) ∈ co[h j (ỹ j (t))], for a.e. t ∈
(−∞, T ).

Construct the following candidate function:

W (t) = W1(t) + W2(t),

where

W1(t) =
n∑

j=1

ξ j e
δt
∣∣x j (t) − x̃ j (t)

∣∣+
n∑

j=1

φ j e
δt
∣∣y j (t) − ỹ j (t)

∣∣ ,

W2(t) =
n∑

j,k=1

ξ j

∫ ∞

0

∫ t

t−s

∣∣∣ f R
k (xk(ρ)) − f R

k (̃xk(ρ))

∣∣∣ eδ(ρ+s)dρ
∣∣d K jk(s)

∣∣

+
n∑

j,k=1

φ j

∫ ∞

0

∫ t

t−s
|gk(yk(ρ)) − gk(ỹk(ρ))| eδ(ρ+s)dρ

∣∣d K jk(s)
∣∣

+
n∑

j,k=1

φ j

∫ ∞

0

∫ t

t−s
|ηk(ρ) − η̃k(ρ)| eδ(ρ+s)dρ

∣∣d K jk(s)
∣∣ .

Now, let us calculate the derivative of W (t)with respect to t along the solution trajectories
of the systems (2a)–(2b) in the sense of (3) by using Lemma 1, we get that

ẋ j (t) − ˙̃x j (t) = − d j (t)
[
x j (t) − x̃ j (t)

]+
n∑

k=1

aR
jk(t)

[
f R
k (xk(t)) − f R

k (̃xk(t))
]

−
n∑

k=1

aI
jk(t) [gk(yk(t)) − gk (ỹk(t)) + ηk(t) − η̃k(t)]
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+
n∑

k=1

∫ ∞

0

[
f R
k (xk(t − s)) − f R

k (̃xk(t − s))
]

ds K jk(t, s)

ẏ j (t) − ˙̃y j (t) = − d j (t)
[
y j (t) − ỹ j (t)

]+
n∑

k=1

aI
jk(t)

[
f R
k (xk(t)) − fk (̃xk(t))

]

+
n∑

k=1

aR
jk(t) [gk(yk(t)) − gk (ỹk(t)) + ηk(t) − η̃k(t)]

+
n∑

k=1

∫ ∞

0
[gk(yk(t − s)) − gk (ỹk(t − s)))

+ ηR
k (t − s) − η̃k(t − s)

]
ds K jk(t, s)

Furthermore, we have

d
∣∣x j (t) − x̃ j (t)

∣∣
dt

= v j (t)
{

ẋ j (t) − ˙̃x j (t)
}
,

d
∣∣y j (t) − ỹ j (t)

∣∣
dt

= w j (t)
{

ẏ j (t) − ˙̃y j (t)
}

where v j (t) = sign{x j (t) − x̃ R
j (t)}, if x j (t) �= x̃ j (t); while v j (t) can be arbitrarily select in

{−1, 1}, if x j (t) = x̃ j (t). In particular, we can select v j (t) as follows:

v j (t) =
⎧⎨
⎩
0, x j (t) − x̃ j (t) = γ j (t) − γ̃ j (t) = 0,
−sign

{
η j (t) − η̃ j (t)

}
, x j (t) = x̃ j (t), γ j (t) �= γ̃ j (t),

sign
{

x j (t) − x̃ j (t)
}
, x j (t) �= x̃ j (t).

Thus, we have

v j (t)
{

x j (t) − x̃ j (t)
} = ∣∣x j (t) − x̃ j (t)

∣∣ , v j (t)
{
η j (t) − η̃ j (t)

} = − ∣∣η j (t) − η̃ j (t)
∣∣ .

Similarly, we can choose w j (t) as follows

w j (t) =
⎧⎨
⎩
0, y j (t) − ỹ j (t) = γ j (t) − γ̃ j (t) = 0,
sign

{
η j (t) − η̃ j (t)

}
, y j (t) = ỹ j (t), γ j (t) �= γ̃ j (t),

sign
{

y j (t) − ỹ j (t)
}
, y j (t) �= ỹ j (t).

We have

w j (t)
{

y j (t) − ỹ j (t)
} = ∣∣y j (t) − ỹ j (t)

∣∣ , w j (t)
{
η j (t) − η̃ j (t)

} = ∣∣η j (t) − η̃ j (t)
∣∣ .

Therefore,

Ẇ (t) = Ẇ1(t) + Ẇ2(t)

≤
n∑

j=1

eδt

⎧⎨
⎩(−d j (t) + δ)ξ j + ξ j a

R
j j (t)L f

j +
n∑

k=1,k �= j

ξk L f
j

∣∣∣aR
k j (t)

∣∣∣

+
n∑

k=1

φk L f
j

∣∣∣aI
k j (t)

∣∣∣+
n∑

k=1

ξk L f
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣
} ∣∣x j (t) − x̃ j (t)

∣∣

+
n∑

j=1

eδt

⎧⎨
⎩ξ j a

I
j j (t) +

n∑
k=1,k �= j

ξk

∣∣∣aI
k j (t)

∣∣∣+ φ j a
R
j j (t) +

n∑
k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣
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+
n∑

k=1

φk

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣
} ∣∣η j (t) − η̃ j (t)

∣∣+
n∑

j=1

eδt {(−d j (t) + δ)φ j

+φ j a
R
j j (t)Lg

j +
n∑

k=1,k �= j

φk

∣∣∣aR
k j (t)

∣∣∣ Lg
j +

n∑
k=1

ξk Lg
j

∣∣∣aI
k j (t)

∣∣∣

+
n∑

k=1

φk Lg
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣
} ∣∣y j (t) − ỹ j (t)

∣∣

≤
n∑

j=1

eδt�1
j (t)

∣∣x j (t) − x̃ j (t)
∣∣+

n∑
j=1

eδt�2
j (t)

∣∣y j (t) − ỹ j (t)
∣∣

+
n∑

j=1

eδtϒ1
j (t)

∣∣η j (t) − η̃ j (t)
∣∣ (21)

It follows form the Assumption 3 and (21) that one has

dW (t)

dt
≤ 0, f or a.e. t ∈ [0,+∞). (22)

Note that

‖z(t) − z̃(t)‖ =
n∑

j=1

ξ j
∣∣x j (t) − x̃ j (t)

∣∣+
n∑

j=1

φ j
∣∣y j (t) − ỹ j (t)

∣∣ . (23)

It follows from (22) and (23) that one has

‖z(t) − z̃(t)‖ ≤ e−δt W (t) ≤ e−δt W (0). (24)

Let M = M(ψ,μ, ψ̂, μ̂) = W (0), then ‖z(t) − z̃(t)‖ ≤ Me−δt . We know that there exists
an almost periodic solution for system (1) in the sense (3). Hence, one has

‖z(t) − z∗(t)‖ ≤ O(e−δt ). (25)

which implies that the almost periodic solution z∗(t) is globally exponentially stable. Finally,
we point that the almost periodic solution of system (1) is unique. Actually, suppose that z∗(t)
and u∗(t) are two almost periodic solutions of the system (1). Applying (25) again gives

‖z∗(t) − u∗(t)‖ ≤ O(e−δt ). (26)

From Levitan and Zhikov [45], we conclude that if z∗(t) and u∗(t) are two almost periodic
functions satisfying (25), then z∗(t) = u∗(t). Therefore, the almost periodic solution of
system (1) is unique.

5 Applications of the Main Results

In this section, we consider the complex-valued neural networks with discontinuous activa-
tions and dalyed as specific cases in the main theorem.

Due to any periodic function can be regard as an almost periodic function, all theworks also
applied to periodic case. Now, replacing Assumption 3, we assume the following assumption.
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Assumption 4 For each j = 1, 2, . . . , n, a jk(t), b jk(t), u j (t) are all continuous functions
on C, and d j (t) > 0 is continuous function in R. there exists ω > 0 such that

d j (t + ω) = d j (t), aR
jk(t + ω) = aR

jk(t), aI
jk(t + ω) = aI

jk(t)

u R
j (t + ω) = u R

j (t), u R
j (t + ω) = u R

j (t), bR
jk(t + ω) = bR

jk(t), bI
jk(t + ω) = bI

jk(t)

hold for all j, k = 1, 2, . . . , n and t ∈ R.

According to the Theorems 1 and 2, the following corollary can be obtained immediately.

Corollary 1 Suppose that the Assumptions 1 and 4 are satisfied, then system (1) has a unique
periodic solution, which is globally exponentially stable.

Furthermore, a constant can be regarded as a periodic functionwith any periodic. For example,
the following delayed complex-valued neural networks

dz j (t)

dt
= − d j z j (t) +

n∑
k=1

a jk fk(zk(t))

+
n∑

k=1

∫ ∞

0
fk(zk(t − s))ds K jk(t, s) + u j , j = 1, . . . , n (27)

Assumption 5 Assume that the delays τ jk(t) are continuous functions and satisfy τ ′
jk(t) < 1

for j, k = 1, 2, . . . , n. Moreover, there exist positive constant ξ j , φ j and d j > δ > 0, such
that � j < 0 and ϒ j (t) < 0, j = 1, 2, . . . , n,.

where

�
1
j (t) = (−d j + δ)ξ j + ξ j a

R
j j L f

j +
n∑

k=1,k �= j

ξk L f
j

∣∣∣aR
k j

∣∣∣+
n∑

k=1

φk L f
j

∣∣∣aI
k j

∣∣∣

+
n∑

k=1

ξk L f
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣ ,

�
2
j = (−d j + δ)φ j + φ j a

R
j j Lg

j +
n∑

k=1,k �= j

φk

∣∣∣aR
k j

∣∣∣ Lg
j +

n∑
k=1

ξk Lg
j

∣∣∣aI
k j

∣∣∣

+
n∑

k=1

φk Lg
j

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣m,

ϒ
1
j = ξ j a

I
j j +

n∑
k=1,k �= j

ξk

∣∣∣aI
k j

∣∣∣+ φ j a
R
j j +

n∑
k=1,k �= j

φk

∣∣∣aR
k j

∣∣∣+
n∑

k=1

φk

∫ ∞

0
eδs
∣∣d K kj (s)

∣∣ .

Corollary 2 Suppose that the Assumptions 1, 2, 5 are satisfied, then system (21) has a unique
periodic solution which is globally exponentially stable.

6 Numerical Example

In this section, a numerical example is provided to illustrate the validity of the theoretical
results obtained in Theorem 2.
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If ds K jk(t, s) = b jk(t) sin se−2sds. Hence, the delayed system (1) change to a systems
with discrete delays:

dz j (t)

dt
= − d j (t)z j (t) +

n∑
k=1

a jk(t) fk(zk(t))

+
n∑

k=1

b jk(t)
∫ +∞

0
sin se−2s fk(zk(t − τ jk(t)))ds

+ u j (t), j = 1, 2, . . . , n (28)

In this case, b jk(t) are almost periodic function for all j, k = 1, 2, . . . , n.

Example 1 Consider the complex-valued neural networks consisting of two subnetworks as
follows:

ż1(t) = − 4z1(t) +
[
(−0.5 + 0.01 sin

√
2t) + (0.01 sin

√
2t)i

]
f1(z1(t))

−[0.01 + 0.01i] f2(z2(t)) + (0.01 sin
√
2t)
∫ +∞

0
sin se−2s f1(z1(t − s))ds

+ (0.01 sin
√
2t)
∫ +∞

0
sin se−2s f1(z1(t − s))ds + (0.2 sin

√
2t + 0.1 cos

√
5t)

+ (0.2 sin
√
2t + 0.1 cos

√
5t)i

ż2(t) = − 6z2(t) +
[
0.01 sin

√
2t + (0.01 cos

√
2t)i

]
f1(z1(t))

−[0.4 + (0.01 cos
√
2t)i] f2(z2(t))

+ 0.01 cos
√
5t
∫ +∞

0
sin se−2s f1(z1(t − s))ds

− 0.01 sin t
∫ +∞

0
sin se−2s f2(z2(t − s))ds

+ (0.3 cos
√
3t − 0.1 sin t) + (0.3 cos

√
3t − 0.1 sin t)i (29)

where discontinuous activation functions f = f R + f I i ,

f R(x) = x − 0.1, f I (y) =
⎧
⎨
⎩

−1, y ∈ (−∞,− 1)
1
2 , y ∈ (− 1, 1)
1 y ∈ (1,+∞)

It easy to see that f R
k (·), f I

k (·) are local Lipschitz with L f
k = Lg

k = 2. We observed
d1(t) = 4, d2(t) = 6, aR

11 = −0.5 + 0.01 sin
√
2t, aI

11(t) = 0.01 sin
√
2t, aR

12(t) =
−0.01, aI

12(t) = −0.01, aR
21(t) = 0.01 cos

√
2t, aI

21(t) = 0.01 sin
√
2t, aR

22(t) = −0.4,
aI
22(t) = −0.01 cos

√
3t, b11(t) = 0.01 sin

√
2t, b12(t) = −0.01 sin

√
2t, b21(t) =

0.01 cos
√
5t, b22(t) = 0.01 sin t, u R

1 (t) = 0.02 sin
√
2t + 0.01 cos

√
5t, uI

1(t) =
0.02 sin

√
2t + 0.01 cos

√
5t, u R

2 (t) = 0.03 cos
√
3t − 0.01 sin t, uI

2(t) = 0.03 cos
√
3t −

0.01 sin t, |d K jk(s)| = 0.01e−2sds, satisfied with Assumption 2. Let δ = 0.01, ξ1 = ξ2 =
φ1 = φ2 = 1, we have �1

1 < 0, �1
2 < 0, �2

1 < 0, �2
2 < 0, ϒ1

1 < 0, ϒ1
2 < 0. According

to the Theorem 1 and 2, the system (29) has a unique global almost periodic solution and
exponential stability. The dynamical behavior of system (29) are illustrated in Figs. 1, 2, 3
and 4, where we give five initial valued of system (29).
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Fig. 1 Time-domain behavior of the state variable Rez1 for system (29) with five random initial conditions
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Fig. 2 Time-domain behavior of the state variable I mz1 for system (29) with five random initial conditions

Remark 1 When aI
jk(t) = bI

jk(t) = 0 and fk(·) are real functions, the system (1) becomes
a real-valued system as in [33]. In this paper, we firstly investigate the uniqueness and sta-
bility of almost periodic solution for delayed complex-valued neural networks with Almost
periodic coefficients and discontinuous activations. It is a special kind of discontinuous
complex-valued activation functions in which real parts and imaginary parts are discontin-
uous. Therefore, complex-valued neural networks are more suitable than real-valued neural
networks.

Remark 2 In this paper, It is different from Article [42], which assumption 2 are no longer
monotonic. Firstly, The almost periodic solution is proposed in the complex domain, which
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Fig. 3 Time-domain behavior of the state variable Rez2 for system (29) with five random initial conditions
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Fig. 4 Time-domain behavior of the state variable I mz2 for system (29) with five random initial conditions

is more feasible in practice compared to the periodical scheme. Furthermore, we consid-
ered decomposing complex-valued neural networks into real-valued, which the activation
function has continuous real part and discontinuous imaginary. Secondly, the decomposed
activation function is not assumed monotonous. Under these circumstances, we reconsider
almost periodic dynamical behaviors by generalized Lyapunov function method. Lastly, the
almost periodic dynamics for complex-valued neural networks with discontinuous functions
is investigated, and some judgment conditions are obtained. the issue of time-varying delay
is also considered, which make our research have more general significance.
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7 Conclusion

In past decades, the theory framework of the discontinuous neural networks and its application
was set up in practice. In this article, we present the almost periodic solution of the complex-
valued neural networks with discontinuous activations depending on the concept of Fillipov
solution. Under the assumptions of the complex-valued activation functions decomposed
into continuous real part and discontinuous imaginary part, we validated that the exponential
convergence of the almost periodic solution by using the diagonal dominant principle, and
non-smooth analysis theory with generalized Lyapunov approach. Furthermore, we achieved
the existence, uniqueness and global stability of almost periodic solution for the complex-
valued neural networks. Finally, a numerical example demonstrates the effectiveness of our
obtained theoretical results.
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