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Abstract In this paper, we propose a novel discriminant analysis with local Gaussian sim-
ilarity preserving (DA-LGSP) method for feature extraction. DA-LGSP can be viewed as
a linear approximation of manifold learning based approach which seeks to find a linear
projection that maximizes the between-class dissimilarities under the constraint of locality
preserving. The local geometry of each point is preserved by the Gaussian coefficients of
its neighbors, meanwhile the between-class dissimilarities are represented by Euclidean dis-
tances. Experiments are conducted onUSPAdata, COIL-20 dataset, ORL dataset and FERET
dataset. The performance of the proposed method demonstrates that DA-LGSP is effective
in feature extraction.

Keywords Feature extraction · Manifold learning · Fisher criterion · Between-class
dissimilarities

1 Introduction

In recent years, feature extraction approaches for dimensionality reduction have received sig-
nificant attention which is an important process in machine vision, pattern recognition task
and exploratory data analysis [1]. Although feature extraction results in some loss of infor-
mation about the original data, it retains meaningful features which have been demonstrated
to be quite successful in biometrics [2], image retrieval [3,4], classification algorithms [5],
and other areas [6].

Principal component analysis (PCA) is one of the most widely used data analysis tool for
dimensionality reduction.Kernel PCA [7] is the extension of PCA to nonlinear dimensionality
reduction and feature extraction. Nonnegative matrix factorization (NMF) and Manhattan
NMF (MahNMF) [8] also are representative approach to dimensionality reduction having
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the property of learning parts-based representations [9,10]. Liu et al. propose large-cone
NMF (LCNMF) [11] algorithms to obtain an attractive local solution for NMF. Another
hot topic on dimensionality reduction is manifold learning for discovering the underlying
meaningful low-dimensional structure hidden in the topology of high-dimensional nonlinear
data set. Many algorithms have been developed including locally linear embedding (LLE)
[12], ISOMAP [13], laplacian eigenmap (LE) [14], local tangent space alignment (LTSA)
[15], Hessian LLE (HLLE) [16] and other extensions [17–27].

In order to agree to the task of pattern classification, projection techniques based on
manifold learning are particularly suitable as a pretreatment step to classification. Locality
preserving projection (LPP) [28] projects the original data into a subspace which preserves
the local neighborhood structures by an optimal linear map. Analogous to LPP, unsupervised
discriminant projection (UDP) [29] characterizes both the local scatter and the nonlocal
scatter, seeking to find an optimal projection for globallymaximizing and locallyminimizing.

Most of the aforementioned algorithm are unsupervised methods, such as PCA, LLE, LPP
and UDP. According to the quantity of supervised information used, existing dimensional-
ity reduction methods can also be roughly categorized into unsupervised, semi-supervised
and supervised methods. Semi-supervised learning (SSL) [30] exploits both unlabeled and
labeled samples, high-order distance-based multiview stochastic learning (HD-MSL) is a
semi-supervised image classification algorithm which improves hypergraph learning by
simultaneously learning multiview features under a probabilistic framework. A branch of
supervised learning is weakly supervised learning, in which the preference relationship
between examples is indicated by weak cues [31]. Such as click feature could be regarded
as weak cues for weakly supervised learning which have been successfully applies to image
retrieval and image ranking [3,32]. This paper focuses on supervised learning is similar to
Linear discriminant analysis (LDA). LDA may obtain good classification results since it
takes full consideration of class labels. Ignoring class labels can result in misclassification of
similar forms of different patterns, since the discrimination between a left pose image and a
right pose image of one single person may be greater than the discrimination between two
left pose images of two people. Face images of different persons should lie on corresponding
manifolds but not a singlemanifold. This poses a problem thatmight be called “classification-
oriented multi-manifolds learning” [28]. Multi-manifold learning assumes the data points lie
on multiple underlying manifolds which are intersected or well separated. In order to achieve
an optimal classification result, the low-dimensional embeddings corresponding to different
manifolds should be as separable as possible in the final projected subspace.

LDA does not perform well when the data are non-Gaussian, since LDA is under the
assumption of homoscedastic Gaussian class-conditional distributions. Constrained maxi-
mumvariancemapping (CMVM) [33] takes local geometry andmanifold labels into account.
However, it ignores class labels when characterizing within-class scatter. Multi-manifold dis-
criminant analysis (MMDA) [34] utilizes between-class Laplacian matrix and within-class
Laplacian matrix to construct between-class graph and within-class graph. Kernel max-
min distance analysis (KMMDA) maximizes the minimum distance of all class pairs in
the low-dimensional subspace, and solves optimization problem by using the kernel trick
[35]. Discriminative multi-manifold analysis (DMMA) seeks an optimal projection via inter-
manifold graph and intra-manifold graph [36]. Both MMDA and DMMA serve as effective
feature extraction algorithms for supervised classification tasks, but local topologic struc-
tures have not been fully considered. Nonparametric discriminant multi-manifold learning
(NDML) [37] adopts LLE to preserve local geometry, and models separabilities between
classes by manifold distance, while the manifold distance defined in NDML just takes adja-
cent classes into account but not all the classes.

123



Discriminant Analysis with Local Gaussian Similarity... 41

To address the issues with the methods mentioned above, we propose a supervised method
for feature extraction to classify data points sampled from multiple separated or intersect-
ing nonlinear manifolds that are embedded in high-dimensional space, called discriminant
analysis with local Gaussian similarity preserving (DA-LGSP). Our basic idea is to separate
different classes farther under the constraint of local topological structures preserving. It is
worthwhile to highlight several aspects of our method.

(1) We introduce a novel locality preserving method by Gaussian coefficients under the
framework of thinking globally and fitting locally. The Gaussian coefficients can get good
locality preserving effect.

(2) DA-LGSP explicitly considers class labels to preserve local geometry and construct
between-class dissimilarities which are directly related to classification and recognition.

The rest of the paper is organized as follows: In Sect. 2, LDA andLLE are briefly reviewed.
In Sect. 3, we describe the proposed algorithm in detail. In Sect. 4, the proposed algorithm is
demonstrated on four datasets, and some discussions about the experimental results are also
given. Section 5 finishes this paper with some conclusions.

2 Outline of LDA and LLE

2.1 LDA

The goal of linear discriminant analysis (LDA) is to project high-dimensional space to optimal
discriminant vector space based linear projection such that Fisher criterion (i.e. the ratio of
the between-class scatter to the within-class scatter) is maximized. In general, given a data
set with training samples X = [

x1 . . . xN
] ∈ RD×N and N is the total number of training

samples, class labels are denoted by zi ∈ {1, 2, . . . , c} where c is the number of classes. We
get their low-dimensional embedding Y = [

y1 . . . yN
] ∈ Rd×N by the projection axis W ,

where typically, d < D. The local between-class SB and within-class SW scatter matrices is
defined as

SB = 1

N

c∑

i=1

Ni (mi − mo)(mi − mo)
T , (1)

SW = 1

N

c∑

i=1

∑

xk∈class(i)
(xk − mi )(xk − mi )

T , (2)

ST = 1

N

N∑

i=1

(xi − mo)(xi − mo)
T . (3)

Here mo = 1
N

∑N
i=0 xi is the mean vector of all training data, Ni is the number of training

samples for the i th class,
∑c

i=1 Ni = N and mi = 1
Ni

∑
xi∈class(i) xi is the mean vector

correspond to the i th class.
Both SB and SW are nonnegative definite matrix. The Fisher criterion is defined by

J (W ) = WT SBW

WT SWW
. (4)

The optimal projection W is the generalized eigenvectors of SBW = λSWW corresponding
to the d largest eigenvalues.
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2.2 LLE

LLE is one of the typically manifold learning algorithms which the local geometrical infor-
mation is explored and collected together to obtain a global optimum. It could well preserve
local structure since it is thinking globally and fitting locally. The steps can be summarized
as follows.

Step 1 For each data point xi , identify its K -nearest-neighbors (KNN) in X with Euclidean
distance metric, and note as Xi = [ xi xi1 . . . xiK

] ∈ RD×(K+1).
Step2 Linearly reconstruct xi with its KNN

∥
∥
∥
∥
∥
∥
xi −

K∑

j=1

wi j xi j

∥
∥
∥
∥
∥
∥

2

=
wi
min, (5)

where wi = [wi1 . . . wi K
]T ∈ RK and

∑K
j=1 wi j = 1.

Minimizing the reconstruction error of xi we can get

wi =
(
X̃ T
i X̃i

)−1
ΓK

Γ T
K

(
X̃ T
i X̃i

)−1
ΓK

, (6)

where X̃i = [ xi1 − xi . . . xiK − xi
] ∈ RD×K , ΓK = [ 1, 1, . . . , 1

]T ∈ RK .
Step 3 Linearly reconstruct the low-dimensional coordinates yi with the same weights

∥∥∥∥∥∥
yi −

K∑

j=1

wi j yi j

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥

[
yi yi1 . . . yiK

]

⎡

⎢⎢⎢
⎣

1
−wi1
...

−wi K

⎤

⎥⎥⎥
⎦

∥∥∥∥∥∥∥∥∥

2

=
∥∥∥∥Yi

[
1
−wi

]∥∥∥∥

2

= tr

(
Yi

[
1
−wi

] [
1 −wT

i

]
Y T
i

)
= tr

(
Yi

[
1 −wT

i−wi wiw
T
i

]
Y T
i

)

= tr
(
Yi AiY

T
i

)
, (7)

where tr is the trace operator of matrix and Ai =
[
1 −wT

i−wi wiw
T
i

]
∈ R(K+1)×(K+1), note that

Ai = AT
i .

Calculate the low-dimensional embedding Y for the N data points in X

N∑

i=1

∥∥∥∥∥∥
yi −

K∑

j=1

wi j yi j

∥∥∥∥∥∥

2

=
N∑

i=1

tr
(
Yi AiY

T
i

)
= tr

(
N∑

i=1

Y Si Ai S
T
i Y

T

)

= tr

(

Y

(
N∑

i=1

Si Ai S
T
i

)

Y T

)

= tr
(
Y AY T

)
=

YY T =Id
min, (8)

where Si ∈ {0, 1}N×(K+1) is a column selection matrix such that Yi = Y Si and A =∑N
i=1 Si Ai STi . Again, A = AT .
Then the solution of Y is given by the eigenvector with the smallest nonzero eigenvalue.
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3 DA-LGSP

Formally, given a data matrix with N data points X =
[
x (1)
1 , x (1)

2 , . . . , x (p)
i , . . . , x (c)

N

]
∈

RD×N , which lie on different classes
{
M (1), M (2), . . . , M (c)

}
, where N is the total number

of training samples and c is the number of classes, for each point x (p)
i in X is a D-dimensional

feature vector and p is the class which x (p)
i (1 ≤ p ≤ c) belongs to. DA-LGSP seeks to find

a set of manifold coordinates Y =
[
y(1)
1 , y(1)

2 , . . . , y(p)
i , . . . , y(c)

N

]
∈ Rd×N through a

feature mapping W : y(p)
i = WT x (p)

i , where typically, d < D. As discussed in Sect. 1, the
optimal projection is found to preserve the local geometry and separate different classes apart.

3.1 Locality Structure

It is common believed that local feature space formed by nearest neighbors. Unsupervised
local manifold learning approaches search the neighbors of a given point by applying KNN
or ε-ball criterion, whereas DA-LGSP identify only the neighbors that are of the same class
as the given point, whichmakes our methodsmore attractive for classification. Based on local
linear fits, the local property of each neighborhood is represented by Guassian coefficients
that best reconstruct each data point from the nearest neighborhood.

Defining Xi , the set of neighborhood nodes of node x (p)
i selected by supervise neighbor

selection, Xi =
[
x (p)
i xi1 . . . xiK

]
∈ RD×(K+1), where xi j ∈ M (p). For simplicity, we

neglect the class information p in this section since the neighbors are of the same class as
x (p)
i . Let the reconstruction weights of the neighbors of x (p)

i be ρi = [ρi1 . . . ρi K
]T ∈ RK ,

defined by

qi j = e−
∥∥
∥
∥xi j

−xi

∥∥
∥
∥
2

2σ2 , j = 1, . . . , K ;
ρi j = qi j

K∑

j=1
qi j

, j = 1, . . . , K ; (9)

where qi j is the Gaussian coefficient of xi j , and ρi j is the corresponding normalization

coefficient,
∑K

j=1 ρi j = 1. In order to make ρi j more sensitive to distance, we choose the

parameter σ as the average value of the distances between x (p)
i and its neighbors.

And then the low-dimensional coordinate y(p)
i of x (p)

i has been reconstructed with the
Gaussian coefficients

yi =
K∑

j=1

ρi j yi j . (10)

Thus, we have a squared reconstruction error of y(p)
i

∥∥∥∥∥∥
yi −

K∑

j=1

ρi j yi j

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥

[
yi yi1 . . . yiK

]

⎡

⎢⎢⎢
⎣

1
−ρi1
...

−ρi K

⎤

⎥⎥⎥
⎦

∥∥∥∥∥∥∥∥∥

2

=
∥∥∥∥Yi

[
1
−ρi

]∥∥∥∥

2
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= tr

{
Yi

[
1 −ρT

i−ρi ρiρ
T
i

]
Y T
i

}
= tr

{
Y Si

[
1 −ρT

i−ρi ρiρ
T
i

]
STi Y

T
}

= tr
{
Y AiY

T
}

, (11)

where Si ∈ {0, 1}N×(K+1) is a column selection matrix such that Yi = Y Si , and Ai =
Si

[
1 −ρT

i−ρi ρiρ
T
i

]
STi . Adding the squared construction error on N neighborhoods together

JL =
N∑

i=1

∥∥
∥
∥
∥
∥
yi −

K∑

j=1

ρi j yi j

∥∥
∥
∥
∥
∥

2

=
N∑

i=1

tr
{
Y AiY

T
}

=
N∑

i=1

tr
{
WT X Ai X

TW
}

= tr

{

WT X

(
N∑

i=1

Ai

)

XTW

}

= tr
{
WT SLW

}
, (12)

where SL = X

(
N∑

i=1
Si Ai STi

)
XT .

3.2 Between-Class Dissimilarities

The Euclidean distance is often taken as a measure of dissimilarity. To some extent, large
Euclidean distance between two points means high probability of their dissimilarities, oth-
erwise they probably are similar to each other. So we define between-class dissimilarities
derived from Euclidean distance to represent the dissimilarities of different classes. The
between-class dissimilarities should be maximized in the projected subspace. We’ll give the
definition of between-class dissimilarities step by step.

To node x (p)
i , M (q) is a class differ from x (p)

i , i.e. p �= q , the distance from point x (p)
i to

class M (q) (denoted by d(x (p)
i , M (q))) is defined by

d(x (p)
i , M (q)) = min

x (q)
j ∈M(q)

∥∥∥x (p)
i − x (q)

j

∥∥∥
2 =

∥∥∥x (p)
i − n(q)

xi

∥∥∥
2
, (13)

here n(q)
xi is the nearest point to x (p)

i onM (q) which satisfies n(q)
xi = argmin

n(q)
xi ∈M(q)

(

∥∥∥x (p)
i − n(q)

xi

∥∥∥
2
).

Next, it is important to define a measure of dissimilarity of two classes. The dissimilarity
from class M (p) to class M (q) (denoted by d(M (p), M (q))) is defined by

d(M (p), M (q)) = 1

Np

∑

x (p)
i ∈M(q)

d(x (p)
i , M (q)), (14)

where Np is the number of training samples in class M (p).The dissimilarity between class
M (p) and class M (q) (denoted by D(M (p), M (q))) will be obtained as shown below

D(M (p), M (q)) = d(M (p), M (q)) + d(M (q), M (p)). (15)
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Then the between-class dissimilarities in high-dimensional space can be defined as the fol-
lowing equation

JD =
∑

p �=q

D(M (p), M (q)) =
c∑

p=1

c∑

q=1,q �=p

d(M (p), M (q))

=
c∑

p=1

c∑

q=1,q �=p

1

Np

∑

x (p)
i ∈M(p)

d(x (p)
i , M (q))

=
c∑

p=1

∑

x (p)
i ∈M(p)

c∑

q=1,q �=p

1

Np
d(x (p)

i , M (q))

=
N∑

i=1

c∑

q=1,q �=p

1

Np

∥
∥
∥x (p)

i − n(q)
xi

∥
∥
∥
2
. (16)

Thusweobtain the between-class dissimilarities in the low-dimensional space through feature
mapping W

JD =
N∑

i=1

c∑

q=1,q �=p

1

Np

∥∥∥y(p)
i − n(q)

yi

∥∥∥
2

=
N∑

i=1

c∑

q=1,q �=p

1

Np
tr

{(
y(p)
i − n(q)

yi

) (
y(p)
i − n(q)

yi

)T}

=
N∑

i=1

c∑

q=1,q �=p

1

Np
tr

{(
WT x (p)

i − WTn(q)
xi

) (
WT x (p)

i − WTn(q)
xi

)T}

=
N∑

i=1

c∑

q=1,q �=p

1

Np
tr

{
WT

(
x (p)
i − n(q)

xi

) (
x (p)
i − n(q)

xi

)T
W

}

= tr

⎧
⎨

⎩
WT

⎛

⎝
N∑

i=1

c∑

q=1,q �=p

1

Np

(
x (p)
i − n(q)

xi

) (
x (p)
i − n(q)

xi

)T
⎞

⎠W

⎫
⎬

⎭

= tr
{
WT SDW

}
, (17)

where SD =
N∑

i=1

c∑

q=1,q �=p

1
Np

(
x (p)
i − WTn(q)

xi

) (
x (p)
i − WTn(q)

xi

)T

3.3 The Objective Function

In the proposed method, we expect to find the low-dimensional subspace obtained by an
optimal projection W where different classes will be far located and locality will be well
preserved.

J (W ) = max(JD) = tr
{
WT SDW

}

s.t. tr
{
WT SLW

} = tr {SL } , (18)
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where SL = X

(
N∑

i=1
Si Ai STi

)
XT , SD =

N∑

i=1

c∑

q=1,q �=p

1
Np

(
x (p)
i − WTn(p)

xi

)

(
x (p)
i − WTn(p)

xi

)T
.

This constrained optimization problem can be figured out by enforcing Lagrange multi-
plier. First, a function J (W ) can be linearly constructed by the objective function and the
constraint:

J (W ) = max
{
tr
{
WT SDW

}
− λtr(WT SLW − SL)

}

= max tr
{
WT SDW − λWT SLW + λSL

}
. (19)

Second, the optimal projection W can be obtained from

∂ J (W )

∂W
= 2SDW − 2λSLW = 0. (20)

Then we have

SDW = λSLW. (21)

FromEq. (21), it can be found that the solution is composed of the eigenvectors corresponding
to the d largest eigenvalues.

However, DA-LGSP often encounter the small sample size (SSS) problem when applied
to real world data such as face recognition so that the matrix of locality structure is singular,
since the training sample’s number is smaller than the original dimensions. To address this
issue, PCA is preferred over DA-LGSP to reduce the original dimensions so that SL is
nonsingular in the PCA subspace.

3.4 Proposed DA-LGSP

The proposed DA-LGSP can be summarized as follows:
Step 1 PCA has been utilized to project the original space into a lower dimensional

subspace. Denoted the transformation matrix of PCA by WPCA.
Step 2 In the PCA subspace, construct the supervised KNN of every point and then use

Eq. 12 to construct locality structure matrix SL .
Step 3 Construct between-class dissimilarities SD as Eq. 17.
Step 4 The optimal projection W is composed of the eigenvectors of SDW = λSLW

corresponding to the d largest eigenvalues.
Step 5 The final projection is WPCAW .

3.5 Computational Complexity of DA-LGSP

Assume N is the number of samples belong to c classes, Ni is the number of training samples
for the i th class. D and d is the original and reduced dimensions respectively, and the number
of neighbors is given by k. The computational cost of DA-LGSP includes three parts.

(1)Calculation of locality structure SL : Thefirst phase is the supervised k-nearest-neighbor

search forwhich the average costwould beO

[
c∑

1
D log(k)Ni log(Ni )

]
, and the second phase

is the cost of weight matrix construction will be O [NkD].
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(2) Calculation of between-class dissimilarities SD : the cost of calculating between-class

dissimilarities would be O

[
c∑

i=1

c∑

j=i
DNi N j

]

.

(3) Eigenvalue decomposition has a cost of O
[
ND2

]
.

In summary, the entire computational complexity of DA-LGSP is

O

⎡

⎣
c∑

1

D log(k)Ni log(Ni ) + NkD +
c∑

i=1

c∑

j=i

DNi N j + ND2

⎤

⎦ .

4 Experiment

Experiments were conducted on USPS data, COIL-20 dataset, ORL dataset and FERET
dataset. We compared our proposed method with several state-of-the-art approaches for
images feature extraction. The comparedmethods include LDA, LPP, UDP, CMVM,MMDA
and NDML which are briefly introduced in Sect. 1. Most of the parameters in each method
used for comparison were set according to the recommendations in the original references.
In the PCA stage, we preserved nearly 95% image energy to select the number of principal
components. When constructing the neighborhood graph, the KNN search was used for all
methods. Moreover, the nearest-neighbors classifier is adopted to predict the labels of test
data.

4.1 Experiments on USPS Database

The USPS handwriting digital data [38] include 10 classes from “0” to “9”. Each class has
1100 examples. The images in the database are manually cropped and rescaled to 16 * 16.
Figure 1 displays a subset of digital “2” from original USPS handwriting digital database.

Ten times experiments were repeated by randomly choosing a subset include 100 images
of every class from the original database, the first l (l = 30, 40, 50, 60, 70, 80) images per
class for training and the remaining images for testing. Each image is normalized to be a unit
vector. When constructing the KNN graph, K is set to 12. The optimized average recognition
rates at any possible dimensions of each method are given in Table 1.

In the second experiment, 50 images per class were randomly selected for training, and 50
images for testing. The recognition rate curves versus the variation of dimensions are shown
in Fig. 2.

It is found that the proposed method outperforms other techniques with the variable of
number of training or final dimensions.

Fig. 1 The sample digital images “2” from USPS handwriting database
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Table 1 The optimized average recognition rates on USPS database by different methods

LDA LPP UDP CMVM NDML MMDA DA-LGSP

l = 30 0.8187 0.7643 0.7700 0.8236 0.8234 0.8274 0.8346

l = 40 0.8450 0.8043 0.8120 0.8368 0.8493 0.8500 0.8740

l = 50 0.8660 0.8128 0.8276 0.8608 0.8552 0.8680 0.8872

l = 60 0.8820 0.8255 0.8313 0.8620 0.8900 0.8830 0.8990

l = 70 0.8760 0.8313 0.8413 0.8700 0.8807 0.8840 0.9033

Bold values indicate the best average recognition rate

Fig. 2 The recognition rates versus different dimensions on USPS data

4.2 Experiments on COIL-20 Dataset

COIL-20 (Columbia Object Image Library) [39], a man-made object dataset consisting of 20
man-made objects, there are 72 images of different viewpoints for each object. The images
are manually cropped and then normalized to 128 * 128 pixels. Samples from each class of
COIL-20 dataset are shown in Fig. 3.

Firstly, we randomly select l (l = 10, 20, 30, 40) images per class for training and the
remaining images for testing. The KNN parameter K in LPP, UDP, NDML and the proposed
algorithm is chosen as 8. The maximal recognition rates of each method for all possible
dimensions are given inTable 2. Secondly, thefirst 10 images are randomly selected as training
samples and the rest 62 images as testing set. The proposed method and compared methods
have been evaluated on the same training samples and the testing samples. We run the system
ten times, all possible dimensions of the low-dimensional representation were evaluated, and
curves of the best recognition rates versus ten different training sets are shown in Fig. 4.

As can be seen, this proposed algorithm has higher average recognition rates than others,
except for only individual test compare with NDML.
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Fig. 3 Samples of 20 objects in COIL-20 dataset

Table 2 The optimized recognition rates on COIL-20 dataset by different methods

LDA LPP UDP CMVM NDML MMDA DA-LGSP

l = 10 0.9076 0.8577 0.8495 0.8956 0.9192 0.9284 0.9313

l = 20 0.9588 0.9252 0.9196 0.9538 0.9804 0.9696 0.9767

l = 30 0.9748 0.9529 0.9543 0.9745 0.9869 0.9802 0.9900

l = 40 0.9791 0.9753 0.9716 0.9791 0.9931 0.9922 0.9959

Bold values indicate the best average recognition rate

4.3 Experiments on ORL Dataset

The ORL database [40] contain 400 images of 40 persons, each has ten different images with
the variation of lighting conditions, facial expressions and other details. Images in the dataset
are manually cropped and rescaled to 112 * 92. Figure 5 shows a sample of ORL dataset.

In our experiments, l images (l varies from 3 to 8) are randomly selected of each individual
to form the training set. The remaining (10 − l) images are used for testing. The KNN
parameter K in LPP, UDP, NDML and the proposed algorithm is chosen as l − 1. For each
l, we run the system ten times. The average recognition rates of each method with the same
final dimensions (d = 30) are given in Table 3.

And then, four images of eachperson are randomly chosen for training,while the remaining
six images are used for testing. The parameters involved in each method are set as the
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Fig. 4 The recognition rates versus different training sets on COIL-20database

Fig. 5 Ten images of one person in ORL dataset

Table 3 The average recognition rates on ORL dataset by different methods

LDA LPP UDP CMVM NDML MMDA DA-LGSP

l = 3 0.8493 0.7221 0.7529 0.84 0.8514 0.8393 0.8607

l = 4 0.8675 0.7758 0.8295 0.9025 0.8983 0.9042 0.935

l = 5 0.906 0.806 0.805 0.927 0.927 0.939 0.941

l = 6 0.9462 0.8563 0.8838 0.93 0.9525 0.9513 0.9637

l = 7 0.9383 0.8733 0.945 0.9667 0.9683 0.9733 0.9733

l = 8 0.9575 0.885 0.935 0.96 0.9725 0.9725 0.975

Bold values indicate the best average recognition rate

same as those used in the first experiment. The recognition rate curves versus the variation
of dimensions are shown in Fig. 6. It can be found that DA-LGSP also obtained the best
classification results compared to other methods.

4.4 Experiments on FERET Dataset

The FERET dataset [41] in our experiments consists of including 1400 gray-level face images
comprising 200 different people with 7 images each. There are 71 females and 129 males,
who are diverse across ethnicity, gender, and age. Images in the dataset are manually cropped
and rescaled to 80 * 80. Figure 7 shows images with different expressions, illuminations and
poses of one person from FERET database.

123



Discriminant Analysis with Local Gaussian Similarity... 51

Fig. 6 The recognition rates versus different dimensions on ORL dataset

Fig. 7 Seven images of one person in FERET dataset

Table 4 The optimized average recognition rates on FERET dataset by different methods

LDA LPP UDP CMVM NDML MMDA DA-LGSP

l = 3 0.8 0.6212 0.6198 0.796 0.7408 0.8145 0.8145

l = 4 0.8453 0.6635 0.6991 0.8543 0.7843 0.873 0.8793

l = 5 0.8795 0.7364 0.7864 0.8825 0.8065 0.897 0.9005

l = 6 0.884 0.8039 0.8633 0.89 0.854 0.902 0.904

Bold values indicate the best average recognition rate

As the experiments on ORL dataset, l images (l varies from 3 to 6) are randomly selected
of each individual to form the training sample set. The remaining 7 − l images are used for
testing. The KNN parameter K in LPP, UDP, NDML and the proposed algorithm is chosen
as l − 1. Table 4 tabulates the optimal average recognition rates at any possible dimensions
of different methods on FERET dataset.

Secondly, the first five images are randomly selected as training samples and the rest two
images as testing set. The proposedmethod and comparedmethods have been evaluated on the
same training samples and the testing samples. The parameters involved in each method are
set as the same as those used in the first experiment. We run the system ten times. All possible
dimensions of the low-dimensional representation were evaluated on the same training set
and testing set, Fig. 8 shows the best recognition rate curves versus the ten different training
sets.
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Fig. 8 The recognition rates versus different training sets on the FERET database

We can find that the effectiveness of NDML decrease apparently, while the proposed
method works consistently well.

4.5 Analysis of Parameter k and 2 σ2

There are three parameters in the proposed algorithm. The recognition rates versus different
dimensions have been discussed in each dataset, and the effect of the parameters k and σ in
DA-LGSP is analyzed in this part. The experiment is conduct on USPS database by randomly
choosing subsets include 100 images of every class from the original database, and both the
number of training images and testing images are fixed at 50. Firstly, σ is fixed at the average
value of the distances between x (p)

i and its neighbors (denoted by dave), k is changed from
4 to 49 (49 is the maximum of k). Secondly, we fixed k at 12, the value of σ is changed in
the range[10−2dave, 10−1dave, dave, 10dave, 102dave, 103dave, 104dave, 105dave]. Figure 9
provides the experimental results on USPS. We can observe that the performance keeps
stable when the value of k changes between 4 and 20, but recognition rate decreases with
the enlargement of k from 20 to 49. Besides, compared with k, the performance of σ is more
stable. When σ changes between 10−1dave to 102dave, the recognition rate is better than
others.

Both k and σ reflect the affect of locality structure to feature extraction. Proper k can
reflect well the local geometry of the manifold while k couldn’t be too large, large local patch
will lead to a large bias to the real embedding result. As for σ, too small or too large σ will
weaken the dissimilarities of the neighbors to every data point.

4.6 Discussion

According to the experiments being systematically performed on the four datasets, we can
find that:
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Fig. 9 Average recognition rates with different parameter configurations

(1) It can be found that the recognition rates show the increasing trend with the increasing
of dimensions. However, when the recognition rates achieve its maxima, they almost keep
unchanged.

(2) Frankly speaking, the supervised methods such as DA-LGSP, MMDA, NDML, LDA
and CMVMperform better than the unsupervised ones. The proposed method is a supervised
one based on manifold learning, it can gain the best recognition rates among the methods
involved in the experiments.

(3) All of the supervised methods mentioned in this section include the proposed methods
are linear subspace learning methods based on Fisher framework, compared with LDA,
MMDA, NDML and CMVM, DA-LGSP considers both the local topology structure and the
between-class dissimilarities. Notwithstanding NDML and MMDA perform well in some
dataset, experimental results on handwriting digital data, man-made objects and two face
datasets verifies that the proposed method has the best performance on all of the datasets and
surpasses other competing methods.

(4) Under the analysis of parameter k and σ, we suggest that the value of k would not
be larger than 20, and choose σ as the average value of the distances between x (p)

i and its
neighbors.

5 Conclusions

In this paper, we have proposed a feature extractionmethod based onmanifold learningwhich
has fully considered class labels and local geometry. To avoid the out-of-sample problem,
DA-LGSP focuses on developing a linear transformation thatmake different classes separated
as much as possible in the final embedding space under the constraint of local preserving.
It has shown that the linear transformation can maximize the dissimilarities between all the
classes. As a result, it leads to stable and reasonable recognition rates of testing sample. Our
proposed method achieves the best performances comparing with several state-of-the-art
methods on four commonly used image datasets.
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