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Abstract In this paper, a class of shunting inhibitory cellular neural networks model with
multi-proportional delays is proposed. Based on the contractionmapping fixed point theorem
and differential inequality techniques, some sufficient conditions are obtained for the exis-
tence and global exponential stability of pseudo almost periodic solutions for this class of
neural networks. In addition, an example and its numerical simulations are given to illustrate
our results.
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1 Introduction

Aswe known, time delays inevitably exist in biological and artificial neural networks because
of the finite switching speed of neurons and amplifiers [1],which can also affect the stability of
neural network systems andmay lead to some complex dynamic behaviors such as oscillation,
chaos and instability. In reality, time delays involving in neural networks may be proportional
in theory, that is to say, the proportional delay function τ(t) = t − qt is a monotonically
increasing function with the increase of time t > 0, where q is a constant and satisfies
0 < q < 1. In particular, the proportional delay is one of the many objective-existent delay
types such as the proportional delay usually is required in web quality of service routing
decision, which is because it is convenient to control the networks running time according
to the network allowed delays [2–7]. Moreover, the systems with proportional delays have
many interesting applications, for example, collection of current by the pantograph of an
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electric locomotive [8], electrodynamics [9], nonlinear dynamics [10,11], and probability
theory on algebraic structures [12].

On other hand, in the aspect of studying the almost periodic problems for dynamic sys-
tems and its related topics, the existence of almost periodic, asymptotically almost periodic,
pseudo-almost periodic solutions become the most attractive hot issues in qualitative the-
ory of differential equations due to their applications, especially in biology, economics and
physics (see [13–15]). In particular, people have paid much attention to the study of existence
and stability of almost periodic solutions and pseudo almost periodic solutions for shunting
inhibitory cellular neural networks (SICNNs)with time-varying delays and distributed delays
because of its successful applications in variety of areas such as signal processing, pattern
recognition, chemical processes, nuclear reactors, biological systems, static image process-
ing, associative memories, optimization problems and so on (see [16–28] and the references
cited therein). However, to the best of our knowledge, there is no result on the existence of
pseudo almost periodic solutions for SICNNs with proportional delays.

Motivated by the above discussions, the main purpose of this paper is to establish some
sufficient conditions on the existence and exponential stability of pseudo almost periodic
solutions for the following SICNNs with multi-proportional delays:

⎧
⎨

⎩

x ′
i j (t) = −ai j (t)xi j (t) − ∑

Ckl∈Nr (i, j)
Ckl
i j (t) f (xkl(qkl t))xi j (t) + Li j (t),

xi j (s) = ϕi j (s), s ∈ [qi j t0, t0], t0 > 0,
(1.1)

for t ≥ t0 and i j ∈ J := {11, . . . , 1n, 21, . . . , 2n, . . . ,m1, . . . ,mn}, where Ci j denotes the
cell at the (i, j) position of the lattice, the r -neighborhood Nr (i, j) of Ci j is

Nr (i, j) = {Ckl : max(|k − i |, |l − j |) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n}.
xi j is the activity of the cellCi j , Li j (t) is the external input toCi j , ai j (t) represents the passive
decay rate of the cell activity, Ckl

i j (t) is the connection or coupling strength of postsynaptic
activity of the cell transmitted to the cell Ci j , and the activity function f (xkl) is a continuous
function representing the output or firing rate of the cell Ckl , qi j , i j ∈ J, are proportional
delay factors and satisfy 0 < qi j ≤ 1, and qi j t = t − (1− qi j )t , in which τi j (t) = (1− qi j )t
is the transmission delay function, and (1 − qi j )t → ∞ as qi j �= 1, t → ∞, ϕi j (s) denotes
the initial value of xi j (s) at s ∈ [qi j t0, t0], and ϕi j ∈ C([qi j t0, t0],R). It can be shown by
the method-of-steps given in Hale and Verduyn Lunel [29] that the solution of (1.1) exists
and is unique.

The remaining of this paper is organized as follows. In Sect. 2, we give some basic
definitions and lemmas, which play an important role in Sect. 3 to establish the existence of
pseudo almost periodic of (1.1). Here we also study the global exponential stability of pseudo
almost periodic solutions. The paper concludes with an example to illustrate the effectiveness
of the obtained results by numerical simulation.

2 Preliminaries

In this section, we shall first recall some basic definitions, lemmas which are used in what
follows.

Let l be a positive integer, we denote by R
l
(
R = R

1
)
the set of all l−dimensional real

vectors (real numbers). For any {xi j } = (x11, x12, . . . , xmn) ∈ R
mn , we let |x | denote the

absolute-value vector given by |x | = {|xi j |}, and define ‖x‖ = maxi j∈J |xi j |. A matrix
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or vector A ≥ 0 means that all entries of A are greater than or equal to zero. A > 0
can be defined similarly. For matrices or vectors A1 and A2, A1 ≥ A2 (resp. A1 > A2)
means that A1 − A2 ≥ 0 (resp. A1 − A2 > 0). BC

(
R,Rl

)
denotes the set of bounded

and continuous functions from R to R
l , and BUC

(
R,Rl

)
denotes the set of bounded and

uniformly continuous functions from R to R
l . Note that

(
BC

(
R,Rl

)
, ‖ · ‖∞

)
is a Banach

space,where ‖·‖∞ denotes the supremumnorm ‖ϕ‖∞ := supt∈R ‖ϕ(t)‖. For h ∈ BC(R,R),
let h+ and h− be defined as

h+ = sup
t∈R

|h(t)|, h− = inf
t∈R |h(t)|.

We denote by AP
(
R,Rl

)
the set of the almost periodic functions from R to Rl . Besides,

define the class of functions PAP0
(
R,Rl

)
as follows:

{

ϕ ∈ BC
(
R,Rl

)
| lim
T→+∞

1

2T

∫ T

−T
|ϕ(t)|dt = 0

}

.

A function u ∈ BC
(
R,Rl

)
is called pseudo almost periodic if it can be expressed as

u = h + ϕ,

where h ∈ AP
(
R,Rl

)
and ϕ ∈ PAP0

(
R,Rl

)
. The collection of such functions will be

denoted by PAP
(
R,Rl

)
. Then,

(
PAP

(
R,Rl

)
, ‖.‖∞

)
is a Banach space and AP

(
R,Rl

)

is a proper subspace of PAP(R,Rn) [13,14].
For i j ∈ J, it will be assumed that ci : R → R is an almost periodic function, ηi : R →

[0, +∞), Ii , ai j , bi j : R → R are pseudo almost periodic functions.
We also make the following assumptions which will be used later.

(H0) for i j ∈ J, M[ai j ] = limT→+∞ 1
T

∫ t+T
t ai j (s)ds > 0, and there exist a bounded

continuous function ãi j : R → (0, +∞) and a positive constant Ki j such that

e− ∫ t
s ai j (u)du ≤ Ki j e

− ∫ t
s ãi j (u)du, for all t, s ∈ R and t − s ≥ 0.

(H1) there exist constants M f and L f such that

| f (u) − f (v)| ≤ L f |u − v|, | f (u)| ≤ M f , for all u, v ∈ R.

(H2) there exist positive constants L and κ such that

{L} ≥
{

sup
t∈R

∫ t

−∞
e− ∫ t

s ai j (u)du |Li j (s)|ds
}

,

sup
t∈R

⎧
⎨

⎩
− κ

κ + L
ãi j (t) + Ki j

∑

Ckl∈Nr (i, j)

|Ckl
i j (t)|(L f (κ + L) + | f (0)|)

⎫
⎬

⎭
< 0,

and

δi j = sup
t∈R

Ki j
∑

Ckl∈Nr (i, j) |Ckl
i j (t)|(M f + L f (κ + L))

ãi j (t)
< 1, i j ∈ J.

Lemma 2.1 (see [5, Lemma 2.1]) Let ϕ(t) ∈ PAP(R,R), and β ∈ R be a constant. Then,
ϕ(βt) ∈ PAP(R,R).

123



170 Y. Tang

3 Main Results

In this section, we establish sufficient conditions on the existence and exponential stability
of pseudo almost periodic solutions of (1.1).

Theorem 3.1 Let (H0), (H1) and (H2) hold. Then, there exists a unique continuously dif-
ferentiable pseudo almost periodic solution of system (1.1).

Proof Let ϕ ∈ PAP(R,Rmn), it follows from Lemma 2.1 that

ϕkl(qkl t) ∈ PAP(R,R), kl ∈ J.

In view of (H1) and Corollary 5.4 in [14, p. 58], we have

f (ϕkl(qkl t)) ∈ PAP(R,R), kl ∈ J. (3.1)

Then, notice that M[ai j (t)] > 0, i j ∈ J , in view of (3.1), it follows from Theorem 2.3 in
[30] that the nonlinear pseudo almost periodic differential equations,

x ′
i j (t) = −ai j (t)xi j (t) −

∑

Ckl∈Nr (i, j)

Ckl
i j (t) f (ϕkl(ϕkl(t)))ϕi j (t) + Li j (t), i j ∈ J, (3.2)

has exactly one pseudo almost periodic solution:

xϕ(t) =
{
xϕ
i j (t)

}

=
⎧
⎨

⎩

∫ t

−∞
e− ∫ t

s ai j (u)du

⎡

⎣−
∑

Ckl∈Nr (i, j)

Ckl
i j (s) f (ϕkl(ϕkl(s)))ϕi j (s) + Li j (s)

⎤

⎦ ds

⎫
⎬

⎭
.

(3.3)

Let ϕ0(t) = x0(t). Then,

ϕ0(t) =
{
ϕ0
i j (t)

}
=

{∫ t

−∞
e− ∫ t

s ai j (u)du Li j (s)ds

}

∈ PAP(R,Rmn), L ≥ ‖ϕ0‖∞.

Set

B = {
ϕ|ϕ ∈ PAP(R,Rmn), ‖ϕ − ϕ0‖∞ ≤ κ

}
.

It follows that B is a bounded closed subset of PAP(R,Rmn). If ϕ ∈ B , then

‖ϕ‖∞ ≤ ∥
∥ϕ − ϕ0

∥
∥∞ + ∥

∥ϕ0
∥
∥∞ ≤ κ + L . (3.4)

Now, we define a mapping T : B → PAP(R,Rmn) by setting

(Tϕ)(t) = xϕ(t), ∀ϕ ∈ B.

We next prove that the mapping T is a contraction mapping of the B.
First we show that for any ϕ ∈ B, T (ϕ) = xϕ ∈ B.
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Note that

∣
∣T (ϕ)(t) − ϕ0(t)

∣
∣ ≤

⎧
⎨

⎩

∫ t

−∞
e− ∫ t

s ãi j (u)duKi j

∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|(| f (ϕkl(qkl s))

− f (0)| + | f (0)|)‖ϕ‖∞ds

⎫
⎬

⎭

≤
⎧
⎨

⎩

∫ t

−∞
e− ∫ t

s ãi j (u)duKi j

∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|(L f (κ + L)

+ | f (0)|)ds‖ϕ‖∞

⎫
⎬

⎭

≤
{∫ t

−∞
e− ∫ t

s ãi j (u)du κ

κ + L
ãi j (s)ds(κ + L)

}

≤ {κ} ,

i.e., T (ϕ) = xϕ ∈ B.
Second, we show that T is a contract operator.
In fact, in view of (3.3), (3.4), (H0), (H1) and (H2), for ϕ,ψ ∈ B, we have

|T (ϕ(t)) − T (ψ(t))|

≤
⎧
⎨

⎩

∫ t

−∞
e− ∫ t

s ãi j (u)duKi j

∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|(| f (ϕkl(qkl s))||ϕi j (s) − ψi j (s))|

+ | f (ϕkl(qkl s)) − f (ψkl(qkl s))||ψi j (s))|)ds
⎫
⎬

⎭

≤
⎧
⎨

⎩

∫ t

−∞
e− ∫ t

s ãi j (u)duKi j

∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|(M f + L f ‖ψ‖∞)ds‖ϕ − ψ‖∞

⎫
⎬

⎭

≤
⎧
⎨

⎩

∫ t

−∞
e− ∫ t

s ãi j (u)duKi j

∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|(M f + L f (κ + L))ds‖ϕ − ψ‖∞

⎫
⎬

⎭

≤
{∫ t

−∞
e− ∫ t

s ãi j (u)duδi j ãi j (s)ds‖ϕ − ψ‖∞
}

≤ {
δi j‖ϕ − ψ‖∞

}
,

which yields

‖T (ϕ) − T (ψ)‖∞ ≤ max
i j∈J

δi j‖ϕ − ψ‖∞,

which implies that the mapping T : B −→ B is a contraction mapping. Therefore, the
mapping T possesses a unique fixed point

x∗ =
{
x∗
i j (t)

}
∈ B, T x∗ = x∗.
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172 Y. Tang

By (3.2) and (3.3), x∗ satisfies (3.2). So (1.1) has at least one pseudo almost periodic solution
x∗ . The proof of Theorem 3.1 is now completed.

Theorem 3.2 Let (H0) and (H1) hold. Moreover, assume that there exist positive constants
λ0, L and κ such that (H2) holds, and

δ∗
i j = sup

t≥t0

Ki j
∑

Ckl∈Nr (i, j) |Ckl
i j (t)|

(
M f + L f (κ + L)eλ0(1−qkl )t

)

ãi j (t)
< 1, i j ∈ J. (3.5)

Then system (1.1) has at least one pseudo almost periodic solution x∗(t). Moreover, x∗(t) is
globally exponentially stable, i.e., for arbitrary solution x(t) of (1.1), there exist two positive
constants λ and M̄ such that

|xi j (t) − x∗
i j (t)| ≤ M̄ max

i j∈J

{

max
t∈[qi j t0, t0]

|ϕi j (t) − x∗
i j (t)|

}

e−λt for allt ≥ t0, i j ∈ J.

Proof Obviously, by Theorem 3.1, (1.1) has a pseudo almost periodic solution x∗(t) ={
x∗
i j (t)

}
. Suppose that x(t) = {xi j (t)} is an arbitrary solution of (1.1) associated with initial

value ϕ(t) = {ϕi j (t)} satisfying the second equation of (1.1).

Let y(t) = {yi j (t)} = {xi j (t) − x∗
i j (t)}. Then

y′
i j (t) = −ai j (t)yi j (t)

−
∑

Ckl∈Nr (i, j)

Ckl
i j (t)( f (xkl(qkl t))xi j (t)

− f (x∗
kl(qkl t))x

∗
i j (t)) , i j ∈ J. (3.6)

From (3.5), we can choose a constant λ ∈ (0, min{λ0, mini j∈J inf t≥t0 ãi j (t)}) such that

sup
t≥t0

⎧
⎨

⎩
λ − ãi j (t) + Ki j

⎡

⎣
∑

Ckl∈Nr (i, j)

|Ckl
i j (t)|

(
M f + L f (κ + L)eλ(1−qkl )t

)
⎤

⎦

⎫
⎬

⎭
< 0,

i j ∈ J. (3.7)

Let

‖ϕ‖ξ = max
i j∈J

{

max
t∈[qi j t0, t0]

|ϕi j (t) − x∗
i j (t)|

}

. (3.8)

For any ε > 0, we obtain

|yi j (t)| < (‖ϕ‖ξ + ε)e−λ(t−t0) < M(‖ϕ‖ξ + ε)e−λ(t−t0) for all t ∈ [qi j t0, t0],
and

‖y(t)‖ < (‖ϕ‖ξ + ε)e−λ(t−t0) < M(‖ϕ‖ξ + ε)e−λ(t−t0) for all t ∈
[

max
i j∈J

qi j t0, t0

]

,

where M = maxi j∈J Ki j + 1.
In the following, we will show

‖y(t)‖ < M(‖ϕ‖ξ + ε)e−λ(t−t0) for all t > t0. (3.9)

Otherwise, there must exist i j ∈ J and θ > t0 such that

‖y(θ)‖ = |yi j (θ)| = M(‖ϕ‖ξ + ε)e−λ(θ−t0), (3.10)
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and

|ykl(t)| < M(‖ϕ‖ξ + ε)e−λ(t−t0) for all t ∈ [qkl t0, θ), kl ∈ J. (3.11)

Note that

yi j (t) = yi j (t0)e
− ∫ t

t0
ai j (u)du +

∫ t

t0
e− ∫ t

s ai j (u)du

×
[

−
∑

Ckl∈Nr (i, j)

Ckl
i j (s)( f (xkl(qkl s))xi j (s) − f (x∗

kl(qkl s))x
∗
i j (s))

]

ds,

t ∈ [t0, θ ]. (3.12)

With the help of (3.7), (3.8) and (3.11), we have

|yi j (θ)| ≤ (‖ϕ‖ξ + ε)Ki j e
− ∫ θ

t0
ãi j (u)du +

∫ θ

t0
e− ∫ θ

s ãi j (u)duKi j

[ ∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|

×(| f (xkl(qkl s))||xi j (s) − x∗
i j (s)| + | f (xkl(qkl s)) − f (x∗

kl(qkl s))||x∗
i j (s)|)

]

ds

≤ (‖ϕ‖ξ + ε)Ki j e
− ∫ θ

t0
ãi j (u)du +

∫ θ

t0
e− ∫ θ

s ãi j (u)duKi j

[ ∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|

×(M f |yi j (s)| + L f |ykl(qkl s)||x∗
i j (s)|)

]

ds

≤ (‖ϕ‖ξ + ε)Ki j e
− ∫ θ

t0
ãi j (u)du +

∫ θ

t0
e− ∫ θ

s ãi j (u)duKi j

[ ∑

Ckl∈Nr (i, j)

|Ckl
i j (s)|

×(M f M(‖ϕ‖ξ + ε)e−λ(s−t0) + L f M(‖ϕ‖ξ + ε)e−λ(qkl s−t0)(κ + L))

]

ds

≤ (‖ϕ‖ξ + ε)e−λ(θ−t0)Ki j e
− ∫ θ

t0
(ãi j (u)−λ)du

+
∫ θ

t0
e− ∫ θ

s (ãi j (u)−λ)du(ãi j (s) − λ)dsM(‖ϕ‖ξ + ε)e−λ(θ−t0)

= M(‖ϕ‖ξ + ε)e−λ(θ−t0)
[(

Ki j

M
− 1

)

e
− ∫ θ

t0
(ãi j (u)−λ)du + 1

]

< M(‖ϕ‖ξ + ε)e−λ(θ−t0),

which contradicts (3.10). Hence, (3.9) holds. Letting ε −→ 0+, we have from (3.9) that

|yi j (t)| ≤ M‖ϕ − x∗‖ξ e
−λ(t−t0) for all t ≥ t0, i j ∈ J,

and

|xi j (t) − x∗
i j (t)| ≤ M̄ max

i j∈J

{

max
t∈[qi j t0, t0]

|ϕi j (t) − x∗
i j (t)|

}

e−λt for all t ≥ t0, i j ∈ J,

where M̄ = Meλt0 . This completes the proof.
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4 An Example

Example 4.1 Consider the following non-autonomous SICNNs with multi-proportional
delays:

dxi j
dt

= −ai j (t)xi j (t) −
∑

Ckl∈Nr (i, j)

Ckl
i j (t) f

(

xkl

(
1

2
t

))

xi j (t) + Li j (t), (4.1)

where t ≥ 1, f (x) = 1
50 (|x + 1| − |x − 1|), xi j (s) = ϕi j (s), s ∈ [ 1

2 , 1
]
, and ϕi j ∈

C
([ 1

2 , 1
]
,R

)
i, j = 1, 2, 3. Let

⎡

⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎥
⎦ = 1

4

⎡

⎢
⎣

1 + 2 sin 400t 1 + 2 sin 400t 3 + 4 sin 400t

3 + 4 sin 400t 1 + 2 sin 400t 3 + 4 sin 400t

3 + 4 sin 400t 1 + 2 sin 400t 3 + 4 sin 400t

⎤

⎥
⎦ , (4.2)

⎡

⎢
⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤

⎥
⎦ = e−|t |

⎡

⎣
0.01 sin t 0.02 sin t 0.01 sin t
0.02 sin t 0 0.02 sin t
0.01 sin t 0.02 sin t 0.01 sin t

⎤

⎦ , (4.3)

⎡

⎣
L11 L12 L13

L21 L22 L23

L31 L32 L33

⎤

⎦ =
⎡

⎢
⎣

sin
√
2t cos t 1

cos2 t − 1
1+t2

sin t 1

cos t − 1
1+t2

sin t 1

⎤

⎥
⎦ . (4.4)

Obviously,

⎡

⎣
ã11 ã12 ã13
ã21 ã22 ã23
ã31 ã32 ã33

⎤

⎦ = 1

4

⎡

⎣
1 1 3
3 1 3
3 1 3

⎤

⎦ , {Ki j } ≤
⎡

⎢
⎣

e
1

400 e
1

400 2e
1

400

2e
1

400 e
1

400 2e
1

400

2e
1

400 e
1

400 2e
1

400

⎤

⎥
⎦ ,

M f = 0.04, qi j = 1

2
, L f = 0.04,

∑

Ckl∈N1(3.3)

|Ckl
33(t)| ≤ 0.05e−|t |,

∑

Ckl∈N1(1.1)

|Ckl
11(t)| ≤ 0.05e−|t |,

∑

Ckl∈N1(1.2)

|Ckl
12(t)| ≤ 0.08e−|t |,

∑

Ckl∈N1(1.3)

|Ckl
13(t)| ≤ 0.05e−|t |,

∑

Ckl∈N1(2.2)

|Ckl
22(t)| ≤ 0.12e−|t |,

∑

Ckl∈N1(2.3)

|Ckl
23(t)| ≤ 0.08e−|t |,

∑

Ckl∈N1(2.1)

|Ckl
21(t)| ≤ 0.08e−|t |,

∑

Ckl∈N1(3.1)

|Ckl
31(t)| ≤ 0.05e−|t |,

∑

Ckl∈N1(3.2)

|Ckl
32(t)| ≤ 0.08e−|t |,

where i j ∈ J = {11, 12, 13, 21, 22, 23, 31, 32, 33}. Let L = 5, λ0 = 2, κ = 1, qi j =
1
2 , L f

i = Lg
i = 1

18 , Ki = e3, ãi j = 1, i, j = 1, 2, one can easily check that system (4.1)
satisfies (H0), (H1), (H2) and (3.5). By the consequence of Theorem 3.2, it follows that
system (4.1) has exactly one pseudo almost periodic solution x∗(t). Moreover, all solutions
of solutions for (4.1) converge exponentially to x∗(t) . The exponential convergent rate is
about 0.001. The fact is verified by the numerical simulation in Fig. 1 and there are three
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Fig. 1 Numerical solutions to system (4.1) with three groups of different initial values

different initial values which are ϕ11 ≡ 2.1, ϕ12 ≡ −2.3,ϕ13 ≡ 2.4, ϕ21 ≡ 2.2, ϕ22 ≡
2.5, ϕ23 ≡ 2.3, ϕ31 ≡ −2.1, ϕ32 ≡ −2.2, ϕ33 ≡ −2.5; ϕ11 ≡ 2.2, ϕ12 ≡ −2.1,ϕ13 ≡
2.5, ϕ21 ≡ 2.4, ϕ22 ≡ 2.2, ϕ23 ≡ 2.1, ϕ31 ≡ −2.3, ϕ32 ≡ −2.4, ϕ33 ≡ −2.3 and ϕ11 ≡
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−2.2, ϕ12 ≡ 2.1,ϕ13 ≡ −2.5, ϕ21 ≡ −2.4, ϕ22 ≡ −2.2, ϕ23 ≡ −2.1, ϕ31 ≡ 2.3, ϕ32 ≡
2.4, ϕ33 ≡ −2.3, respectively.

Remark 4.1 To the best of our knowledge, there is no research on the globally exponen-
tial convergence of the pseudo almost periodic solution of SICNNs with multi-proportional
delays. We also mention that all results in the reference [16–28] cannot be applied to imply
that all solutions for (4.1) converge exponentially to x∗(t). In particular, we employ a novel
proof to establish some criteria to guarantee the existence and exponential stability of pseudo
almost periodic solutions for SICNNs with multi-proportional delays. We expect to extend
this work to other neural networks models with multi-proportional delays.
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