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Abstract This paper is concerned with the delay-independent stability of Riemann–
Liouville fractional-order neutral-type delayed neural networks. By constructing a suitable
Lyapunov functional associated with fractional integral and fractional derivative terms, sev-
eral sufficient conditions to ensure delay-independent asymptotic stability of the equilibrium
point are obtained. The presented results are easily checked as they are described as thematrix
inequalities or algebraic inequalities in terms of the networks parameters only. Two numerical
examples are also given to show the validity and feasibility of the theoretical results.
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1 Introduction

Fractional calculus mainly deals with derivatives and integrals of arbitrary non-integer order.
As an extension of integer-order differentiation and integration, the subject of fractional cal-
culus has drawnmuch attention frommany researchers. Since fractional-order derivatives are
nonlocal and have weakly singular kernels [1], fractional-order models own better descrip-
tion of memory and hereditary properties of various processes than integer-order ones. In
recent decades, fractional differential equations [2,3] have been proved to be an excellent
tool in the modelling of many phenomena in various fields of electrochemistry [4], diffusion
[5], viscoelastic materials [6], control systems [7,8], biological systems [9] and so on.

As we all know, stability is one of the most concerned problems for any dynamic system.
Recently, various kinds of stability of fractional-order dynamic systems including Mittag-
Leffler stability [10,11], Ulam stability [12], uniform stability [13] and asymptotic stability
[14] have been extensively investigated. At the same time, time delay is one of the inevitable
problems in dynamic systems, which usually has an important effect on the stability and
performance of systems. For example, finite-time stability problems for fractional-order
delayed differential equations are discussed based on Gronwall’s inequality approach [15],
in which finite-time stability conditions are dependent on the size of time delays.

Note that various classes of neural networks such as Hopfield neural networks [16,17],
recurrent neural networks [18–20], cellular neural networks [21,22], Cohen–Grossberg neu-
ral networks [23] and bidirectional associative memory neural networks [24,25] have been
widely used in solving some signal processing, image processing and optimal control prob-
lems [26]. A reference model approach and nonlinear measure approach to stability analysis
of real-valued and complex-valued neural networks were proposed [27,28], respectively. The
stability properties of the equilibrium for various classes of neural networks at the presence
of time delays have received a great deal of attention in the recent literatures [17–26]. In [29–
31], the authors have sufficiently taken into account the influence of time delay factors on the
dynamical behaviors of the network systems. In the classical neural network models, the time
delays are usually in the states of the neural system. However, since the time derivatives of
the states are the functions of time, in order to completely determine the stability properties
of equilibrium point, some delay parameters must be introduced into the time derivatives of
states of the system. The neural network model having time delays in the time derivatives
of states is called delayed neutral-type systems [23,25,32–38]. This class of integer-order
neutral systems has been extensively applied in many fields such as population ecology [32],
distributed networks with lossless transmission lines [32], propagation and diffusion models
[33] and VLSI systems [33].

Recently, some researchers have introduced fractional-order operators to neural networks
to form fractional-order neural models [39–41], which could better describe the dynamical
behavior of the neurons. It is worth mentioning that notable contributions have been made to
various kinds of stability analysis of fractional-order neural networks [42–46]. For instance,
the multi-stability problems of fractional-order neural networks without delay have been
investigated by the characteristic roots analysis [39]. The uniform stability of the fractional-
order neural networks has been presented in fixed time-intervals by analysis technique [40].
Mittag-Leffler stability of impulsive Caputo fractional-order delayed neural networks has
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been investigated by applying fractional Razumikhin approach [42]. The uniform stability
and global stability of Riemann–Liouville fractional-order delayed neural networks have
been considered based on fractional Lyapunov functional method and a Leibniz rule for
fractional differentiation [44]. The Finite-time stability of Caputo fractional-order delayed
neural networks has been studied by applying Gronwall’s inequality approach [45,46].

There is no doubt that Lyapunov functional method provides a very effective approach to
analyze stability of integer-order nonlinear systems. Compared with integer-order systems,
it is more difficult to choose Lyapunov functionals for fractional order cases, which results
in many difficulties in investigating the asymptotic behavior of such systems. For example,
the well-known Leibniz rule does not hold for fractional derivative, and a counterexample
(see [47]) was given to show that some incorrect uses of the Leibniz rule for fractional
derivatives in the existing literature. In fact, it is very difficult to calculate fractional-order
derivative of the Lyapunov functionals. This is the main reason that there are very few
practical algebraic criteria on stability of fractional-order neural networks. To the best of our
knowledge, the study of neutral-type neural networks mainly focused on neural networks
with only first derivative of the states and delayed states [23,25,32–38]. There are few results
on the asymptotic stability of fractional-order neutral-type delayed neural networks. Thus,
it is necessary and challenging to take fractional-order derivative account into neutral type
delayed neural networks.

Motivated by the above discussions, this paper will consider the delay-independent stabil-
ity of Riemann–Liouville fractional-order neutral-type delayed neural networks. Compared
to integer-order neural networks with or without time delays, the research on the stability of
fractional-order neutral-type delayed neural networks is still at the stage of exploiting and
developing. The main challenges and contributions of this paper are the following aspects:

(i) It is difficult to calculate fractional-order derivatives of Lyapunov functionals. In order to
overcome the difficulty, we construct a suitable functional including fractional integral
and fractional derivative terms, and calculate its first-order derivative to derive the
delay-independent stability conditions;

(ii) The considered system includes state time delays, fractional-order derivatives of the
states and time delays in fraction-order derivatives of states. We take into account
the impact of these factors on the stability of network system simultaneously. The pre-
sented results contribute to the control anddesign ofRiemann–Liouville fractional-order
neutral-type delayed network systems. Moreover, we realize the analogue simulation
of two examples to show the effectiveness of the theoretical results;

(iii) The neuron activation functions discussed in Riemann–Liouville fractional neutral type
neutral network model are not necessarily required to be differential. Compared to the
existing results concerning integer-order neutral type neural networks [34,35], the ones
of this paper are more general and less conservative.

This paper is organized as follows. In Sect. 2, we recall some definitions concerning
fractional calculus and describe the Riemann–Liouville fractional-order neutral-type neural
networkmodel. In Sect. 3, some sufficient conditions for the asymptotic stability of Riemann–
Liouville fractional-order neutral-type neural networks are derived, which are described as
the matrix inequalities or algebraic inequalities in terms of the networks parameters only.
Two numerical examples are given to show the effectiveness and applicability of the proposed
results in Sect. 4. Finally, some concluding remarks are drawn in Sect. 5.

Notations Throughout the paper, Rn denotes an n-dimensional Euclidean space, Rn×m is
the set of all n×m real matrices, I stands for the identity matrix with appropriate dimension,
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UT means the transpose of a real matrix or vector U , V > 0 denotes the symmetric matrix

V is positive definite. The matrix norm is defined by ‖P‖2 = [λM (PT P)] 1
2 , where λM (·)

denotes the maximun eigenvalue of the matrix (·).

2 Preliminaries and Model Description

In this section, we recall definitions of fractional calculus and several lemmas which will
be used later. Moreover, the problem formulation on fractional-order neutral-type delayed
neural networks is presented.

Definition 2.1 [3] The Riemann–Liouville fractional integral of order q for a function f is
defined as:

t0D
−q
t f (t) = 1

�(q)

∫ t

t0
(t − s)q−1 f (s)ds,

where q > 0, t � t0. The Gamma function �(q) is defined by the integral

�(z) =
∫ +∞

0
sz−1e−sds, (Re(z) > 0).

Currently, there exist several definitions with regard to the fractional derivative of order
q > 0 including Grünwald–Letnikov (GL) definition, Riemann–Liouville (RL) definition
and Caputo definition. Among these definitions, Riemann–Liouville fractional operator often
plays an important role in the stability analysis of fractional-order systems. Our consideration
in this paper is the fractional-order neutral-type delayed neural networks with Riemann–
Liouville derivative, whose definition and properties are given below (see [2,3]).

Definition 2.2 The Riemann–Liouville fractional derivative of order q for a function f is
defined as

RL
t0 Dq

t f (t) = 1

�(m − q)

dm

dtm

∫ t

t0
(t − s)m−q−1 f (s)ds,

where 0 � m − 1 � q < m,m ∈ Z
+.

Property 2.1 RL
t0 Dq

t C = C(t−t0)−q

�(1−q)
holds, where C is any constant.

Property 2.2 For any constants k1 ∈ R and k2 ∈ R, the linearity of Riemann–Liouville’s
fractional derivative is described by

RL
t0 Dq

t

(
k1 f (t) + k2g(t)

)
= k1

RL
t0 Dq

t f (t) + k2
RL
t0 Dq

t g(t).

Property 2.3 If p > q > 0, then the following equaility

RL
t0 Dp

t t0D
−q
t f (t) = RL

t0 D
p−q

t
f (t)

holds for sufficiently good functions f (t). In particular, this relation holds if f (t) is integrable.

The following two lemmas will be used in the proof of our main results.

Lemma 2.1 [14] Let x(t) : Rn → R
n be a vector of differentiable function. Then, for any

time instant t � t0, the following relationship holds

RL
t0 Dq

t

(
xT (t)Px(t)

)
� 2x(t)P

(
RL
t0 D

q

t
x(t)

)
, q ∈ (0, 1),

where P ∈ R
n×n is a constant, square, symmetric and positive definite matrix.
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Lemma 2.2 [21] Let G, H and P be real matrices of appropriate dimensions with P > 0.
Then, for any vectors x, y with appropriate dimensions, the following inequality holds:

2xTGHy � xTGPGT x + yT HT P−1Hy.

In this paper, we consider the delay-independent stability of a class of Riemann–Liouville
fractional-order neutral-type delayed neural networks with the state equations:

RL
0 Dα

t xi (t) = − ai xi (t) +
n∑
j=1

bi j f j
(
x j (t)

) +
n∑
j=1

ci j f j
(
x j (t − τ)

)

+
n∑
j=1

ei j

(
RL
0 Dα

t xi (t − τ)

)
, t � 0,

(1)

or in the matrix-vector notation

RL
0 Dα

t x(t) = −Ax(t) + B f (x(t)) + C f (x(t − τ)) + E
(
RL
0 D

α

t x(t − τ)
)
, t � 0, (2)

where RL
0 Dα

t x(·) denotes an α order Riemann–Liouville fractional derivative of x(·), the
positive constant α satisfies 0 < α < 1, n is the number of neurons in the indicated neural
network, x(t) = (x1(t), x2(t), . . . , xn(t))T is the state vector of the network at time t , the
functions fi (·) denote the neurons activations with fi (0) = 0, A = diag (a1, a2, . . . , an) is a
diagonal matrix with ai > 0 for i = 1, 2, . . . , n, B = (bi j )n×n, C = (ci j )n×n, E = (ei j )n×n

are the constant matrices, τ > 0 denotes the maximum possible transmission delay from
neuron to another.

The initial condition associated with Riemann–Liouville fractional system (1) can be
written as [2,3]

0D
−(1−α)
t x(t) = ϕ(t), t ∈ [−τ, 0], α ∈ (0, 1),

where ϕ(t) ∈ C([−τ, 0],Rn) is the initial state function, and C([−τ, 0],Rn) denotes the
space of all continuous functions mapping the interval [−τ, 0] into R

n .
Throughout this paper, we assume that the activation functions fi (·) are Lipschitz contin-

uous. Note that fi (0) = 0, then there exist positive constants ki > 0 (i = 1, 2, . . . , n) such
that ∣∣ fi (xi (t))∣∣ � ki

∣∣xi (t)∣∣, i = 1, 2, · · · , n. (3)

According to Definition 2.2 and fi (0) = 0 , we immediately know that the origin x∗ = 0
is an equilibrium point of system (1).

Remark 2.1 The purpose of this paper is to investigate the delay-independent stability condi-
tions of the equilibrium point for Riemann–Liouville fractional neutral-type delayed neural
networks (1). In the stability of neural-networks, it is usually assumed that the neuron activa-
tion functions are bounded and monotonic [24], differential [43,44]. However, in this paper,
we adopt the assumption on the neuron activation functions in which the differentiability is
not required.

3 Delay-Independent Stability Criteria

In this section, by constructing a suitable Lyapunov functional including fractional integral
and fractional derivative terms, several sufficient conditions are presented to ensure that the
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origin of system (1) is asymptotically stable. These stability criteria are independent on the
size of the delays, and described as the matrix inequalities or algebraic inequalities in terms
of the network systems parameters only.

Theorem 3.1 The origin of system (1) is asymptotically stable, if there exist a positive diag-
onal matrix M and positive definite matrices P, Q and R such that the following matrix
inequalities hold:

�1 = − (
A2 − M2) K−2 + BT (

I + P−1 + Q−1) B < 0, (4)

�2 = −M2K−2 + CT (
I + P + R−1)C < 0, (5)

�3 = ET (I + Q + R)E − I < 0, (6)

where K = diag{k1, k2, . . . , kn} > 0 and I is the identity matrix with dimension n × n.

Proof Construct a Lyapunov functional including fractional integral and fractional derivative
terms:

V (xt ) = 0D
−(1−α)
t

(
xT (t)Ax(t)

)
+

∫ t

t−τ
xT (s)M2x(s)ds +

∫ t

t−τ

(
RL
0 Dα

t x(s)
)T (

RL
0 Dα

t x(s)
)
ds, (7)

where α ∈ (0, 1), A = diag{ai } (ai > 0) and M = diag{mi } (mi > 0) are both positive
definite diagonal matrices.

FromDefinitions 2.1 and 2.2, we know that V (xt ) is a positive definite functional. Accord-
ing to Property 2.3, the time derivative of V (xt ) along the trajectories of system (1) is obtained
as follows:

V̇ (xt ) = RL
0 Dα

t

(
xT (t)Ax(t)

)
+ xT (t)M2x(t) − xT (t − τ)M2x(t − τ)

+
(
RL
0 Dα

t x(t)
)T (

RL
0 Dα

t x(t)
)

−
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)

.

(8)

An application of Lemma 2.1 yields that

V̇ (xt ) � 2xT (t)A
(
RL
0 Dα

t x(t)
)

+ xT (t)M2x(t) − xT (t − τ)M2x(t − τ)

+
(
RL
0 Dα

t x(t)
)T (

RL
0 Dα

t x(t)
)

−
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)

=
(
RL
0 Dα

t x(t)
)T [

2Ax(t) + RL
0 Dα

t x(t)
]

+ xT (t)M2x(t) − xT (t − τ)M2x(t − τ)

−
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)

.

(9)
Substituting (1) into (9), one can get that

V̇ (xt ) �
[

− Ax(t) + B f (x(t)) + C f (x(t − τ)) + E
(
RL
0 Dα

t x(t − τ)
)]T

×
[
Ax(t) + B f (x(t)) + C f (x(t − τ)) + E

(
RL
0 Dα

t x(t − τ)
)]

+ xT (t)M2x(t) − xT (t − τ)M2x(t − τ)

−
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)
.
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By computations, we get

V̇ (xt ) � − xT (t)A2x(t) − xT (t)AT B f (x(t)) − xT (t)ATC f (x(t − τ))

− xT (t)AT E
(
RL
0 Dα

t x(t − τ)
)

+ f T (x(t))BT Ax(t) + f T (x(t))BT B f (x(t))

+ f T (x(t))BTC f (x(t − τ)) + f T (x(t))BT E
(
RL
0 Dα

t x(t − τ)
)

+ f T (x(t − τ))CT Ax(t) + f T (x(t − τ))CT B f (x(t))

+ f T (x(t − τ))CTC f (x(t − τ))

+ f T (x(t − τ))CT E
(
RL
0 Dα

t x(t − τ)
)

+
(
RL
0 Dα

t x(t − τ)
)T

ET Ax(t)

+
(
RL
0 Dα

t x(t − τ)
)T

ET B f (x(t)) +
(
RL
0 Dα

t x(t − τ)
)T

ETC f (x(t − τ))

+
(
RL
0 Dα

t x(t − τ)
)T

ET E
(
RL
0 Dα

t x(t − τ)
)

+ xT (t)M2x(t)

− xT (t − τ)M2x(t − τ) −
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)
.

(10)
Note that the following equalities hold:

xT (t)AT B f (x(t)) = f T (x(t))BT Ax(t),

xT (t)ATC f (x(t − τ)) = f T (x(t − τ))CT Ax(t),

xT (t)AT E
(
RL
0 Dα

t x(t − τ)
)

=
(
RL
0 Dα

t x(t − τ)
)T

ET Ax(t),

f T (x(t))BTC f (x(t − τ)) = f T (x(t − τ))CT B f (x(t)),

f T (x(t))BT E
(
RL
0 Dα

t x(t − τ)
)

=
(
RL
0 Dα

t x(t − τ)
)T

ET B f (x(t)),

f T (x(t − τ))CT E
(
RL
0 Dα

t x(t − τ)
)

=
(
RL
0 Dα

t x(t − τ)
)T

ETC f (x(t − τ)).

Combining the above equalities with (10) yields that

V̇ (xt ) � − xT (t)A2x(t) + f T (x(t))BT B f (x(t)) + 2 f T (x(t))BT C f (x(t − τ))

+ 2 f T (x(t))BT E
(
RL
0 Dα

t x(t − τ)
)

+ f T (x(t − τ))CT C f (x(t − τ))

+ 2 f T (x(t − τ))CT E
(
RL
0 Dα

t x(t − τ)
)

+
(
RL
0 Dα

t x(t − τ)
)T

ET E
(
RL
0 Dα

t x(t − τ)
)

+ xT (t)M2x(t) − xT (t − τ)M2x(t − τ) −
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)
.

(11)

From Lemma 2.2, we get the following inequalities

2 f T (x(t))BT C f (x(t − τ)) � f T (x(t))BT P−1B f (x(t))

+ x(t − τ)T CT PCx(t − τ), (12)

2 f T (x(t))BT E
(
RL
0 Dα

t x(t − τ)
)

� f T (x(t))BT Q−1B f (x(t))

+
(
RL
0 Dα

t x(t − τ)
)T

ET QE
(
RL
0 Dα

t x(t − τ)
)
, (13)

2 f T (x(t − τ))CT E
(
RL
0 Dα

t x(t − τ)
)

� f T (x(t − τ))CT R−1C f T (x(t − τ))

+
(
RL
0 Dα

t x(t − τ)
)T

ET RE
(
RL
0 Dα

t x(t − τ)
)
, (14)
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Substituting (12)–(14) into (11), we have

V̇ (xt ) � − xT (t)(A2 − M2)x(t) + f T (x(t))
(
BT B + BT P−1B + BT Q−1B

)
f (x(t)

+ f T (x(t − τ))
(
CTC + CT PC + CT R−1C

)
f (x(t − τ))

− xT (t − τ)M2x(t − τ)

+
(
RL
0 Dα

t x(t − τ)
)T (

ET E + ET QE + ET RE − I
)(

RL
0 Dα

t x(t − τ)
)
.

(15)
From the assumption on the activation functions given by (3), we can get

−xT (t)(A2 − M2)x(t) = −
n∑

i=1

(a2i − m2
i )x

2
i (t)

� −
n∑

i=1

a2i − m2
i

k2i
x2i (t) f

2
i (xi (t))

= − f T (x(t))(A2 − M2)K−2 f (x(t)),

(16)

− xT (t − τ)M2x(t − τ) � − f T (x(t − τ))M2K−2 f (x(t − τ)). (17)

Using (16) (17) in (15) yields that

V̇ (xt ) � f T (x(t))
[

− (A2 − M2)K−2 + BT B + BT P−1B + BT Q−1B
]
f (x(t)

+ f T (x(t − τ))
[

− M2K−2 + CTC + CT PC + CT R−1C
]
f (x(t − τ))

+
(
RL
0 Dα

t x(t − τ)
)T (

ET E + ET QE + ET RE − I
)(

RL
0 Dα

t x(t − τ)
)

= f T (x(t))�1 f (x(t) + f T (x(t − τ))�2 f (x(t − τ))

+
(
RL
0 Dα

t x(t − τ)
)T

�3

(
RL
0 Dα

t x(t − τ)
)
,

(18)

where �1 < 0,�2 < 0,�3 < 0, then we have V̇ (xt ) < 0. Thus, it can be concluded from
the standard Lyapunov theorem [48] that the origin of system (1) is asymptotically stable.

Remark 3.1 In the proof of Theorem 3.1, a suitable Lyapunov functional including fractional
integral and fractional derivative terms is constructed. It should be to point out that the positive
definiteness of constructed Lyapunov functional is guaranteed by the definitions of Riemann–
Liouville fractional-order differentiation and integration.

Remark 3.2 Recently, the various approaches were applied to discuss the stability problems
of fractional-order neural networks including analysis technique [40], fractional Razumikhin
approach [42], fractional Lyapunov functional method and a Leibniz rule for fractional dif-
ferentiation [44], Gronwall’s inequality approach [45,46] and so on. Different from the above
mentioned approaches,weonly need to calculate first-order derivative ofLyapunov functional
to derive the delay-independent stability conditions based on the standard Lyapunov theorem.
Thus, we can avoid computing fractional-order derivative of Lyapunov functional. In fact, it
is often very difficult to calculate fractional-order derivatives of a Lyapunov functional.

The following algebraic criteria are the direct results of Theorem 3.1.
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Corollary 3.1 The origin of system (1) is asymptotically stable, if there exist positive con-
stants m, p, q and r such that the following conditions hold:

�∗
1 = −(1 − m)A2K−2 +

(
1 + 1

p
+ 1

q

)
BT B < 0,

�∗
2 = −mA2K−2 +

(
1 + 1

p
+ 1

r

)
CTC < 0,

�∗
3 = (1 + q + r)‖E‖22 − 1 < 0,

where K = diag{k1, k2, . . . , kn} > 0.

Corollary 3.2 The origin of system (1) is asymptotically stable, if there exist positive con-
stants m, p, q and r such that the following conditions hold:

δ1 = −(1 − m)λ2 +
(
1 + 1

p
+ 1

q

)
‖B‖22 < 0,

δ2 = −mλ2 +
(
1 + 1

p
+ 1

r

)
‖C‖22 < 0,

δ3 = (1 + q + r)‖E‖22 − 1 < 0,

where λ = min1�i�n

{
ai
ki

}
.

Theorem 3.2 The origin of system (1) is asymptotically stable, if there exist a positive diag-
onal matrix M and positive constants β and γ such that the following conditions hold:

�1 = −(A2 − M2)K−2 + 2BT B + 1

β
BT EET B < 0,

�2 = −M2K−2 + 2CTC + 1

γ
CT EETC < 0,

�3 = ET E + (β + γ − 1)I < 0,

where K = diag{k1, k2, . . . , kn} > 0 and I is the identity matrix of dimension of n × n.

Proof We note that the following inequalities hold in the proof of Theorem 3.1:

2 f T (x(t))BTC f (x(t−τ)) � f T (x(t))BT B f (x(t))+x(t − τ)T CTCx(t − τ),

(19)

2 f T (x(t))BT E
(
RL
0 Dα

t x(t − τ)
)

� 1

β
f T (x(t))BT EET B f (x(t))

+ β
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)
, (20)

2 f T (x(t − τ))CT E
(
RL
0 Dα

t x(t − τ)
)

� 1

γ
f T (x(t − τ))CT EETC f T (x(t − τ))

+ γ
(
RL
0 Dα

t x(t − τ)
)T (

RL
0 Dα

t x(t − τ)
)
,

(21)
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Substituting (19)–(21) into (11), we have

V̇ (xt ) � − xT (t)(A2 − M2)x(t) + f T (x(t))
(
2BT B + 1

β
BT EET B

)
f (x(t)

+ f T (x(t − τ))
(
2CTC + 1

γ
CT EETC

)
f (x(t − τ)) − xT (t − τ)M2x(t − τ)

+
(
RL
0 Dα

t x(t − τ)
)T (

ET E + β I + γ I − I
)(

RL
0 Dα

t x(t − τ)
)
.

(22)
Using (16) (17) in (22) yields that

V̇ (xt ) � f T (x(t))
[

− (A2 − M2)K−2 + 2BT B + 1

β
BT EET B

]
f (x(t)

+ f T (x(t − τ))
[

− M2K−2 + 2CTC + 1

γ
CT EETC

]
f (x(t − τ))

+
(
RL
0 Dα

t x(t − τ)
)T (

ET E + β I + γ I − I
)(

RL
0 Dα

t x(t − τ)
)

= f T (x(t))�1 f (x(t) + f T (x(t − τ))�2 f (x(t − τ))

+
(
RL
0 Dα

t x(t − τ)
)T

�3

(
RL
0 Dα

t x(t − τ)
)
,

(23)

where �1 < 0,�2 < 0,�3 < 0, then we have V̇ (xt ) < 0. Thus, it can be concluded from
the standard Lyapunov Theorems [40] that the origin of system (1) is asymptotically stable.

��
The following corollary is the direct result of Theorem 3.2.

Corollary 3.3 The origin of system (1) is asymptotically stable, if there exist a positive
diagonal matrix M and positive constants β and γ such that the following conditions hold:

ω1 = −(1 − m)λ2 + 2‖B‖22 + 1

β
‖B‖22‖E‖22 < 0,

ω2 = −mλ2 + 2‖C‖22 + 1

γ
‖C‖22‖E‖22 < 0,

ω3 = ‖E‖22 + β + γ − 1 < 0,

where λ = min1�i�n

{
ai
ki

}
.

Remark 3.3 In [45,46], the authors focused on studying the finite time stability of fractional-
order delayed neural networks. However, it should be pointed out that the finite-time stability
and Lyapunov asymptotic stability are mutually independent concepts, because finite-time
stability does not contain Lyapunov asymptotic stability, and vise versa. Here, the asymptotic
stability of fractional-order neutral-type delayed neural networks is discussed firstly.

Remark 3.4 Several sufficient conditions to ensure the asymptotic stability of system (1)
are derived in this paper, which are concise and described as the matrix inequalities or the
algebraic inequalities. According to the different network system parameters, we can flexibly
choose an appropriate criterion to check the stability.

Remark 3.5 Note that the Remiann-Liouville derivative is a continuous operator of the order
α (see [2,3]). Therefore, we can obtain the delay-independent stability criteria for integer-
order neutral-type delayed neural networks from the results of this paper. In the past few
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decades, the integer-order neutral-type delayed neural networkswere extensively discussed in
[23,25,32–38]. For example, delay-dependent stability criteria for integer-order neutral-type
neural networks with time-varying delays was obtained in terms of linear matrix inequalities
(LMIs) [38]. General speaking, the LMI approach to the stability problem of neutral-type
neural networks involves some difficulties with determining the constraint conditions on the
network parameters as it requires to test positive definiteness of high dimensional matrices.

4 Illustrative Examples

In this section, two examples for Riemann–Liouville fractional-order neutral-type delayed
neural networks are given to illustrate the effectiveness and feasibility of the theoretical
results.

Example 4.1 Consider the two-state Riemann–Liouville fractional-order neutral-type neural
network model (1), where

A =
[
1.5 0
0 1.5

]
, B =

[−0.25 0.25
−0.25 −0.25

]
, C =

[−0.25 0.25
−0.25 −0.25

]
, E =

[
0.5 0
0 0.5

]
,

M =
[
1 0
0 1

]
, K =

[
0.2 0
0 0.2

]
, τ = 0.4.

The positive matrices P, Q and R in the conditions of Theorem 3.1 are chosen as follows:

P =
[ 1

5 0
0 1

5

]
, Q =

[ 1
5 0
0 1

5

]
, R =

[ 1
10 0
0 1

10

]
.

Then we obtain

�1 = −(A2 − M2)K−2 + BT B + BT P−1B + BT Q−1B =
[−17.5 0

0 −17.5

]
< 0,

�2 = −M2K−2 + CTC + CT PC + CT R−1C =
[−11 0

0 −11

]
< 0,

�3 = ET E + ET QE + ET RE − I =
[−0.675 0

0 −0.675

]
< 0.

Thus, the conditions of Theorem 3.1 are satisfied. The dynamical responses of state trajec-
tories of neural network system are depicted in Figs. 1 and 2, which shows that the state
variable (x1(t), x2(t))T converges to the equilibrium point (0, 0)T . Therefore, the results of
Theorem 3.1 are verified by means of this simulation.

Example 4.2 Consider the four-state Riemann–Liouville fractional-order neutral-type neural
network model (1), where

A =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B = C = 1

8

⎡
⎢⎢⎣
1 1 1 1
−1 −1 1 1
1 −1 1 −1
−1 1 1 −1

⎤
⎥⎥⎦ , τ = 0.4.
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Fig. 1 State trajectories of neural network model (1) with α = 0.8, τ = 0.4 under different initial values
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Fig. 2 State trajectories of neural network model (1) with different fractional order α = 0.6, 0.8, 1

We assume that ‖E‖2 = 1
2 and k1 = k2 = k3 = k4 = 1. By computation, we have

‖B‖2 = ‖C‖2 = 1
4 , λ = 1. Here, we choose m = 1

2 , β = γ = 1
10 . Then one has

ω1 = −(1 − m)λ2 + 2‖B‖22 + 1

β
‖B‖22‖E‖22 = − 7

32
< 0,

ω2 = −mλ2 + 2‖C‖22 + 1

γ
‖C‖22‖E‖22 = − 7

32
< 0,

ω3 = ‖E‖22 + β + γ − 1 = −11

20
< 0.

Thus, the conditions of Corollary 3.3 are satisfied. For numerical simulations, the state
trajectories are depicted in Figs. 3 and 4 under different initial conditions and different
fractional-order derivatives, respectively. It can be directly observed that the numeric con-
clusions affirm Corollary 3.3.

Remark 4.1 In particular, if fractional-order α = 1, then system (1) will be reduced to
an integer-order neutral-type delayed neural networks [23,25,32–38]. From the proof of
Theorems 3.1 and 3.2, it is obvious that the results of this paper still hold for α = 1 case.

For integer-order case, in order to compare with the existing results in the literature, we
carry out the following analysis and discussion.
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Fig. 3 State trajectories of neural network model (1) with α = 0.8, τ = 0.4 under different initial values
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Fig. 4 State trajectories of neural network model (1) with different fractional order α = 0.4, 0.6, 1
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In fact, for α = 1 case, similar to [36], we consider the network parameters as follows:

A =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B = C =

⎡
⎢⎢⎣

η η η η

−η −η η η

η −η η η

−η η η −η

⎤
⎥⎥⎦ , α = 1, τ = 0.6.

We assume that ‖E‖2 = 1
2 and k1 = k2 = k3 = k4 = 1. By computations, we have

‖B‖2 = ‖C‖2 = 1
4 , λ = 1. Here, we choose m = 1

2 , β = γ = 1
10 . We first check the

conditions of Corollary 3.3. In this case,

ω1 = 1

2
− 18η2 > 0, ω2 = 1

2
− 18η2 > 0, ω3 = 4

5
− ‖E‖22 > 0,

hence, the conditions of Corollary 3.3 are satisfied if η < 1
6 . When 1

12 � η < 1
6 , the

conditions of Corollary 3.3 are satisfied but the condition in [34] does not hold. Furthermore,

the condition holds in [35] if η �
√
3

24 , which is more restrictive when compared with η < 1
6

imposed by the conditions of Corollary 3.3.

Remark 4.2 The asymptotic stability criteria for integer-order neutral-type delayed neural
networks were derived [34,35], in which the authors imposed the strict constraint conditions
on network parameters. Compared with the stability conditions [34,35], the results of this
paper are more general and less conservative, and can be more easily verified. The above
numerical simulations further confirm the theoretical results.

5 Conclusions

In this paper, we construct an appropriate functional including fractional integral and frac-
tional derivative terms, and calculate its first-order derivative to derive delay-independent
stability conditions. Several criteria on the delay-independent stability of Riemann–Liouville
fractional neutral-type delayed neural networks are obtained. The proposed method avoids
computing fractional-order derivative of Lyapunov functional. Furthermore, the presented
results are described as matrix or algebra inequalities, which are valid and feasible to check
stability. The presented results contribute to the control and design of Riemann–Liouville
fractional-order neutral-type delayed network systems. The future work will focus on the
investigation of the dynamical behaviors of Riemann–Liouville and Caputo fractional-order
neutral type neural networks with both leakage and time-varying delays.

Acknowledgements The authors are very grateful to the Editors, and the anonymous reviewers for their
helpful and valuable comments and suggestions which improved the quality of the paper.
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