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Abstract This paper provides finite-time and fixed-time stabilization control strategy for
delayedmemristive neural networks.Considering that the parameters in thememristivemodel
are state-dependent, which may contain unexpected parameter mismatch when different
initial conditions are chosen, in this case, the traditional robust control and analytical methods
cannot be carried out directly. To overcome this problem, a brand new robust control strategy
was designed under the framework of Filippov solution. Based on the designed discontinuous
controller, numerically testable conditions are proposed to stabilize the states of the target
system in finite time and fixed time. Moreover, the upper bound of the settling time for
stabilization is estimated. Finally, numerical examples are exhibited to explain our findings.
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1 Introduction

To reveal the nonlinear relationship between charge and flux, memristor (crasis for memory
and resistor) was first theoretically predicted by Chua [1], which was regarded as the missing
fourth circuit element. Subsequently, in a seminal paper appeared on the issue of Nature [2], a
team from the HP company unveiled the fabrication of a two-terminal nanoscale device, this
new device contains pinched hysteresis character [3], which was seen as the starting point
for the design of a new class of high density processors and paid unprecedented extensive
interest from the research community for its fundamental role in the design of next-generation
high-density nonvolatile memories.

The memristor behavior can be epitomized by the fact that its resistance value rests upon
the current which has passed through the device, or equivalently, the amount of the charge that
has flow through the device determines its resistance. Moreover, the typical i − v memristor
fingerprints are hysteretic that passing through the axis origin. Because of this feature, a
number of promising applications can be found in various fields of interest, one immediate
application provides possibility for the future computers would turn on instantly without the
usual “booting time”. Another important application is located in the construction of artificial
neural networks [4].

It is well known that a neural network can be implemented by circuits, for example, when
the self feedback connection weights are replaced by a resistor, Hopfield neural networks can
be implemented. By the same logic, taking place of the conventional resistor with memristor
in artificial neural networks, the memristive model can thus be constructed. It’s worth noting
that this kind of system possess more computation power and storage capacity [5], which
revealed that the number of equilibria point in n-neuron memristive system can be signif-
icantly increased to 22n

2+n , i.e., the information capacity of a memristive system is much
larger than some other ones. Thus, memristive neural networks included more attractive
applications.

Among which, the stabilization control can be regarded as one of the hottest topics due
to its successful employment in many different science and engineering fields. Confronting
with these practical utilization, severe time response constraints are essential for security
reasons or simply to enhance productivity, which thus igniting renewed interest instability
and finite-time stability problems [6–12]. Finite-time stability, which firstly raised in [13], is
a very different stability concept compared with the classical Lyapunov asymptotic stability.
It request the control system is Lyapunov stable, further instructions include its trajectories
stay within a prescribed scope in a finite-time interval under the designed controller.

While, a fly in the ointment implies that the settling time heavily limited by the initial
conditions of a system, whichmay constraint its widespread application, since the knowledge
of initial conditions may not predisposed. To enlarge the scope of the application, another
definition named fixed-time stability was proposed in [14], which demands boundedness of
the settling time for any initial values. Fixed time stability seems promising if a controller
(observer) has to be designed in order to provide some required control (observation) precision
in a given time and independently of any initial conditions. This idea can then effectively
avoid the convergence time depending on the initial state, for this reason, lots of promising
works have been published [15–18], amongwhich, the fixed-time synchronization of delayed
memristive neural networks was stressed in [17], this paper well checking the characteristic
of fixed-time problem.

Recent research have showcased a number of promising applications of memristor neural
networks [19–27]. The stability analysis of memristive model was considered in [19,21];
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the authors in [20] stressed a class reaction–diffusion uncertain memristive neural networks;
with nonlinear discontinuous controller, the finite-time stability and instability of delayed
memristive system were considered in [27]. Moreover, via sampled data control technique,
the authors in [23] indicated synchronization issues for delayed memristive neural networks
associated with Markovian jump as well as reaction–diffusion terms. However, the above
protocols are only consider the synchronization or stability behavior of a memristive model,
as for the synchronization or stability interval, they didn’t mentioned at all. This contribute
another main intention of this note.

Motivated by the aforementioned literature, the aim of this technical note is to extend the
stability analysis to the finite-time as well as fixed-time stabilization control issues of mem-
ristive system. In the framework of differential inclusion theory, some novel discontinuous
controller were visualized to achieve the above two categories stabilization control goal and
the settling time can be estimated a priori by the control parameters. Moreover, the delayed
memristive neural networks are artfully translated into a system with unmatched uncertain
parameters, and these unmatched parameters are taken as external disturbance of the target
model. All this constitutes the main contribution of this technical note.

The remaining of this paper is organized as follows. In Sect. 2, the problem to be studied
is formulated, some necessary definitions, lemmas, as well as assumptions are also informed
in this section. Finite-time, Fixed-time stabilization control criteria as well as the designation
of some discontinuous controllers are emerged in Sect. 3. Furthermore, two convincing
illustrative simulations are carry out in Sect. 4. Section 5 is the conclusion of this paper.

Notations: Through out this paper, solutions of all the systems are intended in Filippov’s
sense. Rn and R

n×m denote, respectively, the n-dimensional Euclidean space and the set of
all n ×m real matrices. For r > 0, C([−r, 0];Rn) denotes the family of continuous function
ϕ from [−r, 0] to R

n .

2 Model Description and Preliminaries

2.1 Model Description

In this paper, we consider a class of memristive model described by the following form:

ẏi (t) = −di yi (t) +
n∑

j=1

ai j (yi (t)g j (y j (t)) +
n∑

j=1

bi j (yi (t))g j (y j (t − τ(t))) + Ii , (1)

for i = 1, 2, . . . , n, where y(t) = (y1(t), y2(t), . . . , yn(t))T ∈ R
n represents the neu-

ron state vector of the system, D = diag(d1, d2, . . . , dn) > 0 implies the self-feedback
connection weights, A(y(t)) = (ai j (yi (t)))n×n and B(y(t)) = (bi j (yi (t)))n×n are the
feedback connection weights and the delayed feedback connection weights, respectively,
I = (I1, I2, . . . , In)T means the input vector, τ(t) is the transmission delays and g(y(t)) =
(g1(y1(t)), g2(y2(t)), . . . , gn(yn(t)))T indicates the neuronal activation functions, which
subjected to the following restriction:

(A1): For i = 1, 2, . . . , n, ∀x1, x2 ∈ R, x1 �= x2, the neural activation function gi is
bounded and satisfies Lipschitz condition, i.e. there exist li > 0, and Mi > 0, such that

|gi (x1) − gi (x2)| ≤ li |x1 − x2|, |gi (·)| ≤ Mi , gi (0) = 0.
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The initial value associated with system (1) is yi (t) = φi (t) ∈ C([−τ, 0];R), for i =
1, 2, . . . , n.

Interests the feature of the memristor and its typical current-voltage characteristic into
account, the state-dependent parameters in (1) are abided by the following conditions:

ai j (yi (t)) =

⎧
⎪⎪⎨

⎪⎪⎩

a′
i j , signi j

d f j (y j (t))
dt − dyi (t)

dt < 0

unchanged, signi j
d f j (y j (t))

dt − dyi (t)
dt = 0

a′′
i j , signi j

d f j (y j (t))
dt − dyi (t)

dt > 0

bi j (yi (t)) =

⎧
⎪⎪⎨

⎪⎪⎩

b′
i j , signi j

d f j (y j (t−τ(t)))
dt − dyi (t)

dt < 0

unchanged, signi j
d f j (y j (t−τ(t)))

dt − dyi (t)
dt = 0

b′′
i j , signi j

d f j (y j (t−τ(t)))
dt − dyi (t)

dt > 0

(2)

where

signi j =
{
1, i �= j,
−1, i = j,

and a′
i j , a

′′
i j , b

′
i j , b

′′
i j are known constants with respect to memristances, “unchanged” read

that the memristance keeps the current value.

Definition 2.1 [28] For the system ẋ(t) = f (t, x), x ∈ R
n , with discontinuous right-hand

sides, a set-valued map is defined as

F(t, x) =
⋂

δ>0

⋂

μ(N )=0

co[ f (B(x, δ)\N )],

where co[E] is the closure of the convex hull of set E , B(x, δ) = {y : ‖y − x‖ ≤ δ}, and
μ(N ) is Lebesgue measure of set N .

Set ai j = max{a′
i j , a

′′
i j }, ai j = min{a′

i j , a
′′
i j }, âi j = 1

2 (ai j + ai j ), ǎi j = 1
2 (ai j − ai j ),

ãi j = max{|a′
i j |, |a′′

i j |}, bi j = max{b′
i j , b

′′
i j }, bi j = min{b′

i j , b
′′
i j }, b̂i j = 1

2 (bi j + bi j ),

b̌i j = 1
2 (bi j − bi j ), b̃i j = max{|b′

i j |, |b′′
i j |}, for i, j = 1, 2, . . . , n. Then, system (1) can be

equally translated into the following line:

ẏi (t) = −di yi (t) +
n∑

j=1

(
âi j + �i j (yi (t))

)
g j (y j (t))

+
n∑

j=1

(
b̂i j + ∇i j (yi (t))

)
g j (y j (t − τ(t))) + Ii , (3)

where

�i j (yi (t)) =
{
ǎi j , ai j (yi (t)) = āi j ,
−ǎi j , ai j (yi (t)) = ai j ,

∇i j (yi (t)) =
{
b̌i j , bi j (yi (t)) = b̄i j ,
−b̌i j , bi j (yi (t)) = bi j .

(4)
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On the strength of the theory of differential inclusion and Definition 2.1, one can read that

ẏi (t) ∈ −di yi (t) +
n∑

j=1

(
âi j + co[−ǎi j , ǎi j ]

)
g j (y j (t))

+
n∑

j=1

(
b̂i j + co[−b̌i j , b̌i j ]

)
g j (y j (t − τ(t))) + Ii , (5)

or equivalently, by the measurable selection theorem, there exist measurable functions
λ1i j (t), λ

2
i j (t) ∈ co[−1, 1] such that,

ẏi (t) = −di yi (t) +
n∑

j=1

(
âi j + ǎi jλ

1
i j (t)

)
g j (y j (t))

+
n∑

j=1

(
b̂i j + b̌i jλ

2
i j (t)

)
g j (y j (t − τ(t))) + Ii , (6)

Remark 2.1 Recalling the definition of the parameters given in (2), we can’t guarantee that
a′
i j > (<)a′′

i j and b′
i j > (<)b′′

i j are always true, as a result, the variables λ1i j (t) may not be

equal to λ2i j (t).

The main contribution of this paper is to study the stabilization control of the target model,
in this case, the existence of an equilibrium point is presupposition of this paper. While, in
view of the conditions presented in assumption (A1), the resentence of the equilibrium point
can be guaranteed, which denoted as y∗, then, one has

0 = −di y
∗ +

n∑

j=1

(
âi j + ǎi jλ

3
i j

)
g j (y

∗) +
n∑

j=1

(
b̂i j + b̌i jλ

4
i j

)
g j (y

∗) + Ii , (7)

where λ3i j ∈ [−1, 1] and λ4i j ∈ [−1, 1].
Remark 2.2 To discuss the stabilization control of the memristive system (6), its correspond-
ing equilibrium point model (7) is also presented, Due to the different initial conditions of
these two system, the measurable functions λ1i j (t), λ3i j as well as λ2i j (t), λ4i j have the same
values can’t be guaranteed.

Give consideration to the above lines, one may read that the uncertain parameters of the
target system didn’t obey a matching condition that sharing a common time-varying matrix,
thus the traditional robust control design method cannot be applied to memristive model
directly.

By coordinate transformation x(t) = y(t) − y∗, the following system can be realized:

ẋi (t) = −di xi (t) +
n∑

j=1

(
âi j +ǎi jλ

1
i j (t)

)
f j (x j (t))+

n∑

j=1

(
b̂i j + b̌i jλ

2
i j (t)

)
f j (x j (t − τ(t)))

+
n∑

j=1

(
ǎi jλ

1
i j (t) − ǎi jλ

3
i j + b̌i jλ

2
i j (t) − b̌i jλ

4
i j

)
g j (y

∗
j ) (8)

where f j (x j (t)) = g j (y j (t)) − g j (y∗
j ) and f j (x j (t − τ(t))) = g j (y j (t − τ(t))) − g j (y∗

j ).
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Remark 2.3 Based on the Assumption (A1), we can concluded that f j (·) is bounded and
satisfies

| f j (x j (t))| ≤ l j |x j (t)|, | f j (·)| ≤ Mj .

In order to realize the finite-time and fixed-time stabilization control purpose, some appro-
priate controllers are necessary, then, by adding the discontinuous controller ui (t) to the right
hand of system (8), the following controlled dynamic memristive systems can be derived,
which described by the form of differential equation:

ẋi (t) = −di xi (t)+
n∑

j=1

(
âi j + ǎi jλ

1
i j (t)

)
f j (x j (t)) +

n∑

j=1

(
b̂i j + b̌i jλ

2
i j (t)

)
f j (x j (t − τ(t)))

+
n∑

j=1

(
ǎi jλ

1
i j (t) − ǎi jλ

3
i j + b̌i jλ

2
i j (t) − b̌i jλ

4
i j

)
g j (y

∗
j ) + ui (t), (9)

where ui (t) stands for the controller that will be appropriately designed for an certain stabi-
lization objective.

Remark 2.4 Thought the constructionof system (9), one can see that the term
∑n

j=1

(
ǎi jλ1i j (t)

− ǎi jλ3i j + b̌i jλ2i j (t) − b̌i jλ4i j

)
g j (y∗

j ) can be treated as an external perturbation to the stabi-

lization controlled system.

2.2 Definitions and Lemmas

Definition 2.2 The memristive neural network (9) is said to be stabilized in finite time by an
appropriate controller, if for any initial state, there exists a constant t∗ > 0(t∗ > 0 depends
on the initial state vector value x(0) = (xT1 (0), xT2 (0), . . . , xTn (0))T ), such that

lim
t−→t∗

‖x(t)‖ = 0,

‖x(t)‖ ≡ 0, ∀t > t∗.

Definition 2.3 The memristive system (9) is said to reach fixed-time stability, if for any
initial condition, there exists Tmax and T (x0(θ)) with T (x0(θ)) ≤ Tmax, such that

lim
t→T (x0(θ))

‖x(t)‖ = 0,

x(t) = 0, ∀t ≥ T (x0(θ)),

holds, in which, Tmax is a fixed time and T (x0(θ)) means a settling time function.

Definition 2.4 [29] Function V (x) : Rn −→ R is C-regular, if V (x) is:

(1) regular in Rn ;

(2) positive definite, i.e., V (x) > 0 for x �= 0 and V(0)=0;

(3) radially unbounded, i.e., V (x) −→ +∞ as ‖x‖ −→ +∞.

Note that a C-regular Lyapunov function V (x) is not necessarily differentiable.
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Lemma 2.1 [30] Let x(t) be a solution of the control system (9), which is defined on the
interval [0, T0), T0 ∈ (0,+∞], then, Then, the function |x(t)| is absolutely continuous and

d

dt
|x(t)| = ωT (t)ẋ(t) =

n∑

i=1

ωi (t)ẋi (t), a.a. t ∈ [0, T0),

where

ωi (t) =
{
sign(xi (t)), xi (t) �= 0,
arbitrarilychosenin[−1, 1], xi (t) = 0.

Lemma 2.2 [31] For any constant vector z ∈ R
n and 0 < r < l, the following norm

equivalence property holds:

(
n∑

i=1

|zi |l
) 1

l

≤
(

n∑

i=1

|zi |r
) 1

r

,

and
(
1

n

n∑

i=1

|zi |l
) 1

l

≥
(
1

n

n∑

i=1

|zi |r
) 1

r

.

Lemma 2.3 [32] Suppose that function V (x) : R
n −→ R is C-regular, and that x(t) :

[0,+∞) −→ R
n is absolutely continuous on any compact interval of [0,+∞). Let v(t) =

V (x(t)), if there exists a continuous function γ : [0,+∞) −→ R with γ (σ ) > 0 for
σ ∈ (0,+∞), such that

v̇(t) ≤ −γ (v(t)),

for all t > 0, and v(t) is differentiable at t and γ (·) satisfies the condition
∫ v(0)

0

1

γ (σ )
dσ = t1 < +∞,

then we have v(t) = 0 for t ≥ t1. In particular,

• if γ (σ ) = K1σ + K2σ
μ for all σ ∈ (0,+∞), where μ ∈ (0, 1) and K1, K2 > 0, then

the setting time is estimated by

t1 = 1

K1(1 − μ)
ln

K1v
1−μ(0) + K2

K2

• if γ (σ ) = Kσμ for all σ ∈ (0,+∞), where μ ∈ (0, 1) and K > 0, then the setting time
is estimated by

t1 = v1−μ(0)

K (1 − μ)
.

Lemma 2.4 [14] If there exists a continuous radially unbounded function V : R
n →

R+
⋃{0} such that

(1) V (z) = 0 ⇐⇒ z = 0;
(2) for some α, β > 0, 0 < p < 1, q > 1, any solution z(t) satisfies the inequality
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V̇ (z(t)) ≤ −αV p(z(t)) − βVq(z(t)),

then, the origin is globally fixed-time stable and the following estimate holds:

V (t) ≡ 0, t ≥ T (z0),

with the settling time bounded by

T (z0) ≤ Tmax := 1

α(1 − p)
+ 1

β(q − 1)
, ∀z0 ∈ R

n .

Lemma 2.5 [33] If there exists a continuous radially unbounded function V : R
n →

R+
⋃{0} such that

(1) V (z) = 0 ⇐⇒ z = 0;
(2) for some α, β > 0, p = 1 − 1

2μ , q = 1 + 1
2μ , μ > 1, any solution of z(t) satisfies the

inequality

V̇ (z(t)) ≤ −αV p(z(t)) − βVq(z(t)),

then the origin is globally fixed-time stable and the following estimate of the settling time
function holds:

T (z0) ≤ Tmax := πμ√
αβ

, ∀z0 ∈ R
n .

Remark 2.5 The settling time function is upper bounded by a priori value that rely on the
design parameters instead of the system initial states, this implies that the convergence time
can be guaranteed in a prescribed manner.

3 Main Results

In this section, we firstly established some sufficient criteria to realize the finite-time sta-
bilization of the target model, subsequently, some similarity conditions for the fixed-time
stabilization issues will be retrieved, besides, the corresponding designation for the con-
troller will also be involved.

3.1 Finite-Time Stabilization

Theorem 3.1 Under the Assumption (A1), the controlled memristive model (9) is finite-time
stable under the following discontinuous controller

ui (t) = −k1i xi (t) − k2i sign(xi (t)) − k3i sign(xi (t))|xi (t)|ε, (10)

where 0 < ε < 1 and

pk1i ≥ −pdi +
n∑

j=1

(p − 1)max(|āi j |, |ai j |) +
n∑

j=1

max(|ā j i |, |a ji |)l pi ,

pk2i ≥
n∑

j=1

pmax(|b̄i j |, |bi j |)Mj +
n∑

j=1

2p
(
ǎi j + b̌i j

)
Mj ,

k3i > 0. (11)
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Moreover, the settling time for stabilization can be estimated by

t∗ = V
1−ε
p (0)

(1 − ε)mini (k3i )
. (12)

Proof Let V (t) be a candidate Lyapunov function defined by:

V (t) =
n∑

i=1

|xi (t)|p, p ≥ 1. (13)

Evidently, V (t) is absolutely continuous, then, taking the time derivative of V (t) along the
trajectory of (9) gives

V̇ (t) =
n∑

i=1

p|xi (t)|p−1ωi (t)ẋi (t)

≤
n∑

i=1

p|xi (t)|p−1
{

− di |xi (t)|

+
n∑

j=1

|âi j + ǎi jλ
1
i j (t)|| f j (x j (t))| +

n∑

j=1

|b̂i j + b̌i jλ
2
i j (t)|| f j (x j (t − τ(t)))|

+
n∑

j=1

|ǎi jλ1i j (t) − ǎi jλ
3
i j + b̌i jλ

2
i j (t) − b̌i jλ

4
i j ||g j (y

∗
j )| − k1i |xi (t)| − k2i − k3i |xi (t)|ε

}

≤
n∑

i=1

p|xi (t)|p−1
{

− di |xi (t)|

+
n∑

j=1

max(|āi j |, |ai j |)| f j (x j (t))| +
n∑

j=1

max(|b̄i j |, |bi j |)| f j (x j (t − τ(t)))|

+
n∑

j=1

|ǎi jλ1i j (t) − ǎi jλ
3
i j + b̌i jλ

2
i j (t) − b̌i jλ

4
i j ||g j (y

∗
j )| − k1i |xi (t)| − k2i − k3i |xi (t)|ε

}
.

(14)

Referring to the definitions of the measurable functions λ1i j (t), λ
2
i j (t), λ

3
i j , λ

4
i j , one has

n∑

j=1

(
ǎi jλ

1
i j (t) − ǎi jλ

3
i j + b̌i jλ

2
i j (t) − b̌i jλ

4
i j

)
≤

n∑

j=1

2
(
ǎi j + b̌i j

)
, (15)

Young inequality is applied to evaluate the second termon the right-hand side of the inequality
(14), which gives

|xi (t)|p−1| f j (x j (t))| ≤ p − 1

p
|xi (t)|p + 1

p
| f j (x j (t))|p, (16)

Thus, along with (14)–(16), the future estimation for the time derivative of V (t) can be
shown as
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1086 R. Li, J. Cao

V̇ (t) ≤
n∑

i=1

⎧
⎨

⎩−pdi |xi (t)|p +
n∑

j=1

max(|āi j |, |ai j |)
(
(p − 1)|xi (t)|p + l pj |x j (t)|p

)

+
n∑

j=1

pmax(|b̄i j |, |bi j |)Mj |xi (t)|p−1 +
n∑

j=1

2p
(
ǎi j + b̌i j

)
Mj |xi (t)|p−1

− pk1i |xi (t)|p − pk2i |xi (t)|p−1 − pk3i |xi (t)|p+ε−1

⎫
⎬

⎭

=
n∑

i=1

⎧
⎨

⎩

⎛

⎝−pdi +
n∑

j=1

(p − 1)max(|āi j |, |ai j |) +
n∑

j=1

max(|ā j i |, |a ji |)l pi − pk1i

⎞

⎠ |xi (t)|p

+
⎛

⎝
n∑

j=1

pmax(|b̄i j |, |bi j |)Mj +
n∑

j=1

2p
(
ǎi j + b̌i j

)
Mj − pk2i

⎞

⎠ |xi (t)|p−1

− pk3i |xi (t)|p+ε−1

⎫
⎬

⎭ , (17)

Before completing the proof, further treatment should be taken for the last term of the inequal-
ity in (17). Based on the inequalities defined in (11) and the expression in Lemma 2.3, a more
upper bound can be easily established

V̇ (t) ≤ −pmin
i

(k3i )
n∑

i=1

|xi (t)|p+ε−1 ≤ −pmin
i

(k3i )

( n∑

i=1

|xi (t)|p
) p+ε−1

p

= −pmin
i

(k3i )V (t)
p+ε−1

p . (18)

The claim holds when it follows from Lemma 2.2, i.e., the finite-time stabilization for mem-
ristive neural network (9) can be reached and the settling time is estimated by

t∗ = V
1−ε
p (0)

(1 − ε)mini (k3i )
.

This concludes the proof. ��
Next, we will readjust the parameter choice and a brand new settling time can be obtained

correspondingly, which directly from Theorem 3.1.

Corollary 3.1 Suppose that all the assert in assumption (A1) are correct, then the controlled
memristive system (9) can be stabilized in finite time by the discontinuous controller (10)
with the given control gains k1i :

pk1i > −pdi +
n∑

j=1

(p − 1)max(|āi j |, |ai j |) +
n∑

j=1

max(|ā j i |, |a ji |)l pi ,

the other gains k2i and k3i have the same expression as given above. Additional, the upper-
bound of the settling time for stabilization can be estimated by

t∗ = p

λ1(1 − ε)
ln

λ1V
1−ε
p (0) + λ2

λ2
. (19)
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Proof Arguing as we did in the proof of Theorem 3.1, along the trajectories of system (9),
one can arrive that

V̇ (t) ≤
n∑

i=1

⎧
⎨

⎩

⎛

⎝−pdi +
n∑

j=1

(p − 1)max(|āi j |, |ai j |) +
n∑

j=1

max(|ā j i |, |a ji |)l pi − pk1i

⎞

⎠ |xi (t)|p

−pk3i |xi (t)|p+ε−1}

� −λ1

n∑

i=1

|xi (t)|p − λ2

n∑

i=1

|xi (t)|p+ε−1

≤ −λ1V (t) − λ2V
p+ε−1

p (t), (20)

where

λ1 = min
i

⎛

⎝pdi −
n∑

j=1

(p − 1)max(|āi j |, |ai j |) −
n∑

j=1

max(|ā j i |, |a ji |)l pi + pk1i

⎞

⎠ ,

λ2 = pmin
i

(k3i ).

This implies that the assertion about the finite-time stabilization control of system (9) can be
reached, and it follows from Lemma 2.3, the finite time can be arrived as

t∗ = p

λ1(1 − ε)
ln

λ1V
1−ε
p (0) + λ2

λ2
.

In the previous results, sufficient conditions are given to ensure the controlled dynamic
memristive model can maintain finite-time stabilization. In the forthcoming lines, some suf-
ficient conditions are presented to test the fixe-time stabilization control model. ��
3.2 Fixed-Time Stabilization

Theorem 3.2 Consider the system (9) under assumption (A1) together with the following
controller:

ui (t) = −ζ1i xi (t) − ζ2i sign(xi (t)) − ζ3i sign(xi (t))|xi (t)|α − ζ4i sign(xi (t))|xi (t)|β,(21)

where 0 < α < 1, β > 1, and the other given admissible values are required as below

pζ1i ≥ −pdi +
n∑

j=1

(p − 1)max(|āi j |, |ai j |) +
n∑

j=1

max(|ā j i |, |a ji |)l pi ,

pζ2i ≥
n∑

j=1

pmax(|b̄i j |, |bi j |)Mj +
n∑

j=1

2p
(
ǎi j + b̌i j

)
Mj ,

ζ3i > 0, ζ4i > 0, (22)

then, the fixed-time stabilization can be achieved with the following settling time

T ≤ T (x0) ≤ 1

mini (ζ3i )(1 − α)
+ 1

mini (ζ4i )n
1−β
p (β − 1)

. (23)

Proof The way of reasoning this assertion is very similarity to the above procedure. Next,
Consider the same Lyapunov functional, the rest of the proof matches mutatis mutandis a
similar proof of Theorem 3.1, one can arrive that:
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V̇ (t) ≤
n∑

i=1

⎧
⎨

⎩−pdi |xi (t)|p +
n∑

j=1

max(|āi j |, |ai j |)
(
(p − 1)|xi (t)|p + l pj |x j (t)|p

)

+
n∑

j=1

pmax(|b̄i j |, |bi j |)Mj |xi (t)|p−1 +
n∑

j=1

2p
(
ǎi j + b̌i j

)
Mj |xi (t)|p−1

− pζ1i |xi (t)|p − pζ2i |xi (t)|p−1 − pζ3i |xi (t)|p+α−1 − pζ4i |xi (t)|p+β−1

⎫
⎬

⎭

=
n∑

i=1

⎧
⎨

⎩

⎛

⎝−pdi +
n∑

j=1

(p − 1)max(|āi j |, |ai j |) +
n∑

j=1

max(|ā j i |, |a ji |)l pi − pζ1i

⎞

⎠ |xi (t)|p

+
⎛

⎝
n∑

j=1

pmax(|b̄i j |, |bi j |)Mj +
n∑

j=1

2p
(
ǎi j + b̌i j

)
Mj − pζ2i

⎞

⎠ |xi (t)|p−1

− pζ3i |xi (t)|p+α−1 − pζ4i |xi (t)|p+β−1

⎫
⎬

⎭ . (24)

It follows from the definition as shown in (22) and the assertion in Lemma 2.4, the time
derivative of V (t) can be checked after some computations

V̇ (t) ≤ −pmin
i

(ζ3i )

n∑

i=1

|xi (t)|p+α−1 − pmin
i

(ζ4i )

n∑

i=1

|xi (t)|p+β−1

≤ −pmin
i

(ζ3i )

(
n∑

i=1

|xi (t)|p
) p+α−1

p

− pmin
i

(ζ4i )n
1−β
p

(
n∑

i=1

|xi (t)|p
) p+β−1

p

= −pmin
i

(ζ3i )V (t)
p+α−1

p − pmin
i

(ζ4i )n
1−β
p V (t)

p+β−1
p . (25)

Thus, it can be checked from Lemma 2.4 that the fixed-time stabilization can be realized,
correspondingly, the fixed settling time T is bounded by

T ≤ T (x0) ≤ 1

mini (ζ3i )(1 − α)
+ 1

mini (ζ4i )n
1−β
p (β − 1)

.

As it was mentioned in the previous section, different values of the parameters proposed
in Theorem 3.2 may lead to a very different bound of the fixed time. In such situation, select
α and β in Theorem 3.2 as α = 1− 1

2μ , β = 1+ 1
2μ with μ > 1, then, under the framework

of Lemma 2.5, a brand new upper bound of the settling time can be developed. ��
Corollary 3.2 Suppose that all the conditions of Theorem 3.2 hold, then, the system (9) can
be stabilized in a finite time under the controller (21), and the fixed settling time T satisfies

T ≤ T (x0) ≤ πμ

p

√
mini (ζ3i )mini (ζ4i )n

1−β
p

, μ > 1. (26)

Remark 3.1 As far as we know, in the finite-time and fixed-time stabilization control issues,
the settling time is expected as short as possible for guaranteeing fast response. By enumerate
the expression of the setting time in Theorem 3.1, one can read that the settling time for
stabilization is determined by the values of gain parameters k3, while, in Corollary 3.1, this
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is determined by the gain values k1 and k3, so the upper-bound of the finite-time settling time
has no relation with the control gain k2. Via the same analytical method, one can arrive at the
fixed-time setting time only need the information of ζ3 and ζ4. This means that the selection
of the control gains can properly determine the maximum allowable restrictions, which is
helpful for us to choose suitable condition and parameters to shorten the settling time for
guaranteeing fast response. By doing so, the control cost can be reduces simultaneously.

Remark 3.2 According to the above two stabilization control categories, a noteworthy fact
can be observed is that, the settling time proposed in Theorem 3.1 and Corollary 3.1 depends
on available a priori knowledge of the initial condition V (0), while, when the initial condition
is very large, the setting time is impractical. To avoid this shortcomings, another newalgorithm
was proposed in Theorem 3.2 and Corollary 3.1, in which these results are independent of
initial states. Thus, the pre-specified settling time can be obtained by properly adjust the
control parameters.

Remark 3.3 Making comparisons with the finite-time and fixed-time stabilization control
algorithm, one may read that only one term like −V P (t), 0 < p < 1 can realize finite-time
stabilization goal, while, ro arrive at the fixed-time destination, another extra factor −V q(t),
q > 1 is also essential, which can be treat as pulling the system into the region with norm
less than 1 in a fixed-time.

4 Numerical Example

In this section, we will perform two examples to state the validity and effectiveness of the
proposed theoretical results derived above. To show the important role of the control strategy,
the controller in (10) and (21) were simulated to examine its performance.

Example 1 To illustrate the performances of the given controller, in our first experiment, we
considering the following two-dimensional mermristive neural networks:
⎧
⎪⎪⎨

⎪⎪⎩

ẏ1(t) = −y1(t) + a11(y1(t)) f1(y1(t)) + a12(y2(t)) f2(y2(t)) + b11(y1(t)) f1(y1(t − 1))
+ b12(y2(t)) f2(y2(t − 1)) + I1,

ẏ2(t) = −y2(t) + a21(y1(t)) f1(y1(t)) + a22(y2(t)) f2(y2(t)) + b21(y1(t)) f1(y1(t − 1))
+ b22(y2(t)) f2(y2(t − 1)) + I2,

(27)

with

a11(y1(t)) =
{
1.8, − ḟ1(y1(t)) − ẏ1(t) < 0,
1.7, − ḟ1(y1(t)) − ẏ1(t) > 0,

a12(y1(t)) =
{ −0.1, ḟ2(y2(t)) − ẏ1(t) < 0,

−0.2, ḟ2(y2(t)) − ẏ1(t) > 0,

a21(y2(t)) =
{ −2.7, ḟ1(y1(t)) − ẏ2(t) < 0,

−2.3, ḟ1(y1(t)) − ẏ2(t) > 0,
a22(y2(t)) =

{
3.8, − ḟ2(y2(t)) − ẏ2(t) < 0,
3, − ḟ2(y2(t)) − ẏ2(t) > 0,

b11(y1(t)) =
{ −1.5, − ḟ2(y2(t − 1)) − ẏ1(t) < 0,

−1.3, − ḟ2(y2(t − 1)) − ẏ1(t) > 0,
b12(y1(t)) =

{ −0.1, ḟ2(y2(t − 1)) − ẏ1(t) < 0,
0.1, ḟ2(y2(t − 1)) − ẏ1(t) > 0,

b21(y2(t)) =
{ −0.3, ḟ1(y1(t − 1)) − ẏ2(t) < 0,
0.2, ḟ1(y1(t − 1)) − ẏ2(t) > 0,

b22(y2(t)) =
{ −2, − ḟ2(y2(t − 1)) − ẏ2(t) < 0,

−2.5, − ḟ2(y2(t − 1)) − ẏ2(t) > 0.

Thus, it is obvious that

ā11 = 1.8, ā12 = −0.1, ā21 = −2.3, ā22 = 3.8, a11 = 1.7, a12 = −0.2, a21 = −2.7, a22 = 3,

â11 = 1.75, â12 = −0.15, â21 = −2.5, â22 = 3.4, ă11 = 0.05, ă12 = 0.05, ă21 = 0.2, ă22 = 0.4,
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b̄11 = −1.3, b̄12 = 0.1, b̄21 = 0.2, b̄22 = −2, b11 = −1.5, b12 = −0.1, b21 = −0.3, b22 = −2.5,

b̂11 = −1.4, b̂12 = 0, b̂21 = −0.05, b̂22 = −2.25, b̆11 = 0.1, b̆12 = 0.1, b̆21 = 0.25, b̆22 = 0.25.

Moreover, the activation is taken as f (s) = tanh(s), it is obvious that the given functions
satisfy the condition (A1) with l1 = l2 = 1 and M1 = M2 = 1. To retrieve the detailed
expression of the controller, we set p = 2, then, according to the design algorithm as
introduced in (11), one can arrive at

2k11 ≥ −2d1 +
2∑

j=1

(2 − 1)max(|ā1 j |, |a1 j |) +
2∑

j=1

max(|ā j1|, |a j1|)l21 = 4.5,

2k12 ≥ −2d2 +
2∑

j=1

(2 − 1)max(|ā2 j |, |a2 j |) +
2∑

j=1

max(|ā j2|, |a j2|)l p2 = 8.5,

2k21 ≥
2∑

j=1

2max(|b̄1 j |, |b1 j |)Mj +
2∑

j=1

2 × 2
(
ǎ1 j + b̌1 j

)
Mj = 4.4,

2k22 ≥
2∑

j=1

2max(|b̄2 j |, |b2 j |)Mj +
2∑

j=1

2 × 2
(
ǎ2 j + b̌2 j

)
Mj = 5.4,

as a result, we can choose k11 = 3, k12 = 5.4, k21 = 3, k22 = 3. In addition, let the other
control gains k31 = k32 = 0.2, and ε = 0.5, then the desired controller can be designed as

u1(t) = −3x1(t) − 3sign(x1(t)) − 0.2sign(x1(t))|x1(t)|0.5,
u2(t) = −5.4x2(t) − 3sign(x2(t)) − 0.2sign(x2(t))|x2(t)|0.5. (28)

By now, all the restrictions in Theorem 3.1 are hold, the we can safely read that system (27)
can be finite-time stabilized via controller (28), and the settling time can be estimated as

t∗ = V
1−ε
p (0)

(1 − ε)mini (k3i )
= V

1
4 (0)

(1 − 0.5) × 0.2
= 14.953s.

To better illustrate the findings, Figs. 1 and 2 characterized the transient behaviors of
system (9) without any control strategy under the initial conditions x(0) = (−1, 2)T . In the
framework of the controller (28), the corresponding simulation results are depicted Fig. 3.
Based on provided figures, one can see that the controller performs as expected, i.e., the state
variables of the controlled system (9) converge to zero in finite time, which implies that the
system (27) can be finite-time stabilized via controller (28).

Moreover, It is quite obvious that the above parameters meet all the ascertain in Corol-
lary 3.1, then, by a simple calculation along with (19), one can read

t∗ = p

λ1(1 − ε)
ln

λ1V
1−ε
p (0) + λ2

λ2
= 2

0.5 × 0.5
ln

0.5 × V 1/4(0) + 0.4

0.4
= 9.0541 s,

in which

pd1 −
2∑

j=1

(2 − 1)max(|ā1 j |, |a1 j |) −
2∑

j=1

max(|ā j1|, |a j1|)l21 + 2k11 = 1.5,

pd2 −
2∑

j=1

(2 − 1)max(|ā2 j |, |a2 j |) −
2∑

j=1

max(|ā j2|, |a j2|)l22 + 2k12 = 0.5,
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Fig. 1 Phase plane behavior of system (9) without any controller under the initial condition x(t) = (−1, 2)T
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Fig. 2 Time evolutions of the states x1(t) and x2(t) in system (9) without any controller under the initial
condition x(t) = (−1, 2)T

pk31 = pk32 = 0.4,

as a result, one can get that λ1 = 0.5, λ2 = 0.4.
It is readily seen that, the setting time associatewithCorollary 3.1 provides amore accurate

prediction comparatively to the conditions in Theorem 3.1.

Example 2 With the purpose of showing that the fixed-time stabilization control problem of
memristive neural networks, we consider the example below:

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1(t) = −y1(t) + a11(y1(t)) f1(y1(t)) + a12(y2(t)) f2(y2(t)) + b11(y1(t)) f1(y1(t − τ(t)))
+ b12(y2(t)) f2(y2(t − τ(t))) + I1,

ẏ2(t) = −y2(t) + a21(y1(t)) f1(y1(t)) + a22(y2(t)) f2(y2(t)) + b21(y1(t)) f1(y1(t − τ(t)))
+ b22(y2(t)) f2(y2(t − τ(t))) + I2,

(29)
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Fig. 3 Time-domain behavior of the state variables x1(t) and x2(t) with initial condition x(t) = (−1, 2)T

under controller (28)

where

a11(y1(t)) =
{
1.3, − ḟ1(y1(t)) − ẏ1(t) < 0,
0.7, − ḟ1(y1(t)) − ẏ1(t) > 0,

a12(y1(t)) =
{ −0.1, ḟ2(y2(t)) − ẏ1(t) < 0,

−0.2, ḟ2(y2(t)) − ẏ1(t) > 0,

a21(y2(t)) =
{ −0.7, ḟ1(y1(t)) − ẏ2(t) < 0,

−0.3, ḟ1(y1(t)) − ẏ2(t) > 0,
a22(y2(t)) =

{
0.8, − ḟ2(y2(t)) − ẏ2(t) < 0,
1, − ḟ2(y2(t)) − ẏ2(t) > 0,

b11(y1(t)) =
{ −1.5, − ḟ2(y2(t − τ(t))) − ẏ1(t) < 0,

−1.3, − ḟ2(y2(t − τ(t))) − ẏ1(t) > 0,
b12(y1(t)) =

{ −0.1, ḟ2(y2(t − τ(t))) − ẏ1(t) < 0,
0.1, ḟ2(y2(t − τ(t))) − ẏ1(t) > 0,

b21(y2(t)) =
{ −0.3, ḟ1(y1(t − τ(t))) − ẏ2(t) < 0,
0.2, ḟ1(y1(t − τ(t))) − ẏ2(t) > 0,

b22(y2(t)) =
{ −2.3, − ḟ2(y2(t − τ(t))) − ẏ2(t) < 0,

−2.4, − ḟ2(y2(t − τ(t))) − ẏ2(t) > 0.

Then, a standard manipulations lead to

ā11 = 1.3, ā12 = −0.1, ā21 = −0.3, ā22 = 1, a11 = 0.7, a12 = −0.2, a21 = −0.7, a22 = 0.8,

â11 = 1, â12 = −0.15, â21 = −0.5, â22 = 0.9, ă11 = 0.3, ă12 = 0.05, ă21 = 0.2, ă22 = 0.1,

b̄11 = −1.3, b̄12 = 0.1, b̄21 = 0.2, b̄22 = −2.3, b11 = −1.5, b12 = −0.1, b21 = −0.3, b22 = −2.4,

b̂11 = −1.4, b̂12 = 0, b̂21 = −0.05, b̂22 = −2.35, b̆11 = 0.1, b̆12 = 0.1, b̆21 = 0.25, b̆22 = 0.05,

in addition, the time-varying delays are chosen as τ(t) = 0.5+0.2 sin(3t), the functions and
some other initial parameters are the same as in Example 1. To retrieve the control gains, the
corresponding computational details were presented in the framework of (22):

2ζ11 ≥ −2d1 +
2∑

j=1

(2 − 1)max(|ā1 j |, |a1 j |) +
2∑

j=1

max(|ā j1|, |a j1|)l21 = 1.8,

2ζ12 ≥ −2d2 +
2∑

j=1

(2 − 1)max(|ā2 j |, |a2 j |) +
2∑

j=1

max(|ā j2|, |a j2|)l22 = 0.9,

2ζ21 ≥
2∑

j=1

2max(|b̄1 j |, |b1 j |)Mj +
2∑

j=1

4
(
ǎ1 j + b̌1 j

)
Mj = 5.4,
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Fig. 4 The chaotic attractor of the controlled system (9) without any control strategy under initial condition
x(t) = (−0.6 sin 2t − 0.4,−0.1 cos t + 1.1)T
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Fig. 5 Time-domain behaviors of the states x1(t) and x2(t) in system (9) without any control strategy under
initial condition x(t) = (−0.6 sin 2t − 0.4,−0.1 cos t + 1.1)T

2ζ22 ≥
2∑

j=1

2max(|b̄2 j |, |b2 j |)Mj +
2∑

j=1

4
(
ǎ2 j + b̌2 j

)
Mj = 7.8.

Calculations show that the control gains in (21) can be picked as ζ11 = 1, ζ12 = 1, ζ21 = 3,
ζ22 = 4, the others are opt for ζ31 = ζ32 = 0.5, ζ41 = ζ42 = 0.7. Here, by setting α = 0.5,
β = 2 and employing the obtained control gains, the controller can be modified as

u1(t) = −x1(t) − 3sign(x1(t)) − 0.5sign(x1(t))|x1(t)|0.5 − 0.7sign(x1(t))|x1(t)|2,
u1(t) = −x2(t) − 4sign(x2(t)) − 0.5sign(x2(t))|x2(t)|0.5 − 0.7sign(x2(t))|x2(t)|2.

(30)
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Fig. 6 Trajectories of the state trajectories x(t) in system (9) via controller (30)

Now, all the affirmance in Theorem 3.2 are correct, thus, we may conclude that the target
(9) can reach stability in a fixed-time through the designed controller (30), and the upper
bounded of the setting time can be determined as

T ≤ T (x0) ≤ 1

mini (ζ3i )(1 − α)
+ 1

mini (ζ4i )n
1−β
p (β − 1)

= 1

0.25
+ 1

0.7 × 2−0.5

= 6.0202 s.

Moreover, some simulations have been done in MATLAB with the initial conditions x(t) =
(−0.6 sin 2t−0.4,−0.1 cos t+1.1)T , which plotted in Figs. 4, 5 and 6, the chaotic behavior
and the state trajectories in the controlled system (9) without any controller are depicted in
Figs. 4 and 5 respectively, Fig. 6 revealed the dynamic behavior of the controlled system,
these simulation figures once again demonstrated the conjecture that the controlled system
can reach stability within the fixed-time t ≤ 6.0202 s.

5 Conclusion

In this technical note, by using the robust analytical techniques and Lyapunov function-
als, numerically testable finite-time and fixed time stabilization control criteria for delayed
memristive neural networks have been developed, in which, two discontinuous controllers
are presented and analyzed, which can ensured the target system towards finite-time and
fixed-time stabilization control goals by properly tunes the control gains. In order to guar-
antee a fast response, it is often reacquire the trajectories of the network states converge to
some equilibrium point during a time interval. Thus, the upper bound of the settling time for
stabilization have also constructed, which subjected the memristive system parameters and
control gains. The simulation results confirm previously given statements and the superiority
of this controller in the end.
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