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Abstract This paper investigates the synchronization control problemof coupledmemristor-
based neural networks (CMNNs)withmixed delays and stochastic perturbations. By utilizing
simple feedback controllers, some novel sufficient conditions are derived to ensure the expo-
nential synchronization of CMNNs with mixed delays and stochastic perturbations in mean
square. In addition, by means of adaptive feedback controllers, the asymptotic synchroniza-
tion of CMNNs with mixed delays and stochastic perturbations in mean square can also be
achieved via stochastic LaSalle invariance principle. Numerical simulations are presented to
illustrate the effectiveness of the theoretical results.

Keywords Synchronization · Stochastic perturbations · Mixed delays · Coupled
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1 Introduction

In the coupled systems, synchronization is an important collective dynamical behavior [1].
In recent years, the synchronization problem of coupled neural networks has attracted great
attention due to its vast application prospects in secure communications [2], pattern recog-
nition [3], associative memory [4] and optimization [5]. Up to now, many results about
the synchronization of coupled neural networks have been obtained [6–12]. Especially, the
pinning synchronization of coupled neural networks was investigated in [11] via impulsive
control, and the authors of [12] studied the finite-time synchronization of switched coupled
neural networks.
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As we know, resistor, capacitor and inductor are three basic circuit elements, which reflect
the relations between four fundamental electrical quantities: voltage, current, charge and
flux. Specifically, resistor reflects the relationship between voltage and current, capacitor
reflects the relationship between charge and voltage, and inductor reflects the relationship
between flux and current. In 1971, the concept of memristor was proposed by Chua [13] as
the fourth basic circuit element. Memristor has attracted considerable attention since it was
prototyped in 2008 [14]. Memristor, which is the abbreviation of memory resistor, reflects
the relationship between flux and charge (see Fig. 1). The memristance of memristor varies
with the quantity of the passed charge [15], so memristor has the function of memory. In
the circuit implementation of neural network, synapses are usually simulated by resistors.
However, we know that the synapses play an important part in the formation of memory,
but the common resistors don’t have the function of memory. If the resistors used in the
circuit implementation of neural network are replaced by memristors, the usual artificial
neural network becomes a memristor-based neural network, which is the suitable candidate
for simulating the human brain [16]. So far, considerable achievements have been made in
the field of memristive neurodynamics, such as stability and synchronization [17–22].

Recently, the research on synchronization problem has been extended to CMNNs [23–
25]. In [23], some sufficient conditions that can guarantee the exponential synchronization of
CMNNs with delays and nonlinear coupling were derived. [24,25] investigated the synchro-
nization problem of CMNNs with delays. Additionally, stochastic effects inevitably exist in
nervous systems and the signal transmission between synapses is a noisy process in fact.
When there exist stochastic perturbations in networks, it is more difficult to achieve the
synchronization of networks. So it is necessary to study the networks with stochastic per-
turbations [26–28]. As far as we know, there have been some results on the drive-response
synchronization of memristor-based neural networks with stochastic perturbations [29,30].
What’s more, the synchronization of CMNNs with delays and stochastic perturbations has
also been investigated in [31,32]. In [31], the global synchronization of CMNNs with delays
and stochastic perturbations was studied via pinning impulsive control. In [32], the pth
moment exponential synchronization of CMNNs with mixed delays and stochastic perturba-
tions was investigated via the delayed impulsive controllers. However, it should be pointed
out that both the controllers used in [31] and [32] were very complex and difficult to be
manipulated.

Motivated by the above analysis, in this paper, the feedback control is firstly used to
study the synchronization of CMNNs with mixed delays and stochastic perturbations. By
designing simple feedback controllers and utilizing a lemma given in [33], some novel suf-
ficient conditions ensuring the exponential synchronization of CMNNs with mixed delays
and stochastic perturbations in mean square are derived. Adaptive control can be used even

Fig. 1 The relations among
resistor (R), capacitor (C),
inductor (L), memristor (M),
voltage (v), current (i), charge
(q) and flux (ϕ): dv = Rdi ,
dq = Cdv, dϕ = Ldi and
dϕ = Mdq
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when there is no perfect knowledge of the coupled systems, and the adaptive control can
reduce the control gains effectively. By designing suitable adaptive feedback controllers and
utilizing stochastic LaSalle invariance principle, the asymptotic synchronization of CMNNs
with mixed delays and stochastic perturbations in mean square can be achieved. We believe
that the methods used in this paper can also be applied to analyze the synchronization control
of other stochastic systems and coupled systems.

The rest of this paper is organized as follows. In Sect. 2, some necessary preliminaries
are introduced. We derive the main results of the paper in Sect. 3. In Sect. 4, numerical
simulations are presented to verify the effectiveness of the theoretical results. Conclusions
are given in Sect. 5.

2 Preliminaries

A memristor-based neural network with mixed delays can be described as follows:

dz(t)

dt
= −D(z(t))z(t) + A(z(t)) f (z(t)) + B(z(t)) f (z(t − τ1(t))) + J

+ C(z(t))
∫ t

−∞
K (t − s) f (z(s))ds,

(1)

where z(t) = (z1(t), z2(t), . . . , zn(t))T is the state vector; D(z(t)) = diag (d1(z1(t)),
d2(z2(t)), . . . , dn(zn(t))), where di (·)> 0, i = 1, 2, . . . , n, denote the neuron self-
inhibitions; A(z(t)) = (ar j (zr (t)))n×n , B(z(t)) = (br j (zr (t)))n×n and C(z(t)) =
(cr j (zr (t)))n×n are the memristive connection weight matrices; f (z(·)) = ( f1(z1(·)),
f2(z2(·)), . . . , fn(zn(·)))T , where fi (·), i = 1, 2, . . . , n, are the activation functions; J =

(J1, J2, . . . , Jn)T , where Ji , i = 1, 2, . . . , n, are external inputs; τ1(t) is the time-varying
discrete delay; K :[0,+∞) → [0,+∞) is the delay kernel of the unbounded distributed
delay; dr (zr (t)), ar j (zr (t)), br j (zr (t)) and cr j (zr (t)) are defined as

dr (zr (t)) =
{

d∗
r , |zr (t)| ≤ Tr ,

d∗∗
r , |zr (t)| > Tr ,

ar j (zr (t)) =
{
a∗
r j , |zr (t)| ≤ Tr ,

a∗∗
r j , |zr (t)| > Tr ,

br j (zr (t)) =
{
b∗
r j , |zr (t)| ≤ Tr ,

b∗∗
r j , |zr (t)| > Tr ,

cr j (zr (t)) =
{
c∗
r j , |zr (t)| ≤ Tr ,

c∗∗
r j , |zr (t)| > Tr ,

(2)

for r, j = 1, 2, . . . , n, where Tr > 0, d∗
r , d∗∗

r , a∗
r j , a

∗∗
r j , b

∗
r j , b

∗∗
r j , c

∗
r j , c

∗∗
r j are known con-

stants. The interested readers can refer to some published works [34,35], which gave detailed
explanations about how to build memristor-based neural networks.

A memristor-based neural network with mixed delays and stochastic perturbations can be
written in the following form:

dz(t) =
[

− D(z(t))z(t) + A(z(t)) f (z(t)) + B(z(t)) f (z(t − τ1(t))) + J

+ C(z(t))
∫ t

−∞
K (t − s) f (z(s))ds

]
dt + β(t, z(t), z(t − τ2(t)))dω(t),

(3)

where τ2(t) is a time-varying delay satisfying 0 ≤ τ2(t) ≤ τ2; β : R+ × Rn × Rn → Rn×n

represents the noise intensity function matrix; ω(t) = (ω1(t), ω2(t), . . . , ωn(t))T is a n-
dimensional Brown notion. The initial value of system (3) is z(s) = ϕ(s) ∈ C((−∞, 0], Rn),
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where C((−∞, 0], Rn) is the Banach space of all continuous functions that map (−∞, 0]
into Rn .

CMNNswith mixed delays and stochastic perturbations can be described by the following
differential equations:

dxi (t) =
[

− D(xi (t))xi (t) + A(xi (t)) f (xi (t)) + B(xi (t)) f (xi (t − τ1(t))) + J

+ C(xi (t))
∫ t

−∞
K (t − s) f (xi (s))ds + hi (x1(t), x2(t), . . . , xN (t))

]
dt

+ β(t, xi (t), xi (t − τ2(t)))dω(t), i = 1, 2, . . . , N ,

(4)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ; D(xi (t)) = diag (d1(xi1(t)), d2(xi2(t)),
.., dn(xin(t))); A(xi (t)) = (ar j (xir (t)))n×n , B(xi (t)) = (br j (xir (t)))n×n , C(xi (t)) =
(cr j (xir (t)))n×n ; hi : RnN → Rn is the coupling function, which satisfies hi (z(t), z(t), . . . ,
z(t)) = 0; dr (xir (t)), ar j (xir (t)), br j (xir (t)) and cr j (xir (t)) are defined as

dr (xir (t)) =
{

d∗
r , |xir (t)| ≤ Tr ,

d∗∗
r , |xir (t)| > Tr ,

ar j (xir (t)) =
{
a∗
r j , |xir (t)| ≤ Tr ,

a∗∗
r j , |xir (t)| > Tr ,

br j (xir (t)) =
{
b∗
r j , |xir (t)| ≤ Tr ,

b∗∗
r j , |xir (t)| > Tr ,

cr j (xir (t)) =
{
c∗
r j , |xir (t)| ≤ Tr ,

c∗∗
r j , |xir (t)| > Tr ,

(5)

for r, j = 1, 2, . . . , n. The initial value of CMNNs (4) is xi (s) = φi (s) ∈ C((−∞, 0], Rn).
In order to synchronize all the states of CMNNs (4) onto z(t) of system (3), suitable

controllers will be needed. The controlled CMNNs are presented as

dxi (t) =
[

− D(xi (t))xi (t) + A(xi (t)) f (xi (t)) + B(xi (t)) f (xi (t − τ1(t))) + J

+ C(xi (t))
∫ t

−∞
K (t − s) f (xi (s))ds + hi (x1(t), x2(t), . . . , xN (t)) + Ri (t)

]
dt

+ β(t, xi (t), xi (t − τ2(t)))dω(t), i = 1, 2, . . . , N ,

(6)
where Ri (t), i = 1, 2, . . . , N , are the controllers that will be designed.

It is noticed that systems (3) and (6) are discontinuous systems since they switch in view of
states. Considering that their solutions in the conventional sense do not exist, we can discuss
their solutions in the sense of Filippov. Next, we will give the definition of Filippov solution.

Consider the following differential equation:

ẋ(t) = f (x(t)), x(0) = x0, (7)

where x(t) ∈ Rn , f : Rn → Rn is discontinuous and locally measurable.

Definition 1 [36]. The set-valued map of f (x) at x ∈ Rn is defined by

K [ f ](x) =
⋂
δ>0

⋂
μ(N )=0

co[ f (B(x, δ)\N )],

where co[E] is the convex closure of set E , μ(N ) denotes the Lebesgue measure of set N ,
and B(x, δ) = {y: ‖y − x‖ ≤ δ}.
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Definition 2 [37]. A vector function x(t) defined on interval [0, T ) is said to be a Filippov
solution of system (7) if it is absolutely continuous on any compact subinterval of [0, T ) and
satisfies differential inclusion ẋ(t) ∈ K [ f ](x(t)) for almost all t ∈ [0, T ).

Throughout this paper, set dr = min{d∗
r , d∗∗

r }, a+
r j = max

{
|a∗

r j |, |a∗∗
r j |}, b+

r j =
max{|b∗

r j |, |b∗∗
r j |}, c+

r j = max{|c∗
r j |, |c∗∗

r j |
}
, for r, j = 1, 2, . . . , n.

The synchronization errors are defined as ei (t) = xi (t)− z(t), i = 1, 2, . . . , N . From (3)
and (6), it follows that:

dei (t) = [−D(xi (t))xi (t) + D(z(t))z(t) + Fi (t) + Hi (e1(t), e2(t), . . . , eN (t))

+ Ri (t)] dt + �(t, ei (t), ei (t − τ2(t)))dω(t), i = 1, 2, . . . , N ,
(8)

where �(t, ei (t), ei (t − τ2(t))) = β(t, xi (t), xi (t − τ2(t))) − β(t, z(t), z(t − τ2(t))),
Hi (e1(t), e2(t), . . . , eN (t)) = hi (x1(t), x2(t), . . . , xN (t)) − hi (z(t), z(t), . . . , z(t)),

Fi (t) = A(xi (t)) f (xi (t)) − A(z(t)) f (z(t)) + B(xi (t)) f (xi (t − τ1(t)))

− B(z(t)) f (z(t − τ1(t))) + C(xi (t))
∫ t

−∞
K (t − s) f (xi (s))ds

− C(z(t))
∫ t

−∞
K (t − s) f (z(s))ds.

(9)

The initial value of system (8) is ei (s) = φi (s) − ϕ(s) ∈ C((−∞, 0], Rn).
The following assumptions will be used in this paper.

(A1) τ̇2(t) ≤ σ2 < 1, where σ2 is a positive constant.
(A2) Activation functions are bounded, that is, there exist constants Mj >

0, j = 1, 2, . . . , n, such that
∣∣ f j (·)∣∣ ≤ Mj .

(A3) There are some constants γi j ≥ 0, i, j = 1, 2, . . . , N , such that

‖hi (x1(t), x2(t), . . . , xN (t)) − hi (z(t), z(t), . . . , z(t))‖ ≤
N∑
j=1

γi j‖x j (t) − z(t)‖.

(A4) For x1, y1, x2, y2 ∈ Rn , there exist constants ρ1 ≥ 0 and ρ2 ≥ 0 such
that

trace
{
[β(t, x1, y1) − β(t, x2, y2)]

T [β(t, x1, y1) − β(t, x2, y2)]
}

≤ρ1‖x1 − x2‖2 + ρ2‖y1 − y2‖2.
(10)

(A5) There is a constant K > 0 such that
∫ +∞
0 K (s)ds ≤ K .

Lemma 1

sign(ei j (t))(−d j (xi j (t))xi j (t) + d j (z j (t))z j (t)) ≤ −d j

∣∣ei j (t)∣∣ + Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ .
Proof We consider the following four cases:

(1) When
∣∣xi j (t)∣∣ < Tj and

∣∣z j (t)∣∣ < Tj ,

sign(ei j (t))(−d j (xi j (t))xi j (t) + d j (z j (t))z j (t))

= −sign(ei j (t))(d
∗
j xi j (t) − d∗

j z j (t))

= −d∗
j

∣∣ei j (t)∣∣ ≤ −d j

∣∣ei j (t)∣∣ .
(11)
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(2) When
∣∣xi j (t)∣∣ > Tj and

∣∣z j (t)∣∣ > Tj ,

sign(ei j (t))(−d j (xi j (t))xi j (t) + d j (z j (t))z j (t))

= −d∗∗
j

∣∣ei j (t)∣∣ ≤ −d j

∣∣ei j (t)∣∣ . (12)

(3) When
∣∣xi j (t)∣∣ ≥ Tj and

∣∣z j (t)∣∣ ≤ Tj ,

sign(ei j (t))(−d j (xi j (t))xi j (t) + d j (z j (t))z j (t))

= −sign(ei j (t))[d j (xi j (t))ei j (t) + (d j (xi j (t)) − d j (z j (t)))z j (t)]
≤ −d j

∣∣ei j (t)∣∣ + Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ .
(13)

(4) When
∣∣xi j (t)∣∣ ≤ Tj and

∣∣z j (t)∣∣ ≥ Tj ,

sign(ei j (t))(−d j (xi j (t))xi j (t) + d j (z j (t))z j (t))

= −sign(ei j (t))[(d j (xi j (t)) − d j (z j (t)))xi j (t) + d j (z j (t))ei j (t)]
≤ −d j

∣∣ei j (t)∣∣ + Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ .
(14)

The proof is completed. 	


Lemma 2 Let Fi (t) = (Fi1(t), Fi2(t), . . . , Fin(t))T , then
∣∣Fi j (t)∣∣ ≤ � j , where � j =∑n

l=1 2(a
+
jl + b+

jl + c+
jl K )Ml, for i = 1, 2, . . . , N, j = 1, 2, . . . , n.

Proof In view of Assumptions A2 and A5, the proof is obvious. 	


Lemma 3 [33]. Suppose that the continuous function V (t) satisfies V (t) ≥ 0, ∀t ∈ (a −
θ,+∞) and

V̇ (t) ≤ −k1V (t) + k2 sup
t−θ≤s≤t

V (s), t ≥ a,

where k1 > k2 > 0. Then V (t) satisfies

V (t) ≤ sup
a−θ≤s≤a

V (s)e−γ (t−a), t ≥ a,

where γ is the unique positive solution of the equation γ − k1 + k2eγ θ = 0.

Definition 3 CMNNs (6) are said to be exponentially synchronized onto the system (3) in
mean square, if there exist constants � > 0 and α > 0 such that

N∑
i=1

E[‖ei (t)‖2] ≤ � · sup
s≤0

N∑
i=1

E[‖ei (s)‖2]e−αt , t ≥ 0.

Definition 4 CMNNs (6) are said to be asymptotically synchronized onto the system (3) in
mean square, if we can derive

lim
t→+∞

N∑
i=1

E[‖ei (t)‖2] = 0.
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3 Main Results

In order to synchronize all the solutions of CMNNs (6) onto z(t) of system (3), we design
the following feedback controllers:

Ri (t) = −ξei (t) − ηsign(ei (t)), i = 1, 2, . . . , N , (15)

where ξ is a constant and η = diag(η1, η2, . . . , ηn) is a matrix.

Theorem 1 Suppose Assumptions A2–A5 hold. For given constant λ ≥ 0, if ξ > 1
2 (λ+ρ1+

ρ2eλτ2)−min
j

{
d j

}
+‖�‖ and η j ≥ Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣+� j , j = 1, 2, . . . , n, CMNNs (6) can

be exponentially synchronized onto the system (3) in mean square under the controllers (15).

Proof We design the following Lyapunov function:

V (t) =
N∑
i=1

eλt

2
eTi (t)ei (t), λ ≥ 0. (16)

Differentiating V (t) along system (8), we have

dV (t) = LV (t)dt +
N∑
i=1

eλt eTi (t)�(t, ei (t), ei (t − τ2(t)))dω(t),

where

LV (t) =λeλt

2

N∑
i=1

eTi (t)ei (t) + eλt
N∑
i=1

eTi (t) [−D(xi (t))xi (t)

+ D(z(t))z(t) + Fi (t) + Hi (e1(t), e2(t), . . . , eN (t)) + Ri (t)]

+ eλt

2

N∑
i=1

trace
[
�T (t, ei (t), ei (t − τ2(t)))�(t, ei (t), ei (t − τ2(t)))

]
.

(17)

According to Lemma 1,

eλt
N∑
i=1

eTi (t) [−D(xi (t))xi (t) + D(z(t))z(t)]

= eλt
N∑
i=1

n∑
j=1

ei j (t)
[−d j (xi j (t))xi j (t) + d j (z j (t))z j (t)

]

= eλt
N∑
i=1

n∑
j=1

∣∣ei j (t)∣∣ · sign(ei j (t))
[−d j (xi j (t))xi j (t) + d j (z j (t))z j (t)

]

≤ eλt
N∑
i=1

n∑
j=1

∣∣ei j (t)∣∣ ·
[
−d j

∣∣ei j (t)∣∣ + Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣
]

≤ −min
j

{
d j

}
eλt

N∑
i=1

‖ei (t)‖2 + eλt
N∑
i=1

n∑
j=1

Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ · ∣∣ei j (t)∣∣ .

(18)

123



686 C. Chen et al.

According to Lemma 2,

eλt
N∑
i=1

eTi (t)Fi (t)

≤ eλt
N∑
i=1

n∑
j=1

∣∣ei j (t)∣∣ · ∣∣Fi j (t)∣∣ ≤ eλt
N∑
i=1

n∑
j=1

∣∣ei j (t)∣∣ � j .

(19)

Let � = (γi j )N×N and ζ = (‖e1(t)‖, ‖e2(t)‖, . . . , ‖eN (t)‖)T , we have

eλt
N∑
i=1

eTi (t)Hi (e1(t), e2(t), . . . , eN (t))

≤ eλt
N∑
i=1

‖ei (t)‖ · ‖Hi (e1(t), e2(t), . . . , eN (t))‖

≤ eλt
N∑
i=1

‖ei (t)‖
N∑
j=1

γi j‖e j (t)‖

= eλtζ T�ζ ≤ eλt‖�‖ · ‖ζ‖2 = eλt‖�‖
N∑
i=1

‖ei (t)‖2,

(20)

where Assumption A3 has been used.
It is obvious that

eλt
N∑
i=1

eTi (t)Ri (t) = eλt
N∑
i=1

eTi (t) [−ξei (t) − ηsign(ei (t))]

= −eλt
N∑
i=1

ξ ‖ei (t)‖2 − eλt
N∑
i=1

n∑
j=1

ei j (t) · η j sign(ei j (t))

= −eλt
N∑
i=1

ξ‖ei (t)‖2 − eλt
N∑
i=1

n∑
j=1

η j
∣∣ei j (t)∣∣ .

(21)

According to Assumption A4,

eλt

2

N∑
i=1

trace
[
�T (t, ei (t), ei (t − τ2(t)))�(t, ei (t), ei (t − τ2(t)))

]

≤ eλt

2

N∑
i=1

[
ρ1‖ei (t)‖2 + ρ2‖ei (t − τ2(t))‖2

]
.

(22)

Then we have

LV (t) ≤ eλt
N∑
i=1

(
λ

2
− min

j

{
d j

}
+ ‖�‖ − ξ + ρ1

2

)
‖ei (t)‖2 + eλt

N∑
i=1

ρ2

2
‖ei (t − τ2(t))‖2

+ eλt
N∑
i=1

n∑
j=1

(Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ + � j − η j )
∣∣ei j (t)∣∣ .

(23)
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Since η j ≥ Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ + � j , j = 1, 2, . . . , n, it follows that

LV (t) ≤ eλt
N∑
i=1

(
λ

2
− min

j
{d j } + ‖�‖ − ξ + ρ1

2

)
‖ei (t)‖2 + eλt

N∑
i=1

ρ2

2
‖ei (t − τ2(t))‖2.

(24)
Taking mathematical expectation yields

dEV (t)

dt
≤ (λ − 2min

j

{
d j

}
+ 2‖�‖ − 2ξ + ρ1)EV (t) + ρ2e

λτ2EV (t − τ2(t)). (25)

That means

dEV (t)

dt
≤ (λ − 2min

j

{
d j

}
+ 2‖�‖ − 2ξ + ρ1)EV (t) + ρ2e

λτ2 sup
t−τ2≤s≤t

EV (s). (26)

Since ξ > 1
2 (λ + ρ1 + ρ2eλτ2) − min

j

{
d j

}
+ ‖�‖, we can derive from Lemma 3 that

EV (t) ≤ sup
−τ2≤s≤0

EV (s)e−μt , t ≥ 0, (27)

where μ is the unique positive solution of the equation

μ + λ − 2min
j

{
d j

}
+ 2‖�‖ − 2ξ + ρ1 + ρ2e

(λ+μ)τ2 = 0.

Then we have

eλt

2

N∑
i=1

E[‖ei (t)‖2] ≤ sup
−τ2≤s≤0

eλs

2

N∑
i=1

E[‖ei (s)‖2]e−μt

≤ 1

2
sup

−τ2≤s≤0

N∑
i=1

E[‖ei (s)‖2]e−μt , t ≥ 0.

(28)

Therefore,

N∑
i=1

E[‖ei (t)‖2] ≤ sup
−τ2≤s≤0

N∑
i=1

E[‖ei (s)‖2]e−(μ+λ)t , t ≥ 0. (29)

This completes the proof. 	

In Theorem 1, the control gains of feedback controllers (15) may be much larger than

those needed actually because of the conservativeness of theoretical analysis. Since adaptive
feedback controllers can avoid the high control gains perfectly, we will consider adaptive
feedback controllers in Theorem 2.

Theorem 2 If Assumptions A1–A5 hold, CMNNs (6) will be asymptotically synchronized
onto the system (3) in mean square under the adaptive feedback controllers:

Ri (t) = −ξi (t)ei (t) − ηi (t)sign(ei (t)), i = 1, 2, . . . , N , (30)

where ηi (t) = diag(ηi1(t), ηi2(t), . . . , ηin(t)), ξi (t) and ηi j (t) satisfy{
ξ̇i (t) = pi‖ei (t)‖2, ξi (0) = 0,

η̇i j (t) = qi j
∣∣ei j (t)∣∣ , ηi j (0) = 0,

(31)

for i = 1, 2, . . . , N , j = 1, 2, . . . , n, where pi > 0 and qi j > 0 are constants.
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Proof We design the following Lyapunov function:

V (t) = V1(t) + V2(t) + V3(t), (32)

where

V1(t) = 1

2

N∑
i=1

eTi (t)ei (t),

V2(t) =
N∑
i=1

ρ2

2(1 − σ2)

∫ t

t−τ2(t)
‖ei (s)‖2ds,

V3(t) =
N∑
i=1

1

2pi
(ξi (t) − r)2 +

N∑
i=1

n∑
j=1

1

2qi j
(ηi j (t) − s j )

2.

(33)

Differentiating V (t) along system (8), we get that

dV (t) = LV (t)dt +
N∑
i=1

eTi (t)�(t, ei (t), ei (t − τ2(t)))dω(t), (34)

where LV (t) = LV1(t) + LV2(t) + LV3(t).
Similarly to the proof of Theorem 1, it can be derived that

LV1(t) ≤
N∑
i=1

(
−min

j

{
d j

}
+ ‖�‖ − ξi (t) + ρ1

2

)
‖ei (t)‖2 +

N∑
i=1

ρ2

2
‖ei (t − τ2(t))‖2

+
N∑
i=1

n∑
j=1

(
Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ + � j − ηi j (t)
) ∣∣ei j (t)∣∣ .

(35)
Based on Assumption A1,

LV2(t) = ρ2

2(1 − σ2)

N∑
i=1

‖ei (t)‖2 − ρ2(1 − τ̇2(t))

2(1 − σ2)

N∑
i=1

‖ei (t − τ2(t))‖2

≤ ρ2

2(1 − σ2)

N∑
i=1

‖ei (t)‖2 − ρ2

2

N∑
i=1

‖ei (t − τ2(t))‖2.
(36)

It is obvious that

LV3(t) =
N∑
i=1

2(ξi (t) − r)

2pi
· pi‖ei (t)‖2 +

N∑
i=1

n∑
j=1

2(ηi j (t) − s j )

2qi j
· qi j

∣∣ei j (t)∣∣

≤
N∑
i=1

(ξi (t) − r)‖ei (t)‖2 +
N∑
i=1

n∑
j=1

(ηi j (t) − s j )
∣∣ei j (t)∣∣ .

(37)

It follows that

LV (t) ≤
N∑
i=1

(
−min

j

{
d j

}
+ ‖�‖ − r + ρ1

2
+ ρ2

2(1 − σ2)

)
‖ei (t)‖2

+
N∑
i=1

n∑
j=1

(
Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ + � j − s j
) ∣∣ei j (t)∣∣ .

(38)
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Choose r ≥ −min j

{
d j

}
+ ‖�‖ + ρ1

2 + ρ2
2(1−σ2)

+ ε and s j ≥ Tj

∣∣∣d∗
j − d∗∗

j

∣∣∣ + � j , j =
1, 2, . . . , n, where ε > 0.

Then we have

LV (t) ≤ −ε

N∑
i=1

‖ei (t)‖2.

According to LaSalle invariance principle for stochastic delayed differential equa-
tions [38–40], we have limt→+∞ ei (t) = 0, i = 1, 2, . . . , N , which means that

limt→+∞
∑N

i=1 E
[‖ei (t)‖2]

= 0. Based on Definition 4, we can derive that CMNNs (6) can be asymptotically syn-
chronized onto the system (3) in mean square.

This completes the proof. 	


Remark 1 The CMNNs model studied in this paper is the same as that of [32]. In [32],
the upper bounds of the solutions of the isolated node system are assumed to be known
in advance, i.e., there exist some known positive constants Mz

j such that
∣∣z j (t)∣∣ ≤ Mz

j ,
j = 1, 2, . . . , n. However, in our paper, we don’t need the assumption that the upper bounds
of the solutions of the isolated node system are known in advance. Moreover, the activation
functions f j (·), j = 1, 2, . . . , n, in our paper are only required to be bounded, while in [32]
they are assumed to be bounded and satisfy the Lipschitz condition.

Remark 2 It should be pointed out that only the asymptotic synchronization of CMNNs (6)
is proved in Theorem 2, while Theorem 1 gives the exponential synchronization criteria of
CMNNs (6). Furthermore, the proof of Theorem 2 requires an extra assumption condition
τ̇2(t) ≤ σ2 < 1, while the proof of Theorem 1 doesn’t need this assumption condition.

Remark 3 In this paper, feedback controllers are used in Theorem 1. Because of the con-
servativeness of theoretical analysis, the control gains of feedback controllers (15) may be
much larger than those needed actually. To overcome this drawback, the adaptive control is
a good choice. In Theorem 2, we utilize adaptive feedback controllers, which can reduce the
control gains effectively.

Remark 4 There have been many results about the synchronization control of memristor-
based neural networks, such as [21,22]. ForCMNNs (6) and system (3), if we setβ(t, ·, ·) = 0
and N = 1, then the results of this paper can be generalized to the drive-response syn-
chronization of common memristor-based neural networks. In this sense, compared with the
memristor-based neural networksmodel considered in [21,22], themodel of our paper ismore
general. However, the finite time synchronization is also investigated in [21], while only the
asymptotic synchronization and exponential synchronization are studied in this paper. Hence,
the finite time synchronization of CMNNs will be our future research direction.

4 Numerical Simulations

In this section, an example is given to illustrate the effectiveness of the theoretical results in
this paper.
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Fig. 2 Trajectories of z1(t) and z2(t)

Consider the following 2-dimensional memristor-based stochastic neural network, which
is a special case of system (3).

dz(t) =
[

− D(z(t))z(t) + A(z(t)) f ((z(t))) + B(z(t)) f (z(t − τ1(t))) + J

+ C(z(t))
∫ t

−∞
K (t − s) f ((z(s)))ds

]
dt + β(t, z(t), z(t − τ2(t)))dω(t),

(39)

where z(t) = (z1(t), z2(t))T , f1(v) = f2(v) = |v+1|−|v−1|
2 , τ1(t) = 2 + sint , τ2(t) =

1 + 0.3cost , J = (0, 0)T , K (t) = e−0.5t , T1 = T2 = 1, d∗
1 = 0.9, d∗∗

1 = 1.1, d∗
2 = 1.1,

d∗∗
2 = 0.9, a∗

11 = 3.4, a∗∗
11 = 2.9, a∗

12 = −0.4, a∗∗
12 = −0.22, a∗

21 = 4.2, a∗∗
21 = 3.9, a∗

22 =
5.2, a∗∗

22 = 5, b∗
11 = −1.4, b∗∗

11 = −1.2, b∗
12 = 0.2, b∗∗

12 = −0.1, b∗
21 = 0.5, b∗∗

21 = −0.2,
b∗
22 = −9.2, b∗∗

22 = −6, c∗
11 = −1.3, c∗∗

11 = −1.18, c∗
12 = 0.12, c∗∗

12 = 0.05, c∗
21 = −0.3,

c∗∗
21 = −0.2, c∗

22 = −1.2, c∗∗
22 = −0.6, β(t, z(t), z(t − τ2(t))) = 0.6diag(z1(t), z2(t −

τ2(t))). Then we have M1 = M2 = 1, σ2 = 0.3, K = 2, ρ1 = ρ2 = 0.36.
The initial value of system (39) is ϕ(t) = (0.5, 0.2)T for t ∈ [−5, 0] and ϕ(t) = (0, 0)T

for t ∈ (−∞,−5). The trajectories of z1(t) and z2(t) are presented in Fig. 2.
This is the controlled CMNNs with mixed delays and stochastic perturbations, which is a

special case of CMNNs (6).

dxi (t) =
[

− D(xi (t))xi (t) + A(xi (t)) f (xi (t)) + B(xi (t)) f (xi (t − τ1(t))) + J

+ C(xi (t))
∫ t

−∞
K (t − s) f (xi (s))ds + hi (x1(t), x2(t), x3(t), x4(t)) + Ri (t)

]
dt

+ β(t, xi (t), xi (t − τ2(t)))dω(t), i = 1, 2, 3, 4,
(40)

where xi (t) = (xi1(t), xi2(t))T . The initial value of system (40) is φ1(t) = (0.2, 0.6)T ,
φ2(t) = (−0.3, 1.2)T , φ3(t) = (1,−0.5)T , φ4(t) = (1.3,−0.6)T for t ∈ [−5, 0], and
φi (t) = (0, 0)T for t ∈ (−∞,−5), i = 1, 2, 3, 4.
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Fig. 3 Evolutions of ‖ei (t)‖
without control inputs,
i = 1, 2, 3, 4
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Fig. 4 Evolutions of ‖ei (t)‖
with controllers (30),
i = 1, 2, 3, 4
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Fig. 5 Evolutions of control gains ξ1(t), η11(t) and η12(t) of controllers (30)

Fig. 6 Evolutions of control gains ξ2(t), η21(t) and η22(t) of controllers (30)

Suppose hi (x1(t), x2(t), x3(t), x4(t)) satisfies hi (x1(t), x2(t), x3(t), x4(t)) = 0.1diag
(xi1(t)− xi+1,1(t), xi2(t)− xi+1,2(t)), i = 1, 2, 3, 4,where x5(t) = x1(t). Figure 3 presents
the evolutions of ‖ei (t)‖ , i = 1, 2, 3, 4, without control inputs.

Since ‖hi (x1(t), x2(t), x3(t), x4(t)) − hi (z(t), z(t), z(t), z(t))‖2 ≤ 0.02(‖ei (t)‖ +
‖ei+1(t)‖)2, we obtain that ‖hi (x1(t), x2(t), x3(t), x4(t)) − hi (z(t), z(t), z(t), z(t))‖ ≤
0.1

√
2(‖ei (t)‖ + ‖ei+1(t)‖), i = 1, 2, 3, 4. So Assumption A3 holds.

Choose pi = qi j = 1, i = 1, 2, 3, 4, j = 1, 2. Figure 4 shows the evolutions of ‖ei (t)‖,
i = 1, 2, 3, 4, with controllers (30). It is obvious that systems (39) and (40) achieve the
asymptotic synchronization. The evolutions of the control gains ξi (t), ηi1(t) and ηi2(t),
i = 1, 2, 3, 4, of controllers (30) are given in Figs. 5, 6, 7 and 8, respectively. It should be
pointed out that the control gains are all very small.
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Fig. 7 Evolutions of control gains ξ3(t), η31(t) and η32(t) of controllers (30)

Fig. 8 Evolutions of control gains ξ4(t), η41(t) and η42(t) of controllers (30)

5 Conclusions

This paper is concerned with the synchronization control problem of CMNNs with mixed
delays and stochastic perturbations. Some novel sufficient conditions guaranteeing the
exponential synchronization of CMNNs with mixed delays and stochastic perturbations in
mean square are derived via feedback controllers. Additionally, by using adaptive feedback
controllers and stochastic LaSalle invariance principle, the asymptotic synchronization of
CMNNswith mixed delays and stochastic perturbations in mean square can also be achieved.
Numerical simulations are given to illustrate the validity and the effectiveness of our theo-
retical results.
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