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Abstract Single multiplicative neuron model and multilayer perceptron have been com-
monly used for time series prediction problem. Having a simple structure and features of
easily applicable differentiates the single multiplicative neuron model from the multilayer
perception. While, multilayer perceptron just as many other artificial neural networks are
data-based methods, single multiplicative neuron model has a model structure due to it is
composed of a single neuron. Multilayer perceptron can highly compliance with data by
changing its architecture, though single multiplicative neuron model, in this respect, is insuf-
ficient. In this study, to overcome this problem of single multiplicative neuron model, a
new model that its weights and biases are obtained by way of autoregressive equations is
proposed. Since the time indexes are considered to determine weights and biases from the
autoregressive models, the proposed neural network can be evaluated as a data-based model.
To show the performance and capability of the proposed method, various implementations
have been executed over some well-known data sets. And the obtained results demonstrate
that data-based proposed method has outstanding forecasting performance.
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1 Introduction

As a data mining field, analysis of time series has been one of the main research subjects
for decades. For modelling the time series, such as Auto-Regressive (AR) model, Linear
Dynamical Systems (LDS) and Hidden Markov Model (HMM) and traditional approaches
that include the estimation of parameters from an assumed time series model may fail to anal-
ysis of complex real-world time series. To get rid of the restrictions of traditional approaches
as model assumption, normal distribution and the number of observation, in recent years,
artificial neural networks (ANNs) have been commonly and successfully utilized. While a
variety of neuron model were put forward by [6,26,30,32,44], one of the most common
method used for time series prediction is multilayer perceptron (MLP) proposed by McCu-
loch and Pitts [36]. While Zhang et al. [46] and Zhang [45] reviewed the time series literature
inwhich usesMLP,Crone andKourentzes [10] andCrone et al. [11], in their studies, evaluated
the forecasting performance of ANN in time series analysis. In time series literature, while
dynamicANNmodels [3,20] have been used, some hybridmethods [1,5,12,18,19,35,39,42]
have a huge usage area which should not be underestimated. Moreover, some comparative
[7,9,13,21,22,31,33] and application [4,14,17] studies were presented. To predict various
time series, some new ANNmodels have been put forward by Voyant et al. [40], Laboissiere
et al. [27], Cheng et al. [8], Kim [24] and Wang et al. [41]. Furthermore, Reyes et al. [34]
presented a new earthquake prediction system based on the application of ANN to predict
earthquakes in Chile. Koprinska et al. [25] introduced a new approach based on sequence
similarity with neural networks for forecasting of electricity demand time series. Martínez-
Álvarez et al. [29] explored the application of various data mining techniques to time series
forecasting.

MLP has more than one neuron in the hidden layer and the output is a non-linear com-
bination of multiplication of weighted sum of the inputs. When it comes to forecast time
series by using MLP, the determination of architecture in a proper way seems as an essential
problem because, in particular, the number of neurons in hidden layer directly affects the
performance of multilayer perceptron neural networks. To determine the number of neurons
in hidden layer and inputs of the model, Egrioglu et al. [15] put forward a method. Multi-
plicative neuron model (MNM) that does not contain this type of problem is introduced by
Yadav et al. [43]. MNM named single multiplicative neuron model (S-MNM) has just one
neuron. S-MNM uses a multiplicative function in its neuron as an aggregation function on
the contrary to MLP that uses additive function. This multiplicative structure strengthens
non-linearity characteristic of the model. S-MNM uses less parameter than those employed
by MLP since it has only one neuron in the hidden layer [2]. Although S-MNM has some
advantages in comparison toMLP, it has some difficulty in certain time series prediction since
it is model-based the reason is that it has just a single neuron. To analysis of time series that
may contain more complex structures, while MLP has outstanding prediction performance
under favour of its high compliance with data by changing its architecture, S-MNM, from this
aspect, is insufficient.Whenwe take into consideration both advantages and disadvantages of
MLP and S-MNM together, generating a model that has outstanding sides of both MLP and
S-MNM conduce toward to obtain better prediction performance. From this point of view, in
this study, we proposed a single multiplicative neuron model with autoregressive coefficient
(AC-S-MNM). In AC-S-MNM, weights and biases are achieved by way of autoregressive
equations. In the obtaining process of weights and biases, since the weights and the biases are
determined via autoregressive equations that consider the time index of each observation, the
model is a data-based. The parameters of autoregressive equations that generate the weights
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Fig. 1 The architecture of
AC-S-MNM

and biases of AC-S-MNMare specified by utilizing themodified particle swarm optimization
(MPSO). The performance of proposed model is displayed through several implementations
and compares with some others models which have been commonly used in the time series
prediction literature.

In the rest of the paper, Sect. 2 comprises the proposed model in detail and in this section
an algorithm is given regarding to operation of the proposed model. Various implementations
and their results are presented in Sect. 3. Finally, in the last section; a discussion and an overall
assessment are presented over the obtained results.

2 Single Multiplicative Neuron Model with Autoregressive Coefficient

S-MNM and MLP have been widely used to predict time series. While MLP has some
advantages such as highly compliance with data, difficulties of architecture specified must be
considered the down side of this ANNmodel. Moreover, whereas the S-MNM does not have
such a problem, in prediction problems of some complex time series, it can remain incapable
by the reason of containing a strict model-based structure.

AC-S-MNM, proposed in this study, contain in itself the master characteristics of both
MLP and S-MNM such as a highly compatibility with data which is a crucial feature in
prediction of complex time series and not including architecture selection problem under
favour of having just a single neuron. Since the proposed AC-S-MNM model is basically an
S-MNM, it has same structure with S-MNM and it can be demonstrated in Fig. 1.

In Fig. 1, function �(y, w, b) is the product of the weighted inputs and f is activation
function. Here, yt−1, yt−2, . . . , yt−q and ŷt are inputs and output of AC-S-MNM, respec-
tively. Moreover, q c is called as model order, n is the number of observation in training set
of time series. The S-MNM with q inputs given in Fig. 1 has q × 2 weights. Of these, q are
the weights corresponding to the inputs

(
wi
t , i = 1, 2, . . . , q; t = 1, 2, . . . , n

)
and q to the

sides of the weights
(
bit , i = 1, 2, . . . , q; t = 1, 2, . . . , n

)
. The output producing process of

AC-S-MNM can be given as an algorithm.

Algorithm 1 The calculation of outputs of AC-S-MNM

Step 1 Autoregressive equations are constituted for weights and biases.
For each of weights and biases, autoregressive models are given in Eqs. (1) and (2),

respectively.

wi
t = ∅i0 + ∅i1wi

t−1 + wεit , i = 1, 2, . . . , q; t = 1, 2, . . . , n (1)

bit = θ i0 + θ i1b
i
t−1 + bεit , i = 1, 2, . . . , q; t = 1, 2, . . . , n (2)
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Totally, there are 2q autoregressive models. The initial values of each model are wi
0 and

bi0, i = 1, 2, . . . , q . The parameters of these 2q autoregressive models are estimated by
using MPSO in an optimization process (see Algorithm 2).

Step 2 Weights and biases are calculated.
For each of learning sample, weights and biases

(
wi
1, w

i
2, . . . , w

i
n; bi1, bi2, . . . ,

bin, i = 1, 2, . . . , q
)
are calculated by using autoregressive equations given in Eqs. (1)

and (2). For example, Let q = 2, n = 2 and the coefficients of autoregressive models are
estimated by using MPSO as ∅10 = 0.1, ∅20 = 0.2, ∅11 = 0.3, ∅21 = 0.4; θ10 = 0.5, θ20 = 0.6,
θ11 = 0.7, θ21 = 0.8; w1

0 = 0.1, w2
0 = 0.2, b10 = 0.3 and b20 = 0.4 weights and biases are

calculated as below:

For t = 1 and i = 1;w1
1 = ∅10 + ∅11w1

0 + wε11 = 0.1 + (0.3 × 0.1) + 0 = 0.13

b11 = θ10 + θ11 b
1
0 + bε11 = 0.5 + (0.7 × 0.3) + 0 = 0.71

For t = 1 and i = 2;w2
1 = ∅20 + ∅21w2

0 + wε21 = 0.2 + (0.4 × 0.2) + 0 = 0.28

b21 = θ20 + θ21 b
2
0 + bε21 = 0.6 + (0.8 × 0.4) + 0 = 0.92

For t = 2 and i = 1;w1
2 = ∅10 + ∅11w1

1 + wε12 = 0.1 + (0.3 × 0.13) + 0 = 0.139

b12 = θ10 + θ11 b
1
1 + bε12 = 0.5 + (0.7 × 0.71) + 0 = 0.997

For t = 2 and i = 2;w2
2 = ∅20 + ∅21w2

1 + wε22 = 0.2 + (0.4 × 0.28) + 0 = 0.312

b22 = θ20 + θ21 b
2
1 + bε22 = 0.6 + (0.8 × 0.92) + 0 = 1.336

In autoregressive models, bεit and
wεit i = 1, 2, . . . , q; t = 1, 2, . . . , n error terms are

always taken as zero.

Step 3 Values of net are calculated.

nett =
q∏

i=1

(
wi
t × yt−i + bit

)
; t = 1, 2, . . . , n (3)

Step 4 The outputs of AC-S-MNM are obtained.
For each of learning sample, the values of output are calculated by passing through logistic

activation function.

ŷt = f (nett ) . = 1

1 + e−nett
; t = 1, 2, . . . , n (4)

While the proposedAC-S-MNM is used to obtain the outputs for each learning sample, it uses
weights and biases that are obtained by making use of autoregressive equations. In this stage,
it is necessary that the coefficients (parameters) of autoregressive equations are determined
to obtain the weights and biases. In our proposed approach, the coefficients of autoregressive
equations are obtained by taking advantage of MPSO in an optimization process.

Particle swarm optimization (PSO) is an evolutionary computation technique proposed
by Kennedy and Eberhart [23]. PSO can be evaluated as a population based optimization
tool. The particle swarm concept originated as a simulation of simplified social system [38].
Distinguishing feature of this heuristic algorithm is that it simultaneously examines different
points in different regions of the solution space to obtain the global optimum solution. Local
optimum traps can be avoided because of this feature of themethod [2]. TheMPSO algorithm
has time varying inertia weight like in [37]. In a similar way, this algorithm also has time
varying acceleration coefficient like in [28].
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Fig. 2 The structure of a particle in a swarm

In the optimization process, this process can also be called as training of AC-S-MNM, the
coefficients aimed to get are φi

0, θ
i
0, φ

i
1, θ

i
1, w

i
0 and bi0; i = 1, 2, . . . , q . Thus, each particle

of swarm has 6 × q positions. The structure of a particle in a swarm is illustrated in Fig. 2.
To get the coefficients of autoregressive equations, the optimization process can be given

as an algorithm.

Algorithm 2 The training of AC-S-MNM by taking advantage of MPSO

Step 1 The parameters of MPSO are determined.
In the first step, the parameters which direct the MPSO algorithm are determined. These

parameters are;
pn: The number of particles in the swarm.
vm: Velocities size.(
c1i , c1 f

)
: The intervals which includes possible values of cognitive coefficient c1.(

c2i , c2 f
)
: The intervals which includes possible values of social coefficient c2.

(w1, w2): The intervals which includes possible values of inertia parameter w.
itrmax: The number of maximum iteration.

Step 2 Initial values of positions and velocities are generated.
Initial positions of each kth (k = 1, 2, . . . , pn) particle are randomly generated from

uniform distribution (0, 1) and kept in a vector of kX given as follows:

k X = {
k x1, k x2, . . . , k x6q ,

}
, k = 1, 2, . . . , pn (5)

where k xl (l = 1, 2, . . . , 6q) represents lth position of kth particle. Moreover initial values
of velocities are randomly generated from uniform distribution (−vm, vm), and kept in a
vector of kV given bellow.

kV = {
kv1, kv2, . . . , kv6q ,

}
, k = 1, 2, . . . , pn (6)

where kvl (l = 1, 2, . . . , 6q) represents velocity for lth position of kth particle.

Step 3 Fitness function values are computed.
Mean square error (MSE) is taken as fitness function in this step. For kth particle, MSE

value are obtained in Eq. (7)

kMSE = 1

n

n∑

t=1

(
yt − k ŷt

)2
, k = 1, 2, . . . , pn (7)

The outputs, k ŷt , are calculated by using algorithm 1 and the positions of corresponding
particle k. Weights and biases are designed like in Fig. 1 from positions of corresponding
particle k.

Step 4 k Pbest and Gbest are determined.
k Pbest = (

k p1, k p2, . . . , k p6q ; k = 1, 2, . . . , pn
)
and Gbest = (

p1, p2, . . . , p6q
)
are

specified via fitness function values calculated in Step 2. k Pbest and Gbest represent a
vector stores the positions corresponding to the kth particle’s best individual performance,
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and the positions of the best particle which has the best fitness function value, obtained so
far, respectively.

Step 5 The parameters of MPSO are updated.
The updated values of cognitive coefficient c1, social coefficient c2 and inertia parameter

w are calculated using the formulas given in (8), (9), and (10).

r c1 = (
c1 f − c1i

) r

itrmax
+ c1i (8)

r c2 = (
c2 f − c2i

) r

itrmax
+ c2i (9)

rw = (w2 − w1)
itrmax − r

itrmax
+ w1 (10)

where, r is current iteration number. Moreover, indexes of f and i represent final, and initial
of possible values for cognitive and social coefficients, respectively.

Step 6 Values of velocities and positions are updated.
Velocities and positions are re-obtained by using the equations given in (11) and (12),

respectively.

r+1
kvl = [rw × r

kvl + r c1 × rand1 × (k pl − k xl ,) + r c2 × rand2 × (pl − k xl ,)
]

(11)
r+1

k xl = r
k xl + r+1

k vl (12)

START

Determine 
The 

Parameters 
of MPSO

Generate Initial 
Values of Psitions 

and Velocities

Calculate Fitness 
Values by Using 

Algorithm 1

Specify Pbest and 
Gbest

Update MPSO 
Parameters

Update Positions 
and Velocities

Calculate Fitness 
Values by Using 

Algorithm 1

Update Pbest and 
Gbest

Are The Stopping 
Conditions Met?

STOP

YES

NO

Fig. 3 The flow chart of algorithm 2
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Table 1 Time series used in implementations and their some features

Time
series no.

Series Period Observed
period

Number
of lag

The number
of repetition

Test set
size

Total
analysis

1–5 DJF 2010–2014 Daily basis 2:5 30 10; 20; 40 450

6–10 BIST 2010–2014 Daily basis 2:5 30 10; 20; 40 450

11–15 NASDAQ 2010–2014 Daily basis 2:5 30 10; 20; 40 450

16–20 TAIEX 2010–2014 Daily basis 2:5 30 10; 20; 40 450

21 AUST 1956 Q1
–1994 Q1

Quarterly 4:8 1 16 1

22 TEC 01/2002
–12/2013

Monthly 2:16 1 12 1

where rand1 and rand2 are random values from the interval [0, 1].

Step 7 Check the stopping criteria.
If the number of repetition maximum iteration number (itrmax) is reached then stop the

process, or else repeat from Steps 3 to Step 7 until a predetermined maximum iteration
number (itrmax) is reached.

When itrmax is reached the optimum values of weights and biases are specified by Eqs. 1
and 2. And then the training of AC-S-MNM is completed. The flow chart of algorithm 2 can
be given as in Fig. 3.

3 The Implementations

In order to investigate the performance of the proposed AC-S-MNM, 22 different time series
were analysed. These time series and its some features used in the implementations are given
in Table 1. In implementations of AC-S-MNM and the other methods based on MPSO, the
parameters were taken as pn = 30, vm = 100,

(
c1i , c1 f

) = (2, 3),
(
c2i , c2 f

) = (2, 3),
(w1, w2) = (1, 2), and itrmax = 300.

20 of these time series are daily basis stock exchange ofDow Jones Futures (DJF), Istanbul
Stock Exchange (BIST), National Association of Securities Dealers Automated Quotations
(NASDAQ), and Taiwan Stock Exchange Capitalization Weighted (TAIEX). In the applica-
tion of these data sets, model order, in other words the number of inputs of the ANN, were
taken from two to five and three different test set size were used as 10; 20; 40 and also for
each of data set were analysed with 30 different random initialization. Taking into account
all of these features, totally, 4 × 3 × 30 = 360 different analysis were performed for each
of data set. In this analysis process, in addition to the proposed model, Single Multiplica-
tive Neuron Model ANN trained by MPSO (SMN-ANN-PSO), multilayer perceptron ANN
trained by MPSO (MLP-ANN-PSO), and Single Multiplicative Recurrent Neuron Model
ANN trained by MPSO (SMN-R-ANN-PSO) were implemented and obtained results were
evaluated together in terms of root mean square error (RMSE) criteria for both training and
test sets. A summary of the obtained results are given in Table 2.

RMSE =
√√√√1

n

n∑

t=1

(
yt − ŷt

)2 (13)
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In Table 2, ranking rates of the proposed model are given with respect to four different values
as mean, minimum, maximum and standard deviation of RMSE. In consideration of Table 2,
for DJF time series, it is seen that the proposed AC-S-MNM, with regards to mean of RMSE,
has best value in all 360 implementations in both training and test sets. Moreover, while the
proposedmodel has best performance in 86.66 percentages of implementations, it has second
best performance in 11.67 percentages of implementations for test sets in the analysis of DJF.

When it comes to consideration the implementations of four different data sets (DJF, BIST,
NASDAQ and TAIEX) as a whole, the proposed model has best values in terms of mean of
RMSE in 99.17 percentages of implementations; in terms of minimum values of RMSE in
91.67 percentages of implementation; in respect to maximum values of error criteria in 100
percentages of implementation and in recognition of standard deviation of RMSE that is also
an evidence of consistency of the models 73.33 percentages of implementation for the test
sets (detailed results can be seen from supplementary tables).

Moreover, for a statistical evaluation as another emphasis of the outstanding performance
of the proposed AC-S-MNM, Kruskal Wallis-H (KW-H) test performed and the results
obtained from four different ANN models including the proposed AC-S-MNM were com-
pared for DJF, BIST, NASDAQ and TAIEX data sets. In the comparison, significance level
alpha was taken into account with two different levels as 0.05 and 0.10 and the p values
obtained from KW-H test were compared to alpha. According to KW-H test’s results, for
whole alternating analysis including training and test data sets, there are significant differ-
ences among the performance of ANN models for both 0.05 and 0.10 significance levels
apart from just one case for analysis of NASDAQ 2011/test set 10 when the number of input
is 2 (see the Supplementary Tables). Even for these cases, there is a significant difference
among ANN models in the level of significant 0.10 (P = 0.099). Considering the results
both obtained from KW-H tests and given in Table 2 together, it is statistically said that the
proposed AC-S-MNM has the best forecasting performance for 98.33 percentages and 99.17
percentage of whole analysis in the training and the test sets, respectively.

Secondly, Australian beer consumption data (AUST), a well-known real-time series data,
between 1957 Q2 and 1994 Q1 was analysed. In the analysis of AUST given in Fig. 4, as in
other previous studies, the number of inputs of the ANN was changed from 4 to 16 and the
last 16 observations were taken as test set.

The best performance of the proposed model in terms of RMSE and mean absolute per-
centage error (MAPE), for AUST, is represented with the best results that obtained from
11 different models in Table 3. While the results of SARIMA (seasonal autoregressive
integrated moving average), WMES (Winter’s multiplicative exponential smoothing), MLP-
ANN, RBF-ANN (radial bases function ANN) L&NL-ANN (linear and non-linear ANN),
E-ANN (ElmanANN),MS-ANN (multiplicative seasonal ANN), and R-MNM-ANN (recur-
rent multiplicative neuron ANN) were taken from [16], the results of SMN-ANN-PSO,
MLP-ANN-PSO, and SMN-R-ANN-PSO were obtained in this study by running MATLAB
software program.

MAPE = 1

n

n∑

t=1

∣∣∣∣
yt − ŷt

yt

∣∣∣∣ (14)

When all results in Table 3 are considered together, it is clearly seen that the proposed
model has superior forecasting performance with 17.2390 RMSE value and 3.09% MAPE
value. The graph of best forecasts obtained in case of model order 16 and observations of
test data is given in Fig. 5. Figure 5 shows that the forecasts of AC-S-MNM are in good
agreement with observations just as the scatter plot given in Fig. 6.
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Table 2 Ranking rates of each model

Proposed method

First (%) Second (%) Third (%) Fourth (%) Data (%)

Training

Mean 100.00 0.00 0.00 0.00 DJF

Min 61.66 31.67 6.67 0.00

Max 100.00 0.00 0.00 0.00

SD 93.33 6.67 0.00 0.00

Test

Mean 100.00 0.00 0.00 0.00

Min 86.66 11.67 1.67 0.00

Max 100.00 0.00 0.00 0.00

SD 75.00 21.67 3.33 0.00

Training

Mean 100.00 0.00 0.00 0.00 BIST

Min 81.66 16.67 1.67 0.00

Max 100.00 0.00 0.00 0.00

SD 88.33 10.00 1.67 0.00

Test

Mean 96.67 3.33 0.00 0.00

Min 90.00 10.00 0.00 0.00

Max 100.00 0.00 0.00 0.00

SD 83.33 16.67 0.00 0.00

Training

Mean 93.33 1.67 0.00 0.00 NASDAQ

Min 53.33 31.67 13.33 1.67

Max 98.33 1.67 0.00 0.00

SD 88.33 10.00 1.67 0.00

Test

Mean 100.00 0.00 0.00 0.00

Min 95.00 5.00 0.00 0.00

Max 100.00 0.00 0.00 0.00

SD 68.33 26.67 5.00 0.00

Training

Mean 100.00 0.00 0.00 0.00 TAIEX

Min 90.00 8.33 1.67 0.00

Max 100.00 0.00 0.00 0.00

SD 86.67 11.67 1.67 0.00

Test

Mean 100.00 0.00 0.00 0.00

Min 95.00 5.00 0.00 0.00

Max 100.00 0.00 0.00 0.00

SD 66.67 23.33 5.00 5.00
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Table 2 continued

Proposed method

First (%) Second (%) Third (%) Fourth (%) Data (%)

Training

Mean 98.33 0.42 0.00 0.00 General

Min 71.66 22.09 5.84 0.42

Max 99.58 0.42 0.00 0.00

SD 89.17 9.59 1.25 0.00

Test

Mean 99.17 0.83 0.00 0.00

Min 91.67 7.92 0.42 0.00

Max 100.00 0.00 0.00 0.00

SD 73.33 22.09 3.33 1.25

Fig. 4 The graph of AUST

Table 3 The performance
criteria of models for AUST

Method RMSE MAPE (%)

SARIMA 47.0367 9.49

WMES 53.3295 10.72

MLP-ANN 24.1052 4.76

RBF-ANN 41.7000 6.86

L&NL-ANN 18.7888 3.57

E-ANN 22.6581 4.36

MS-ANN 22.1700 3.93

R-MNM-ANN 17.8573 3.29

SMN-ANN-PSO 18.3896 3.29

MLP-ANN-PSO 24.8945 4.47

SMN-R-ANN-PSO 22.2994 4.11

The proposed AC-S-MNM 17.2930 3.09Italic values refer to the best
performance values
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Fig. 5 The graph of forecasts obtained from AC-S-MNM and observations for test set of AUST

Fig. 6 The scatter plot of forecasts obtained from AC-S-MNM and observations for test set of AUST

Fig. 7 The graph of ELC
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Table 4 The performance
criteria of models for ELC

Method RMSE MAPE (%)

SARIMA 9.1732E+08 3.88

MLP-ANN 1.0659E+09 3.98

L&NLANN 8.2098E+08 2.54

MS-ANN 8.1326E+08 3.01

SMN-ANN-PSO 6.7279E+08 2.89

MLP-ANN-PSO 9.1519E+08 3.39

SMN-R-ANN-PSO 6.5648E+08 2.72

The proposed AC-S-MNM 6.2437E+08 2.39Italic values refer to the best
performance values

Fig. 8 The graph of forecasts obtained from AC-S-MNM and observations for test set of ELC

Fig. 9 The scatter plot of forecasts obtained from AC-S-MNM and observations for test set of ELC

Finally, Turkey Electricity Consumption data observed monthly between first month of
2002 and last month of 2013 (TEC) was used to evaluate the forecasting performance of
AC-S-MNM. In the implementation of TEC which is given in Fig. 7, the model order was
changed from 2 to 16, and the last 12 observations were taken as test set.
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The best performance of the proposed model, for ELC, is represented with the best results
that obtained from some other models in Table 4. Considering the results in Table 4, it is
clearly seen that AC-S-SMN has superior forecasting performance with 6.2437E+08 RMSE
value and 2.39%MAPE value. The graph of best forecasts obtained in case of model order 15
and observations of test data are given in Fig. 8. From Fig. 8, we clearly see that the forecasts
of AC-S-MNM are in compliance with observations. Moreover the scatter plot given in Fig. 9
is a supportive evidence for the cohesion of the forecasts with observations.

4 Conclusion and Discussion

Nowadays, although researchers have commonly take advantage of MLP and S-MNM in
time series prediction problems and they have various high quality features, each of them
also contains some issues itself such as architecture determination problem and having a
strict model-based structure. However, a more practical and successful ANN model can be
used for time series prediction by integrating the superior aspect of S-MNM and MLP by
eliminating the weaknesses of them. In this study, from this point of view, we proposed an
ANN model—AC-S-MNM—that does not have the architecture selection problem just as
S-MNMand have a feature of data-based just asMLP. In AC-S-MNM,weights and biases are
produced through autoregressive equations. In the producing process of weights and biases,
since the time index of each observation are considered, the model is evaluated as a data-
based. The coefficients of autoregressive equations and the initial values of the weights and
biases were determined by using PSO in an optimization process. The proposed model was
applied to various real-world time series data sets and the obtained results were compared to
the results of somewell-knownmethods. And the results also show that AC-S-MNM exhibits
significantly better performance as compared to the existing models. In future studies, some
other equation structure can be utilized to determine the weights and biases.
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