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Abstract In this paper, a class of Bidirectional Associative Memory neural networks with
time-varying weights and continuously distributed delays is discussed. Sufficient conditions
are obtained for the existence and uniqueness of weighted pseudo-almost periodic solution
of the considered model and numerical examples are given to show the effectiveness of the
obtained results.
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1 Introduction

Memory is a crucial term which goes side to side with Artificial Neural Networks (ANN).
Besides, natural neural networks are usually connected inmore complex structures, like recur-
rent synaptic connections. Unfortunately, Feed Forward Networks (FFNs) lack of dynamic
memory required for certain non-linear tasks. On the other hand, in addition to feed forward
links, Recurrent ANNs are featured by feedback connections between their layers Ref. [27].

So, Recurrent Neural Networks (RNN) were originally developed as a way of extending
neural networks to sequential data. The addition of recurrent connections allows RNNs to
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Fig. 1 General architecture of a BAM network with mixed delays

make use of previous context, as well as making them more robust and suited for dynamical
systems modeling. The rich dynamics created by the recurrent connections enable signals to
be spread in the different layers. Hence, the capability of RNN to hold non-linear systems
behavior is revealed.

With regard to practical exploits, RNN have excelled in tasks that require good or working
memory, for example for time series prediction used in financial dataset to predict the future
stock market price or vertical position of a levitated magnet [14], or for short-Term power
production of hydropower plants [21]. RNNwere also used for path planning for autonomous
robot [9] or for the estimation of the bipeds next position at each time and to achieve a human-
like natural walking [2].

Therefore, RNN are an important class of computational models inspired from the brain
structure. Hence, diverse types of RNNs can be distinguished such as Hopfield, Elman,
Long short-termmemory (LSTM), Echo State Network (ESN) and Bidirectional Associative
Memory (BAM).

The BAM neural network models have been extensively analysed and studied as a key
class ofRNN (see Fig. 1). Theywere first introduced byKosko [20]. TheBAMneural network
is composed of neurons arranged in two layers, the X−layer and Y−layer.

The neurons in one layer are fully interconnected to the neurons in the other layer. Through
iterations of forward and backward information flows between the two layer, it performs a
two-way associative search for stored bipolar vector pairs and generalize the single-layer
autoassociative Hebbian correlation to a two-layer pattern-matched heteroassociative circuit.
Therefore, this class of networks possesses good application prospects in the area of pattern
recognition, signal and image processing, robotics, etc (see [5] and [26]).

Bidirectional recurrent neural networks (BRNN) can offer an elegant solution for classi-
fication and time series prediction (see [17] and [28]). The basic idea of BRNNs is to present
each training sequence forwards and backwards to two separate recurrent hidden layers, both
of them are connected to the same output layer.

This structure provides the output layer with complete past and future context for every
point in the input sequence. BRNNs have previously given improved results in various
domains, notably protein secondary structure prediction (see [17] and [34]) and speech pro-
cessing [28]. Besides, we notice that the proposed algorithm for BAM architecture clearly
outperforms the Multilayered feed-forward neural network (MLFNN) architectures [30].

The stability of BAMneural networks with delays has been extensively studied; interested
readers may refer to the works of Chen, Li, Liao and Shaohong (see [11,22,23] and [29]).

123



On the Weighted Pseudo-Almost Periodic Solution for BAM… 851

It is well-known, that there exist time delays in the information processing of neurons
due to various reasons. In neural networks, time delays make the dynamic behaviors more
sophisticated, and may destabilize the equilibria and admit periodic oscillations, bifurcation
and chaos. Although delays arise frequently in practical applications. But, it is difficult to
measure them precisely.

Liao et al. [23] study the dynamical characteristics of hybrid BAM neural networks
with constant transmission delays. They employed the Lyapunov function and Halanay-type
inequalities to derive the delay-independent sufficient conditions. They have, also, inves-
tigated the exponential stability associated with temporally uniform external inputs. Li et
al. [22] deal with a class of memristor-based BAMneural networks with time-varying delays.

To the best of our knowledge, few authors have considered oscillatory solutions for BAM
networks with both discrete and continuously delays. Hence, the main purpose of this paper
is to study the existence and uniqueness for the Weighted Pseudo-Almost Periodic (WPAP)
solutionofBAMnetworkswith delays.Basedon afixedpoint theoremand analysis technique,
several novel sufficient conditions are obtained ensuring the existence and uniqueness of the
WPAP solution.

Obviously, our results improve and extend works in which authors investigate the periodic
and almost periodic solutions of BAM (see [11,25,29] and [35]). In addition, the method
used here is also different to that in the work of Arik in Ref. [4] and the main results are new
and complement previously known results.

The outline of the paper is divided into seven sections. In Sect. 2, we introduce some
necessary definitions and the basic properties of the continuous functions and the weighted
pseudo-almost periodicity. In Sect. 3, the new BAM model with time-varying weights and
continuously distributed delays is explained and will be be used later. The existence and
uniqueness of the WPAP of Eq. (1) in the suitable convex set of PAP(R, R

k, �) are proved
in Sect. 4. Numerical examples are given in Sect. 5 to illustrate the effectiveness of our
results. In Sect. 6, a comparative study with previous works is discussed. Finally, we draw
conclusions in Sect. 7.

2 Preliminaries: The Functions Spaces

∀k ∈ N, let BC(R, R
k) denote the collection of bounded continuous functions.

Definition 1 Let k ∈ N. A function f : R −→ R
k is continuous,

if ∀ε > 0, it exists lε > 0 such that

∀α ∈ R, ∃δ ∈ [α, α + lε] , ‖ f (δ + ·) − f (·)‖ ≤ ε.

In this work, AP(R, R
k)will denote the set of all Almost Periodic (AP)R

k-valued functions.
It is well-known that the set AP(R, R

k) is a Banach space with the supremum norm. We
refer the reader to Ref. [12] and [15] for the basic theory of almost periodic functions and
their applications.

In order to construct new spaces and new generalizations of the concept of almost peri-
odicity, the idea consists of enlarging the so-called ergodic component, with the help of a
weighted measure dμ (x) = � (x) dx , where � : R −→ ]0,+∞[ is a locally integrable
function over R, which is commonly called weight. Roughly speaking, let U denote the
collection of all functions (weights) � : R −→ ]0,+∞[ which are locally integrable over R

such � (x) > 0 for almost each x ∈ R. For � ∈ U and for r > 0, we set
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m(r, �) :=
r∫

−r

ρ(x)dx

Notice that if � (x) = 1, then

m(r, �) :=
r∫

−r

ρ(x)dx = 2r

Throughout this paper , the sets of weights U∞ and UB stand respectively for

U∞ :=
{
� ∈ U, lim

r→∞m(r, �) = +∞
}

and

UB :=
{
� ∈ U, � is bounded and inf

x∈R �(x) > 0

}
.

Obviously, UB ⊂ U∞ ⊂ U, with strict inclusions. To introduce those weighted pseudo-
almost periodic functions,we need to define the “weighted ergodic” space PAP0

(
R, R

k, �
)
.

Hence, WPAP functions will then appear as perturbations of almost periodic functions by
elements of PAP0

(
R, R

k, �
)
. More precisely, for a fixed � in U∞ let define

PAP0
(
R, R

k , �
)

=
⎧⎨
⎩ f ∈ BC

(
R, R

k
)

, lim
T→+∞

1

m(T, �)

T∫

−T

‖ f (t)‖ � (t) dt = 0

⎫⎬
⎭ .

Notice that

PAP0
(
R, R

k
)

=
⎧⎨
⎩ f ∈ BC

(
R, R

k
)

/ lim
L→+∞

1

2L

L∫

−L

‖ f (t)‖ dt = 0

⎫⎬
⎭

So,

PAP0
(
R, R

k , 1
)

= PAP0
(
R, R

k
)

.

Clearly, we have the following hierarchy

AP
(
R, R

k
)

� PAP
(
R, R

k
)

� PAP
(
R, R

k , �
)

.

Definition 2 Let � ∈ U∞.A function f ∈ BC
(
R, R

k
)
is calledWPAP if it can be expressed

as f = g + φ, where g ∈ AP
(
R, R

k
)
and φ ∈ PAP0

(
R, R

k , �
)
. The collection of such

functions will be denoted by PAP
(
R, R

k , �
)
. The functions g and φ appearing above are

respectively called the almost periodic and the weighted ergodic perturbation components
of f .

Notice that the space PAP
(
R, R

k , �
)
is a closed subspace of

(
BC

(
R, R

k
)
, ‖·‖∞

)
and

consequently PAP
(
R, R

k, �
)
is a Banach space (For more details see [12] and [18]).
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3 The Model

Let us consider the following new model for (BAM) neural networks

·
xi (t) = − ai xi (t) +

m∑
j=1

ci j (t) f j (y j
(
t − τ j i

)
) +

m∑
j=1

di j (t)

t∫

−∞
Ki j (t − s) f j (y j (s))ds + Ii (t) ,

·
y j (t) = − b j y j (t) +

n∑
i=1

w j i (t) gi (xi
(
t − σi j

)
) +

n∑
i=1

α j i (t)

t∫

−∞
N ji (t − s) gi (xi (s))ds + J j (t) (1)

where i = 1, ..., n and j = 1, ...,m correspond to the number of neurons in X -layer and
Y -layer, respectively, xi (·), y j (·), are the activation of the i-th and j-th neurons respectively
ci j (·) , di j (·) , α j i (·). f j (y j

(
t − τ j i

)
) and f j (y j (s)) are respectively the activation functions

of j-th neuron at time t with dicrete delay τ and without delay.
gi (xi

(
t − σi j

)
) and gi (xi (s)) are respectively the activation functions of i-th neuron at

time t with dicrete delay and without delay.
w j i (t) are connection weights at the time t, and Ii (t) and J j (t) denote the external inputs

at time t . ai (t) (i ∈ {1, · · · , n}) , b j (t) ( j ∈ {1, · · · ,m}) represent the rate with which the
i-th neuron and j-th neuron will reset its potential to the resting state in isolation when
disconnected from the network and external inputs at the time t , respectively.

Ki j (·) and N ji (·) denoted the refractoriness of the i-th neuron and j-th neuron after they
have fired or responded.

Pose τ = max 1≤i≤n
1≤ j≤m

(
τ j i , σi j

)
, let the initial conditions associated with Eq. (1) be of the

form {
xi (t) = ϕi (t) t ∈ [−τ, 0]
y j (t) = ψ j (t) t ∈ [−τ, 0]

where ϕi (·) and ψ j (·) are assumed to be weighted pseudo-almost periodic functions on R.
For arbitrary vector:

(x(t), y(t)) := (x1(t), · · · , xn(t), y1(t), · · · , ym(t))T ∈ R
n+m

define the norm: ‖(x, y)‖ = ‖x‖ + ‖y‖ where,

‖x‖ = sup
t∈R

max
1≤i≤n

{|xi (t)|}

and
‖y‖ = sup

t∈R
max

1≤ j≤m

{∣∣y j (t)∣∣} .

Let us consider the following assumptions:

(H1) ∀ i, j ; b j > 0.
(H2) ∀ i, j ; the following functions: Ii (.) , J j (.) , ci j (.) , di j (.) , w j i (.) , α j i (.) are
weighted pseudo-almost periodic.
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(H3) ∀i, j ; there exist positive constant numbers L f
j , Lg

i > 0 such that ∀ x, y ∈ R

∣∣ f j (x) − f j (y)
∣∣ < L f

j |x − y| , |gi (x) − gi (y)| < Lg
i |x − y| .

Furthermore, we suppose that f j (0) = gi (0) = 0, ∀ i, j .
(H4) ∀ i, j ; the delay kernels Ki j : [0,+∞[−→ [0,+∞[ and N ji : [0,+∞[−→
[0,+∞[ are continuous, integrable and there exist non negative constants ki j , n ji such
that +∞∫

0

Ki j (s) ds ≤ ki j and

+∞∫

0

N ji (s) ds ≤ n ji .

(H5) Let � ∈ U∞ and assume that for each τ ∈ R the functions

s 
−→
(

� (s + τ)

� (s)

)
< ∞ and s 
−→

(
m (s + τ, �)

m(s, �)

)
< ∞

are bounded.

4 Existence and Uniqueness of the WPAP Solution

Here, we study the existence and uniqueness of the weighted pseudo-almost periodic solution
of Eq. (1). Following along the same proof of [1] and [13] it follows that:

Lemma 1 Under (H5) the space P AP
(
R, R

k , �
)
is translation invariant.

Lemma 2 If ϕ,ψ ∈ PAP(R, R, �), then ϕ × ψ ∈ PAP(R, R, �).

Theorem 1 Suppose that assumptions (H3) − −(H5) hold and
∀ i, j; xi (·), y j (·) ∈ PAP(R, R, �)

φi j : t 
−→
t∫

−∞
Ki j (t − s) f j (y j (s))ds belongs to P AP(R, R, �)

and

ψ j i : t 
−→
t∫

−∞
N ji (t − s) gi (xi (s))ds belongs to P AP(R, R, �).

Theorem 2 Suppose that assumptions (H1) − −(H5) hold and

r = max⎛
⎝ max

1≤i≤n

⎛
⎝
∑m

j=1

(∣∣ci j ∣∣+ ∣∣di j ∣∣ ki j ) L f
j

|ai |

⎞
⎠ , max

1≤ j≤m

(∑n
i=1

(∣∣w j i
∣∣+ ∣∣α j i

∣∣ n ji
)
Lg
i∣∣b j

∣∣
)⎞
⎠ < 1.

Then, the BAM neural network of Eq. (1) has a unique weighted pseudo-almost periodic
solution in the convex set.

B = B((x0, y0) , R)

= {
(x, y) ∈ PAP(R, R

n+m, �), ‖(x, y) − (x0, y0)‖ ≤ R
}
,
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where

(x0, y0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t∫

−∞
e−(t−s)a1 I1 (s) ds

...
t∫

−∞
e−(t−s)an In (s) ds

t∫

−∞
e−(t−s)b1 J1 (s) ds

...
t∫

−∞
e−(t−s)bm Jm (s) ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

R =
(
max1≤i≤n

{ |Ii |∞
ai

}
+ max1≤ j≤m

{ |J j |∞
b j

})
r

(1 − r)
.

Proof It is clear that,

∣∣∣∣∣∣
t∫

−∞
e−(t−s)ai Ii (θ) dθ

∣∣∣∣∣∣ = max
1≤i≤n

{ |Ii |∞
ai

}

and ∣∣∣∣∣∣
t∫

−∞
e−(t−s)b j J j (θ) dθ

∣∣∣∣∣∣ = max
1≤ j≤m

{∣∣J j ∣∣∞
b j

}
.

Therefore,

‖(x0, y0)‖ = max
1≤i≤n

{ |Ii |∞
ai

}
+ max

1≤ j≤m

{∣∣J j ∣∣∞
b j

}

and
‖(x, y)‖ ≤ (‖(x, y) − (x0, y0)‖ + ‖(x0, y0)‖) .
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Now, let us consider the operator Γ : R
n+m −→ R

n+m defined by

Γ (x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t∫

−∞
e−(t−ξ)a1F1 (ξ) dξ

...
t∫

−∞
e−(t−ξ)an Fn (ξ) dξ

t∫

−∞
e−(t−ξ)b1G1 (ξ) dξ

...
t∫

−∞
e−(t−ξ)bmGm (ξ) dξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

Fi (ξ) =
m∑
j=1

ci j f j (y j
(
ξ − τi j

)
) +

m∑
j=1

di j

ξ∫

−∞
Ki j (t − θ) f j (y j (θ))dθ + Ii (ξ)

and

G j (ξ) =
n∑

i=1

w j i gi (xi
(
ξ − σ j i

)
) +

n∑
i=1

α j i

ξ∫

−∞
N ji (t − θ) gi (xi (θ))dθ + J j (ξ) .

First, we shall prove that the operator Γ is a self-mapping from B to B. In fact, for any
(x, y) ∈ B, we have

‖Γ (x, y) − (x0, y0)‖ = sup
t∈R

max
1≤i≤n

t∫

−∞

∣∣∣∣∣∣e
−(t−s)ai

⎛
⎝ m∑

j=1

ci j f j (y j
(
ξ − τ j i

)
) +

m∑
j=1

di j

ξ∫

−∞
Ki j (t − θ) f j (y j (θ))dθ

⎞
⎠ dξ

∣∣∣∣∣∣
+ sup

t∈R
max

1≤ j≤m

t∫

−T

∣∣∣∣∣e−(t−s)b j

(
n∑

i=1

w j i gi (xi
(
ξ − σi j

)
) +

n∑
i=1

α j i

ξ∫

−∞
N ji (t − θ) gi (xi (s))ds

⎞
⎠ dξ

∣∣∣∣∣∣

≤ r

⎡
⎢⎣
r
(
max1≤i≤n

{ |Ii |∞
ai

}
+ max1≤ j≤m

{ |J j |∞
b j

})

(1 − r)
+ max

1≤i≤n

{ |Ii |∞
ai

}
+ max

1≤ j≤m

{∣∣J j ∣∣∞
b j

}]

≤
(
max1≤i≤n

{ |Ii |∞
ai

}
+ max1≤ j≤m

{ |J j |∞
b j

})
r

(1 − r)
= R.
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In view of (H3), for any X = (x, y),U = (u, v) ∈ R
n+m , we have

‖Γ (X) − Γ (U )‖ ≤

sup
t∈R

max
1≤i≤n

t∫

−∞

∣∣∣∣∣∣e
−(t−ξ)ai

⎛
⎝ m∑

j=1

ci j
(
f j (y j

(
ξ − τ j

)
) − f j (v j

(
ξ − τ j

)
)
)

+
m∑
j=1

di j

⎛
⎝

ξ∫

−∞
Ki j (ξ − θ)

(
f j (x j (θ)) − f j (u j (θ))

)
dθ

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ dξ

+ sup
t∈R

max
1≤ j≤m

t∫

−∞

∣∣∣∣∣e−(t−ξ)b j

(
n∑

i=1

w j i (gi (yi (ξ − τi )) − gi (vi (ξ − τi )))

+
n∑

i=1

wi1

⎛
⎝

ξ∫

−∞
N ji (ξ − θ) (gi (xi (θ)) − gi (xi (θ))) dθ

⎞
⎠
⎞
⎠
∣∣∣∣∣∣ dξ

≤ max
1≤i≤n

⎛
⎝
∑m

j=1

(∣∣ci j ∣∣+ ∣∣di j ∣∣ ki j ) L f
j

|ai |

⎞
⎠ ‖y − v‖

+ max
1≤ j≤m

(∑n
i=1

∣∣w j i
∣∣+ ∣∣α j i

∣∣ n ji
)
Lg
i∣∣b j

∣∣ ‖x − u‖
< r ‖X −U‖ ,

which proves that Γ is a contraction mapping. Then, in virtue of the Banach fixed point
theorem, Γ has a unique fixed point which is corresponding to the solution of Eq. (1) in
B ⊂PAP(R, R

n+m, �).

5 Numerical Examples

Example 1 Let � (t) = et . Consider the model of Eq. (1) with n = m = 2 where

a1 = 0.01, a2 = 0.05, b1 = 0.05, b2 = 0.02.

ci j (t) =
⎛
⎝ 0.1

(
cosπ t + e−t

)
0.1

(
cos t + cos

√
2t
)

0.05
(
sin t + sin

√
2t
)

0.1
(
cos t + e−t

)
⎞
⎠

di j (t) =
(

0.05
(
1 + e−t

)
0.1 cos

√
2t

0.02
(
sin t + sin

√
2t
)
0.05

(
cos t + e−t

)
)

w j i (t) =
⎛
⎝ 0.1 + 0.1e−t 0.1

(
cos t + cos

√
2t
)

0.1
(
sin t + sin

√
2t
)

0.1
(
cos t + e−t

)
⎞
⎠

α j i (t) =
(

0.05
(
1 + e−t

)
0.1 cos

√
2t

0.02
(
sin t + sin

√
2t
)
0.05

(
cos t + e−t

)
)
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Fig. 2 Curves of the weighted pseudo-almost periodic solution for BAM networks with time-varying coef-
ficients and mixed delays a (τ = 2, a1 = 0.01, and a2 = 0.05), b (τ = 2, b1 = 0.05 and b2 = 0.02 )

and ∀ x ∈ R,

f j (x) = gi (x) = |x + 1| − |x − 1|
2

.

Then, L f
j = Lg

i = 1 and

r = max

(
max
1≤i≤2

(∑2
j=1

(∣∣ci j ∣∣+ ∣∣di j ∣∣ ki j )
|ai |

)
, max
1≤ j≤2

(∑2
i=1

(∣∣w j i
∣∣+ ∣∣α j i

∣∣ n ji
)

∣∣b j
∣∣

))
< 1

Therefore, all conditions of Theorem 2 are satisfied, then themodel of example 1 has a unique
WPAP solution (see Fig. 2).

Example 2 Let us consider the model of Eq. (1) with n = m = 3 where (a1, a2, a3)T =
(3, 5, 4) , (b1, b2, b3)T = (7, 3, 5) .
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ci j (1 ≤ i, j ≤ 3) =
⎛
⎝ 0.5 0.6 0.1
0.2 0.2 0.1
0.3 0.2 0.1

⎞
⎠ ,

di j (1 ≤ i, j ≤ 3) =
⎛
⎝ 0.5 0.6 0.1
0.3 0.3 0.1
0.2 0.3 0.1

⎞
⎠ ,

w j i (1 ≤ i, j ≤ 3) =
⎛
⎝ 0.2 0.1 0.3
0.2 0.2 0.3
0.5 0.2 0.2

⎞
⎠ ,

α j i (1 ≤ i, j ≤ 3) =
⎛
⎝ 0.5 0.1 0.3
0.2 0.3 0.3
0.5 0.2 0.2

⎞
⎠

and ∀ x ∈ R,

f j (x) = gi (x) = |x + 1| − |x − 1|
2

.

Clearly, L f
j = Lg

i = 1 and

r = max

(
max
1≤i≤3

(∑3
j=1

(∣∣ci j ∣∣+ ∣∣di j ∣∣ ki j )
|ai |

)
, max
1≤ j≤3

(∑3
i=1

(∣∣w j i
∣∣+ ∣∣α j i

∣∣ n ji
)

∣∣b j
∣∣

))

r = max(max( 1.2+1.2
3 , 0.5+0.7

5 , 0.6+0.6
4 ),max( 0.6+0.9

7 , 0.7+0.8
3 , 0.9+0.9

5 )) r = max(0.8, 0.5)
= 0.8 < 1.

Thus, it follows from Theorem 2 that the model of example 2 has a uniqueWPAP solution
(see Fig. 3).

6 Comparison and Discussion

In previous papers ([1] and [8]) a single-layer recurrent neural networks with delays was
studied by the authors. In particular, the attractivity and exponential stability of the PAP
solution of RNNs are established and discussed. But, from the viewpoint of applications,
the study on the dynamics such as stability and almost periodicity for the recurrent neural
networks cannot be replaced by the study on dynamics for BAM neural networks.

First, it should be mentioned that the method used in the proof of this paper is original
and essentially new since this class of functions is seldom considered for neural networks.

One can remark that our results need only the activations functions f j and g j satisfy the
hypothesis (H2), that is the Lipschitz condition, not requiring the functions f j and g j to be
bounded and monotone nondecreasing. Therefore, our results are novel and have some sig-
nificance in theories as well as in applications of almost-periodic oscillatory neural networks.

When ∀ i, j, ci j = w j i = 0 system (1) can be reduced to the model of Ref. [24], and
when ∀ i, j, di j = α j i = 0 system (1) degenerates to the model investigated by Chen (see
Ref. [10] and [11]).

On the other hand, if ∀ i, j, τi j = σi j = 0 system (1) degenerates to the model studied by
Song and Cao [31]. Besides, our condition (H4) dealing with the kernel is weaker than (H2)

in Ref. [31]. Further, our results can be seen as a generalization and improvement of [24] since
their model assumes that di j (·) = α j i (·) = 0 and the results of the previous papers ([24] and
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Fig. 3 Curves of the weighted pseudo-almost periodic solution for BAM networks with time-varying coeffi-
cients and mixed delays (a) (τ = 2, a1 = 2, a2 = 5 and a3 = 4) (b)(τ = 2, a1 = 7, a2 = 3 and a3 = 5)

[25]) considered the periodic and almost periodic case with periodic environment. In [10],
system (1.1) is considered and two sufficient conditions guaranteeing the existence and the
attractivity of the solution are derived. Compared with the results obtained in Ref. [10], our
conditions in Theorem 1 is less restrictive than those in Ref. [10]. In fact, in Theorem 2, we
do not require the condition in Ref. [10]: In addition, the method used here is also different
to that in [10]. Finally, it should be interesting to adapt the technics of this paper to the BAM
neural networks models of Xu et al. [32] and [33].

7 Conclusion

In this paper, a generalized model of (BAM) neural networks with mixed delays have been
studied. Some new sufficient conditions for the existence and uniqueness ofweighted pseudo-
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almost periodic solution of a class of two-layer (BAM) neural networks are given. Note that
we just require that the activation function is globally Lipschitz continuous, which is less
conservative and less restrictive than the monotonic assumption in previous results. The
method is very concise and the obtained results are new and they complement previously
known results. Finally, examples are given to illustrate our theory. The results obtained in
this paper are completely new and complement the previously known works of (Ref. [1,3]
and [7]). Besides, the study of the stability (asymptotic, exponential, ...) of the solution of
the Theorem 2 would be an excited subject. We are starting to took closely at this issue via
new methods.
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