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Abstract A competitive neural network model was proposed to describe the dynamics of
cortical maps in which, there exist two memories: long-term and short-term. In this paper, we
investigate the existence and the exponential stability of the pseudo-almost periodic solution
of a system of equations modeling the dynamics of neutral-type competitive neural networks
with mixed delays in the time-space scales for the first time. The mixed delays include time-
varying delays and continuously distributed ones. Based on contraction principle and the
theory of calculus on time-space scales, some new criteria proving the convergence of all
solutions of the networks toward the unique pseudo-almost periodic solution are derived by
using the ad-hocLyapunov–Krasovskii functional. Finally, numerical examplewith graphical
illustration is given to confirm our main results.

Keywords Time scales ·Neutral-type competitive neural networks · Pseudo-almost periodic
solution · Global exponential stability · Leakage delays

1 Introduction

The human brain is made up of a large number of cells called neurons and their synapses. An
artificial neural network is an information processing system that has certain characteristics in
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common with biological neural networks. Recently, many researchers have been devoted to
the stability analyses, periodic oscillations and pseudo-almost periodic solutions of different
class of neutral-type neural networks (see [1,3,15,16]) due to theirwide range of applications,
such as associative memory, pattern recognition, signal processing, image processing, fault
diagnosis, automatic control engineering, combinatorial optimization, and so on (see [7,10,
12,14]). Furthermore, over the last twenty years, Anke Meyer-Baese et al. proposed the so-
called competitive neural networks with different time scales in [2], which is used to model
the dynamics of cortical cognitive maps with unsupervised synaptic modifications. Different
from the traditional neural networks with first-order interactions, in this paper, we consider
a target model with two different state variables: the short-term memory (STM) variable,
describing the fast neural activity and the long-term memory (LTM) variable, describing
the slow unsupervised synaptic modifications. In addition, it has been reported that if the
parameters and timedelays are appropriately chosen, the delayed competitive neural networks
in leakage term can exhibit complicated behaviors even with strange chaotic attractors (see
[13]). Based on the aforementioned arguments, the study of delayed competitive neural
networks and its analogous equations have attractedworldwide interest (see [3,5,15]). In fact,
it is natural and important that systems contain some information about the derivative of the
past state to further describe andmodel the dynamics for such complex neural reactions.Many
researchers have studied the dynamics of various classes of neutral-type neural networks (see
[1,3,15]). In real world, the mixed time-varying delays and leakage delay should be taken
into account when modeling realistic neural networks.

Recently, the concept of pseudo-almost periodic on time-space scales have been introduced
in [8], which generalizes the one of the almost periodicity on time-space scales, and the author
gave some properties of the space of pseudo-almost periodic functions on time-space scales.
Before moving on, the meaning of this notion will be explained firstly, we say that a ld-
continuous function f is pseudo-almost periodic on time-space scales if

f = g + φ,

where g is almost periodic on time-space scales and φ is ergodic function, in the sense that,
for r ∈ Π with r > 0

lim
r−→+∞

1

2r

∫ t0+r

t0−r
‖φ(s)‖∇s = 0,

(where t0 ∈ T andΠ := {τ ∈ R: t ± τ ∈ T,∀t ∈ T} �= 0.). It is known that the existence and
stability of almost periodic solutions play an important role in characterizing the behavior of
a dynamical system. To the author’s best knowledge, there are few works on the existence
of almost periodic solutions and the periodic solutions for neutral-type competitive neural
networks (CNNs) [5,15], especially, for discrete time CNNs. Besides, little has been done
about the pseudo-almost periodic solutions on time-space scales for the competitive neural
networks with mixed time-varying and leakage delays. Therefore, it is a challenging and
important problem both in theories and applications.

On the other hand, controversial opinions arise from the possibility of equal roles displayed
by both continuous time and discrete time neural networks in various implementations and
applications. However, it is troublesome to study the dynamical properties for continuous and
discrete time systems, respectively.We shouldmention that, inmany references, the networks
are described either by difference equations or by differential equations, that is, dynamical
systems are defines as Z or R. Stefan Hilger in his PhD thesis in 1988, proposed the famous
theory of dynamics equations on time-space scales which has been extensively studied and
developed, in recent years. In addition, pseudo almost periodicity is more universal than
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periodicity. Moreover, pseudo-almost periodic solutions on time scales were introduced in
[8]. This theory represents a powerful tool for applications in economics, biological models,
quantum physics, neural networks, Lotka volterra and among others.

However, from the time scales angle, it is known that R and Z are classical periodic time
scales that can be unified well by the following periodic time scale:

T =
+∞⋃

k=−∞
[k(a + b), k(a + b) + a], a, b ∈ R, k ∈ Z. (1)

We can obtainΠ0 = {n(a+b), n ∈ Z} as the periodicity set for the time scale (1). Obviously,
if a = b = 0, then T = R; if a = 0, b = 1, then T = Z.

The remainder of this paper is organized as follows: In Sect. 2, wewill present themodel of
CNNs. In Sect. 3, we will introduce some necessary notations, definitions and fundamental
properties of the space PAP(T,Rn) (which will be used in the paper). In Sect. 4, some
sufficient conditions are derived ensuring the existence of the pseudo-almost periodic solution
on time-space scales. Section 5 is devoted to the exponential stability of the pseudo-almost
periodic solution on time-space scales of a CNNsmodel, and the convergence of all solutions
to its unique pseudo almost periodic solution. At last, one illustrative numerical example is
given.

2 Model Description

In this paper, we consider a new n-neuron neutral-type competitive neural networks with
mixed time-varying delays and leakage delays on time-space scales which is defined in the
following lines:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

STM : x∇
1 (t) = −α1(t)x1 (t − η1(t)) +

n∑
j=1

D1 j (t) f j
(
x j (t)

)

+
n∑
j=1

Dτ
1 j (t) f j

(
x j

(
t − τ1 j (t)

)) +
n∑
j=1

D1 j (t)
∫ t
t−σ1 j (t)

f j
(
x j (s)

)∇s

+
n∑
j=1

D̃1 j (t)
∫ t
t−ξ1 j (t)

f j
(
x∇
j (s)

)
∇s + B1(t)

n∑
j=1

m1 j (t)y j + I1 (t) ,

x∇
2 (t) = −α2(t)x2 (t − η2(t)) +

n∑
j=1

D2 j (t) f j
(
x j (t)

)

+
n∑
j=1

Dτ
2 j (t) f j

(
x j

(
t − τ2 j (t)

)) +
n∑
j=1

D2 j (t)
∫ t
t−σ2 j (t)

f j
(
x j (s)

)∇s

+
n∑
j=1

D̃2 j (t)
∫ t
t−ξ2 j (t)

f j
(
x∇
j (s)

)
∇s + B2(t)

n∑
j=1

m2 j (t)y j + I2 (t) ,

.

.

.

x∇
n (t) = −αn(t)xn (t − ηn(t)) +

n∑
j=1

Dnj (t) f j
(
x j (t)

)

+
n∑
j=1

Dτ
nj (t) f j

(
x j

(
t − τnj (t)

)) +
n∑
j=1

Dnj (t)
∫ t
t−σnj (t)

f j
(
x j (s)

)∇s

+
n∑
j=1

D̃nj (t)
∫ t
t−ξnj (t)

f j
(
x∇
j (s)

)
∇s + Bn(t)

n∑
j=1

mnj (t)y j + In (t) ,

LTM : m∇
1 j (t) = −c1(t)m1 j (t − ς1(t)) + y j E1(t) f1(x1(t)) + J1(t),

m∇
2 j (t) = −c2(t)m2 j (t − ς2(t)) + y j E2(t) f2(x2(t)) + J2(t),

.

.

.

m∇
nj (t) = −cn(t)mnj (t − ςn(t)) + y j En(t) fn(xn(t)) + Jn(t), t ∈ T,

(2)
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where j = 1, . . . , n; T is an almost periodic time scale; xi (t) is the neuron current activity
level (i = 1, . . . , n); αi (t), ci (t) are the time variable of the neuron i (where i = 1, . . . , n);
f j (x j (t)) is the output of neurons;mi j (t) is the synaptic efficiency; yi is the constant external
stimulus; Di j (t), Dτ

i j (t), Di j (t), D̃i j (t) represent the connection weight and the synaptic
weight of delayed feedback between the i th neuron and the j th neuron respectively; Bi (t)
is the strength of the external stimulus; Ei (t) denotes disposable scale; Ii (t), Ji (t) denote
the external inputs on the i th neuron at time t ; ηi (t) and ςi (t) are leakage delays and satisfy
t − ηi (t) ∈ T, t − ςi (t) ∈ T for t ∈ T; τi j (t), σi j (t) and ξi j (t) are transmission delays and
satisfy t − τi j (t) ∈ T, t − σi j (t) ∈ T and t − ξi j (t) ∈ T for t ∈ T.

The neural network is modeled by a system of deterministic equations with a time-
dependent input vector rather than a source emitting input signal with a prescribed probability
distribution. By setting Si = ∑n

j=1 mi j (t)yi = Y Tmi (t), where y = (y1, y2, . . . , yn)T ,

mi = (mi1,mi2, . . . ,min)
T and, without loss of generality, the input stimulus Y is assumed

to be normalized with unit magnitude |y|2 = 1, summing up the LTM over j , then the above
networks are simplified and we obtain a state-space representation of the LTM and STM
equations of the networks:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ST M : x∇
i (t) = −αi (t)xi (t − ηi (t)) +

n∑
j=1

Di j (t) f j
(
x j (t)

)

+
n∑
j=1

Dτ
i j (t) f j

(
x j

(
t − τi j (t)

)) +
n∑
j=1

Di j (t)
∫ t

t−σi j (t)
f j
(
x j (s)

)∇s

+
n∑
j=1

D̃i j (t)
∫ t

t−ξi j (t)
f j
(
x∇
j (s)

)
∇s + Bi (t)Si (t) + Ii (t) ,

LT M : S∇
i (t) = −ci (t)Si (t − ςi (t)) + Ei (t) fi (xi (t)) + Ji (t), t ∈ T,

(3)

For convenience, we introduce the following notations:

α+
i = sup

t∈T
|αi (t)|, α−

i = inf
t∈T |αi (t)| > 0, c+

i = sup
t∈T

|ci (t)|, c−
i = inf

t∈T |ci (t)| > 0,

η+
i = sup

t∈T
|ηi (t)|, ς+

i = sup
t∈T

|ςi (t)|, B+
i = sup

t∈T
|Bi (t)|, E+

i = sup
t∈T

|Ei (t)|,

D+
i = sup

t∈T
|Di (t)|, (Dτ

i )+ = sup
t∈T

|Dτ
i (t)|, D+

i j = sup
t∈T

|Di j (t)|,

(Dτ
i j )

+ = sup
t∈T

|Dτ
i j (t)|, D

+
i j = sup

t∈T
|Di j (t)|, (D̃i j )

+ = sup
t∈T

|D̃i j (t)|,

τ+
i j = sup

t∈T
|τi j (t)|, σ+

i j = sup
t∈T

|σi j (t)|, ξ+
i j = sup

t∈T
|ξi j (t)|, i, j = 1, . . . , n.

We denote [a, b]T = {t, t ∈ [a, b]∩T}. The initial conditions associated with system (2),
are of the form:

xi (s) = ϕi (s) , Si (s) = φi (s) , s ∈ [−θ, 0]T, 1 ≤ i ≤ n,

where ϕi (.) and φi (.) are the real-valued bounded ∇-differentiable functions defined on
[−θ, 0]T, θ = max{η, τ, σ, ξ, ς}, η = max

1≤i≤n
η+
i , τ = max

1≤i, j≤n
τ+
i j ,

σ = max
1≤i, j≤n

σ+
i j , ξ = max

1≤i, j≤n
ξ+
i j and ς = max

1≤i, j≤n
ς+
i j , i, j = 1, . . . , n.

Remark 1 This is the first time to study the pseudo-almost periodic solutions of system (2)
for the both cases: continuous and discrete. Besides, since it studies almost periodic problem,
although paper [15] deals with ∇-dynamic systems on time scales, its results also cannot be
applied to (2).
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Remark 2 In [13], the authors only consider the constant delay and the constant leakage
term:⎧⎪⎪⎨
⎪⎪⎩

ST M :x∇
i (t) = −αi (t)xi (t − δi ) +

n∑
j=1

Di j (t) f j
(
x j (t)

) +
n∑
j=1

Dτ
i j (t) f j

(
x j

(
t − τi j

))

+ Bi (t)Si (t) + Ii (t),
LT M :S∇

i (t) = −ci (t)Si (t − ςi )) + Ei (t) fi (xi (t)) + Ji (t), i = 1, . . . , n, t ∈ T.

If the leakage delays are constants and the coefficients Di j (t) = D̃i j (t) ≡ 0, it is clear
that the model in Liu et al. (2014) is a special case of the system investigated in this work.
Furthermore, model (2) is more general than model in [13].

3 Preliminaries and Function Spaces

In this section, we will introduce some basic definitions of time scales which will be used as
the proof of our relative results.

A time scale T is a closed subset of R. It follows that the jump operators σ, ρ : T −→ T

defined by σ(t) = inf{s ∈ T:s > t} and ρ(t) = sup{s ∈ T:s < t} for all t ∈ T. A point
t ∈ T is called left-dense if t > inf T and ρ(t) = t , left-scattered if ρ(t) < t , right-dense if
t < supT and σ(t) = t , and right-scattered if σ(t) > t . If T has a right scatter minimum m,
define Tk : = T\m; otherwise, set Tk = T. The notations [a, b]T, [a, b)T and so on, we will
denote time scale intervals

[a, b]T = {t ∈ T:a ≤ t ≤ b},
where a, b ∈ T with a < ρ(b).

Finally, the graininess function ν:T −→ +∞ is defined by ν(t) = t − ρ(t), for all t ∈ T.

Definition 1 ([4]). The function f :T −→ R is called ld-continuous provided that it is
continuous at each left-dense point and has a right-sided limit at each point, write f ∈
Cld(T) = Cld(T,R). Let t ∈ T

k the Nabla derivative of f at t to be the number (provided
it exists) with the property that given any ε > 0, there is a neighborhood U of t (i.e.,
U = (t − δ, t + δ) ∩ T for some δ > 0) such that∣∣∣ f (ρ(t)) − f (s) − f ∇[ρ(t) − s]

∣∣∣ ≤ ε|ρ(t) − s|, for all s ∈ U.

Let F be a function, it is called the antiderivative of f :T −→ R provided F∇(t) = f (t)
for each t ∈ Tk . If F∇(t) = f (t) then we define the nabla integral by

∫ t

a
f (s)∇s = F(t) − F(a).

A function p:T −→ R is called ν-regressive if 1 − ν(t)p(t) �= 0 for all t ∈ Tk . The
set of all ν-regressive and left-dense continuous functions p:T −→ R will be denoted by
Rν = Rν(T) = Rν(T,R). We define the set

R+
ν = R+

ν (T,R) = {p ∈ Rν : 1 − ν(t)p(t) > 0, ∀t ∈ T} .

If p ∈ Rν then we define the nabla exponential function by

ê(t, s) = exp

(∫ t

s
ξ̂ν(τ )(p(τ ))∇τ

)
, for all t, s ∈ T,
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where μ-cylinder transformation is as in

ξ̂h(z) :=
{− 1

h log(1 + zh), if h �= 0
z if h = 0.

Definition 2 ([4]). Let p, q : T −→ R are two regressive functions; define

(p ⊕ν q)(t) = p(t) + q(t) − νp(t)q(t), 
ν p(t) = − p(t)

1 − νp(t)
, p 
ν q = p ⊕ν (
νq).

Lemma 1 ([4]). Assume that p, q : T −→ R are two ν-regressive functions, then

(i) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;
(ii) êp(ρ(t), s) = (1 − ν(t)p(t))êp(t, s);
(iii) êp(t, s) = 1

ê(s,t) = ê
ν(s, t);
(iv) êp(t, s)êp(s, r) = êp(t, r);
(v) (êp(t, s))∇ = (p)(t)êp(t, s).

Lemma 2 ([6]). For each t0 ∈ T in T\Tk the single-point set {t0} is ∇-measurable and its
∇-measure is given by ν∇({t0}) = ν(t0) − t0.

For more details of time scales and ∇-measurability, one is referred to read the excellent
books ([4,6]).

Lemma 3 ([9]) Let f, g be nabla differentiable functions on T, then:

(i) (λ1 f + λ2g)∇ = λ1 f ∇ + λ2g∇ , for any constants λ1, λ2;
(ii) ( f g)∇(t) = f ∇(t)g(t) + f (ρ(t))g(t)∇ = f (t)g∇(t) + f ∇(t)g(ρ(t));

(iii) If f and f ∇ are continuous, then
(∫ t

a f (t, s)∇s
)∇ = f (ρ(t), t) + ∫ t

a f (t, s)∇s.

Lemma 4 ([9]) Assume p ∈ Rν and t0 ∈ T. If 1−ν(t)p(t) > 0 for t ∈ T, then êp(t, t0) > 0
for all t ∈ T.

Lemma 5 Suppose that f (t) is an ld-continuous function and c(t) is a positive ld-continuous
function which satisfies that c(t) ∈ R+

ν . Let

g(t) =
∫ t

t0
ê−c(t, ρ(s)) f (s)∇s,

where t0 ∈ T, then

g∇(t) = f (t) − c(t)
∫ t

t0
ê−c(t, ρ(s)) f (s)∇s.

Proof

g∇(t) =
(∫ t

t0
ê−c(t, ρ(s)) f (s)∇s

)∇

=
(
ê−c(t, t0)

∫ t

t0
ê−c(t0, ρ(s)) f (s)∇s

)∇

= ê−c(ρ(t), t0)ê−c(t0, ρ(t)) f (t) − c(t)ê−c(t, t0)
∫ t

t0
ê−c(t0, ρ(s)) f (s)∇s

= f (t) − c(t)
∫ t

t0
ê−c(t0, ρ(s)) f (s)∇s.
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Definition 3 ([9]) A time scale T is called an almost periodic time scale if

Π : = {τ ∈ R:t ± τ ∈ T,∀t ∈ T} �= 0.

Definition 4 ([9]) Let T be an almost periodic time scale. A function f ∈ Cld(T,Rn) is
called an almost periodic on T, if for any ε > 0, the set

E(ε, f ) = {τ ∈ Π :| f (t + τ) − f (t)| < ε,∀t ∈ T} ,

is relatively dense; that is, for any given ε > 0, there exists a constant l(ε) > 0 such that
each interval of length l(ε) contains at least one τ = τ(ε) ∈ E(ε, f ) such that

| f (t + τ) − f (t)| < ε,∀t ∈ T.

The set E(ε, f ) is called the ε-translation set of f (t), τ is called the ε-translation number of
f (t) and l(ε) is called the contain interval length of E(ε, f ).

Let AP(T) = { f ∈ Cld(T,R): f is almost periodic} and BC(T,Rn) denote the space of
all bounded continuous functions from T to R

n . Define the class of functions PAP0(T) as
follows:

PAP0(T) = {
f ∈ BC(T,Rn): f is nabla measurable such that

lim
r−→+∞

1

2r

∫ t0+r

t0−r
| f (s)|∇s = 0, where t0 ∈ T, r ∈ Π

}
.

Definition 5 ([9]) A function f ∈ Cld(T,Rn) is called pseudo almost periodic if f = g+φ,
where g ∈ AP(T) andφ ∈ PAP0(T). Denote by PAP(T), the set of pseudo-almost periodic
functions.

By Definition 5, one can easily show that

Lemma 6 ([9]) If f, g ∈ PAP(T), then f + g, f g ∈ PAP(T); if f ∈ PAP(T), g ∈
AP(T), then f g ∈ PAP(T).

Lemma 7 ([9]) If f ∈ Cld(R,R) satisfies the Lipschitz condition, ϕ ∈ PAP(T), θ ∈
C1
ld(T,Π) and η := inf

t∈T
(
1 − θ∇(t)

)
> 0, then f (ϕ(t − θ(t))) ∈ PAP(T).

4 The Existence of Pseudo-Almost Periodic on Time-Space Scales
Solutions

In this section, we will present a new condition for the uniqueness, global exponential sta-
bility for pseudo-almost periodic solutions of (2) and the convergence are also derived. The
existence and uniqueness of pseudo-almost periodic solution are given based on Banach’s
fixed point theorem and the theory of calculus on time-space scales.

Let

B = {(ϕ1, ϕ2, . . . , ϕn, φ1, φ2, . . . , φn)
T : ϕi , φi ∈ C1(T,R), i = 1, . . . , n}.

with the norm ‖ψ‖B = sup
t∈T

max
i=1,...,n

{|ϕi (t)|, |φi (t)|, |ϕ∇
i (t)|, |φ∇

i (t)|}, then (B, ‖ψ‖B) is a

Banach space.
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726 A. Arbi, J. Cao

For every ψ = (ϕ1, . . . ϕn, φ1, . . . , φn) ∈ B, we consider the following system

x∇
i (t) = −αi (t)xi (t) + Fi (t, ϕi ), S∇

i (t) = −ci (t)xi (t) + Gi (t, φi ), t ∈ T, (4)

where, for i = 1, . . . , n

Fi (t, ϕi (t)) = αi (t)
∫ t

t−ηi (t)
ϕ∇
i (s)∇s +

n∑
j=1

Di j (t) f j
(
ϕ j (t)

)

+
n∑
j=1

Dτ
i j (t) f j

(
ϕ j

(
t − τi j (t)

)) +
n∑
j=1

Di j (t)
∫ t

t−σi j (t)
f j
(
ϕ j (s)

)∇s

+
n∑
j=1

D̃i j (t)
∫ t

t−ξi j (t)
f j
(
ϕ∇
j (s)

)
∇s + Bi (t)φi (t) + Ii (t) ,

Gi (t, φi (t)) = ci (t)
∫ t

t−ςi (t)
φ∇
i (s)∇s + Ei (t) fi (ϕi (t)) + Ji (t).

Let yψ(t) = (
xϕ1(t), . . . , xϕn (t), Sφ1(t), . . . , Sφn (t)

)T , where
xϕi (t) =

∫ t

−∞
ê−αi (t, ρ(s))Fi (t, ϕi (s))∇s,

Sφi (t) =
∫ t

−∞
ê−ci (t, ρ(s))Gi (t, φi (s))∇s,

Let us list some assumptions which will be used throughout the rest of this paper.

(H1) For all 1 ≤ i, j ≤ n,, the functionsαi (·) , ci (·) ∈ R+
ν and Di j (.), Dτ

i j (.) Di j (.), D̃i j (.),
Bi (.), Ei (.), ηi (.), ςi (.), τi j (.), σi j (.), ξi j (.), Ii (.), Ji (.) are ld-continuous pseudo-
almost periodic functions for i, j = 1, . . . , n.

inf
t∈T

(
1 − τ∇

i j (t)
)

> 0, inf
t∈T

(
1 − σ∇

i j (t)
)

> 0 and inf
t∈T

(
1 − ξ∇

i j (t)
)

> 0.

(H2) The functions f j (·), are ∇-differential and satisfy the Lipschitz condition, i.e., there
are constants L j > 0 such that for all x, y ∈ R, and for all 1 ≤ j ≤ n, one has∣∣ f j (x) − f j (y)

∣∣ ≤ L j |x − y| .
(H3)

max
1≤i≤n

{
Mi

α−
i

,

(
1 + α+

i

α−
i

)
Mi ,

Ni

c−
i

,

(
1 + c+

i

c−
i

)
Ni

}
≤ r,

max
1≤i≤n

{
Mi

α−
i

,

(
1 + α+

i

α−
i

)
Mi ,

Ni

c−
i

,

(
1 + c+

i

c−
i

)
Ni

}
≤ 1,

where r is a constant, and for i = 1, . . . , n

Mi = α+
i η+

i r+
n∑
j=1

(
D+
i j +(Dτ

i j )
++D

+
i jσ

+
i j + D̃+

i j ξ
+
i j

)
(L jr + | f j (0)|) + B+

i r + I+
i ,

Mi = α+
i η+

i +
n∑
j=1

(
D+
i j + (Dτ

i j )
+ + D

+
i jσ

+
i j + D̃+

i j ξ
+
i j

)
L j + B+

i ,

Ni = c+
i ς+

i r + E+
i (Lir + | fi (0)|) + J+

i , Ni = c+
i ς+

i + E+
i Li .
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Lemma 8 Suppose that assumptions (H1) − (H3) hold. Let F = {ψ ∈ B : ‖ψ‖B ≤ r} and
define the nonlinear operator Γ : F −→ F by for each ψ ∈ PAP(T,Rn)

(Γ ψ)(t) = yψ(t), ψ ∈ F.

Then Γ maps P AP(T,Rn) into itself.

Proof We show that for any ψ ∈ F, Γ ψ ∈ F.

|Fi (s, ϕi (s))| =
∣∣∣∣∣∣αi (s)

∫ s

s−ηi (s)
ϕ∇
i (u)∇u +

n∑
j=1

Di j (s) f j
(
x j (s)

)

+
n∑
j=1

Dτ
i j (s) f j

(
x j

(
s − τi j (s)

)) +
n∑
j=1

Di j (s)
∫ s

s−σi j (s)
f j
(
x j (u)

)∇u

+
n∑
j=1

D̃τ
i j (s)

∫ t

s−ξi j (s)
f j
(
x∇
j (u)

)
∇u + Bi (s)Si (s) + Ii (s)

∣∣∣∣∣∣
≤ α+

i

∫ s

s−ηi (s)

∣∣∣ϕ∇
i (u)

∣∣∣∇u +
n∑
j=1

D+
i j

∣∣ f j (ϕ j (s)
)∣∣

+
n∑
j=1

(Dτ
i j )

+ ∣∣ f j (ϕ j
(
s − τi j (s)

))∣∣ +
n∑
j=1

D
+
i j

∫ s

s−σi j (s)

∣∣ f j (ϕ j (u)
)∣∣∇u

+
n∑
j=1

D̃+
i j

∫ s

s−ξi j (s)

∣∣∣ f j
(
ϕ∇
j (u)

)∣∣∣∇u + B+
i |φi (s)| + I+

i

≤ α+
i η+

i r +
n∑
j=1

D+
i j

(
L j

∣∣ϕ j (s)
∣∣ + ∣∣ f j (0)∣∣)

+
n∑
j=1

(Dτ
i j )

+ (
L j

∣∣ϕ j
(
s − τi j (s)

)∣∣ + ∣∣ f j (0)∣∣)

+
n∑
j=1

D
+
i jσ

+
i j

(
L jr + ∣∣ f j (0)∣∣)

+
n∑
j=1

D̃+
i j ξ

+
i j

(
L jr + ∣∣ f j (0)∣∣) + B+

i |φi (s)| + I+
i

≤ Mi .

In a similar way, we have
|Gi (s, φi (s))| ≤ Ni .
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Which leads to, for i = 1, . . . , n

sup
t∈T

∣∣xϕi (t)
∣∣ = sup

t∈T

∣∣∣∣
∫ t

−∞
ê−α−

i
(t, ρ(s))Fi (t, ϕi (s))∇s

∣∣∣∣
≤ sup

t∈T

∫ t

−∞
ê−α−

i
(t, ρ(s)) |Fi (s, ϕi (s))| ∇s

≤ Mi

α−
i

,

and,

sup
t∈T

∣∣Sφi (t)
∣∣ = sup

t∈T

∣∣∣∣
∫ t

−∞
ê−ci (t, ρ(s))Gi (t, φi (s))∇s

∣∣∣∣ ≤ Ni

c−
i

.

Otherwise, for i = 1, . . . , n, we have

sup
t∈T

∣∣∣x∇
ϕi

(t)
∣∣∣ = sup

t∈T

∣∣∣∣∣
(∫ t

−∞
ê−αi (t, ρ(s))Fi (t, ϕi (s))∇s

)∇ ∣∣∣∣∣
= sup

t∈T

∣∣∣∣Fi (t, ϕi (t)) − αi (t)
∫ t

−∞
ê−αi (t, ρ(s))Fi (t, ϕi (s))∇s

∣∣∣∣

≤ α+
i η+

i r +
n∑
j=1

(
D+
i j + (Dτ

i j )
+ + (Di j )

+σ+
i j + (D̃i j )

+ξ+
i j

)
(L jr + ∣∣ f j (0)∣∣)

+ B+
i r + I+

i + α+
i

α−
i

⎛
⎝α+

i η+
i r +

n∑
j=1

(
D+
i j + (Dτ

i j )
+ + (Di j )

+σ+
i j

+ (D̃i j )
+ξ+

i j

)
(L jr + ∣∣ f j (0)∣∣) + B+

i r + I+
i

⎞
⎠

=
(
1 + α+

i

α−
i

)
Mi .

Similarly,

sup
t∈T

∣∣∣S∇
φi

(t)
∣∣∣ ≤

(
1 + c+

i

c−
i

)
Ni .

From hypothesis (H3), we can obtain

‖Γ ψ‖B ≤ r,

which implies that operator Γ is a self-mapping from F to F.

Theorem 1 Let (H1) − (H3) hold. The system (2) has a unique pseudo-almost-periodic
solution in the region F = {ψ ∈ B : ‖ψ‖B ≤ r}.

Proof It suffices to show that the operator Γ is a contraction mapping.
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First, for ψ = (ϕ1, . . . , ϕn, φ1, . . . , φn)
T , Ω = (u1, . . . , un, v1, . . . , vn)T ∈ F, we have

sup
s∈T

∥∥xϕi (s) − xui (s)
∥∥ ≤ 1

α−
i

sup
s∈T

⎛
⎝α+

i η+
i

∥∥∥ϕ∇
i (s) − u∇

i (s)
∥∥∥ +

n∑
j=1

D+
i j ‖ϕi (t) − ui (t)‖

+
n∑
j=1

(Dτ
i j )

+L j
∥∥ϕ j (s − τi j (s)) − u j (s − τi j (s))

∥∥

+
n∑
j=1

(Di j )
+L jσ

+
i j

∥∥ϕ j (s) − u j (s)
∥∥

+
n∑
j=1

(D̃i j )
+L jξ

+
i j

∥∥∥ϕ∇
j (s) − u∇

j (s)
∥∥∥ + B+

i

∥∥φ j (s) − v j (s)
∥∥
⎞
⎠

≤ 1

α−
i

⎛
⎝α+

i η+
i +

n∑
j=1

(
D+
i j + (Dτ

i j )
+ + (Di j )

+σ+
i j + (D̃i j )

+ξ+
i j

)
L j

+ B+
i

) ‖ψ − Ω‖B
= Mi

α−
i

‖ψ − Ω‖B.

Besides,

sup
s∈T

∥∥∥x∇
ϕi

(s) − x∇
ui (s)

∥∥∥ ≤ 1

α−
i

sup
s∈T

⎛
⎝α+

i η+
i

∥∥∥ϕ∇
i (s) − u∇

i (s)
∥∥∥ +

n∑
j=1

D+
i j ‖ϕi (t) − ui (t)‖

+
n∑
j=1

(Dτ
i j )

+L j
∥∥ϕ j (s − τi j (s)) − u j (s − τi j (s))

∥∥

+
n∑
j=1

(Di j )
+L jσ

+
i j

∥∥ϕ j (s) − u j (s)
∥∥

+
n∑
j=1

(D̃i j )
+L jξ

+
i j

∥∥∥ϕ∇
j (s) − u∇

j (s)
∥∥∥ + B+

i

∥∥φ j (s) − v j (s)
∥∥
⎞
⎠

≤ 1

α−
i

⎛
⎝α+

i η+
i +

n∑
j=1

(
D+
i j + (Dτ

i j )
+ + (Di j )

+σ+
i j + (D̃i j )

+ξ+
i j

)
L j

+ B+
i

) ‖ψ − Ω‖B

= α+
i

α−
i

⎛
⎝α+

i η+
i

∥∥∥ϕ∇
i (s) − u∇

i (s)
∥∥∥ +

n∑
j=1

D+
i j ‖ϕi (t) − ui (t)‖

+
n∑
j=1

(Dτ
i j )

+L j
∥∥ϕ j (s − τi j (s)) − u j (s − τi j (s))

∥∥
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+
n∑
j=1

(Di j )
+L jσ

+
i j

∥∥ϕ j (s) − u j (s)
∥∥

+
n∑
j=1

(D̃i j )
+L jξ

+
i j

∥∥∥ϕ∇
j (s) − u∇

j (s)
∥∥∥ + B+

i

∥∥φ j (s) − v j (s)
∥∥
⎞
⎠

≤ 1

α−
i

⎛
⎝α+

i η+
i +

n∑
j=1

(
D+
i j + (Dτ

i j )
+ + (Di j )

+σ+
i j + (D̃i j )

+ξ+
i j

)
L j

+ B+
i

) ‖ψ − Ω‖B

≤
(
1 + α+

i

α−
i

)
Mi‖ψ − Ω‖B.

Similarly,

sup
s∈T

∥∥Sφi (s) − Svi (s)
∥∥ ≤

(
Ni

c−
i

)
‖ψ − Ω‖B,

and

sup
s∈T

∥∥∥S∇
φi

(s) − S∇
vi

(s)
∥∥∥ ≤

(
1 + c+

i

c−
i

)
Ni‖ψ − Ω‖B,

therefore,

‖Γ ψ − Γ Ω‖ ≤ κ‖ψ − Ω‖B, where κ < 1.

According to the well-known contraction principle there exists a unique fixed point y∗ (·)
such that Γ y∗ = y∗. So, y∗ is a pseudo almost periodic solution of the model (2) in F =
{ψ ∈ B: ‖ψ‖B ≤ r}. This completes the proof.

Remark 3 To the best of our knowledge, there have been no results on the pseudo almost
periodic solutions on time-space scale for competitive neural networks with time varying
coefficients, mixed delays and leakage until now. Hence, the obtained results are essentially
new and the investigation methods used in this paper can also be applied to study pseudo-
almost periodic solutions on time-space scale for some other types of neural networks, such
as Cohen–Grossberg neural networks.

Remark 4 In practice, time delays, leakage delay and parameter perturbations are unavoid-
ably encountered in the implementation of competitive neural networks. They may destroy
the stability of pseudo-almost periodic solution of competitive neural networks, thus it is
crucial to study the dynamic behaviors of pseudo-almost periodic solution of competitive
neural networks with time delays, leakage term and parameter perturbations.

5 Global Exponential Stability of Pseudo-Almost Periodic Solution and
the Convergence of All Solutions to Its Unique Pseudo Almost Periodic
Solution

In this section, we will study the exponential stability of pseudo-almost periodic solutions of
(2):
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Definition 6 Let Z∗ (t) = (
x∗
1 (t) , x∗

2 (t) , . . . , x∗
n (t) , S∗

1 (t) , S∗
2 (t) , . . . , S∗

n (t)
)T be a

pseudo-almost periodic solution on time-space scales of system (3) with initial value
ψ∗ (t) = (

ϕ∗
1 (t) , ϕ∗

2 (t) , . . . , ϕ∗
n (t) , φ∗

1 (t) , φ∗
2 (t) , . . . , φ∗

n (t)
)T . If there exist con-

stants γ > 0, 
νγ ∈ R+ and M > 1 such that for every solution Z (t) =(
x1 (t) , x∗

2 (t) , . . . , xn (t) , S1 (t) , S2 (t) , . . . , Sn (t)
)T of system (3) with any initial value

ψ (t) = (ϕ1 (t) , ϕ2 (t) , · · · , ϕn (t) , φ1 (t) , φ2 (t) , · · · , φn (t))T , ∀t ∈ (0,+∞)T, t ≥ t0,

∥∥Z (t) − Z∗ (t)
∥∥
0 = max

{∥∥x (t) − x∗ (t)
∥∥∞ , ‖x∇ (t) − x∗∇ (t) ‖∞,

∥∥S (t) − S∗ (t)
∥∥∞ , ‖S∇ (t) − S∗∇ (t) ‖∞

}

≤ Me
γ (t, t0)‖ψ‖1
= Me
γ (t, t0) sup

t∈[−γ,0]T
max

{∥∥ϕ (t) − ϕ∗ (t)
∥∥∞ ,

∥∥∥ϕ∇ (t) − ϕ∗∇ (t)
∥∥∥∞ ,

∥∥φ (t) − φ∗ (t)
∥∥∞ ,

∥∥∥φ∇ (t) − φ∗∇ (t)
∥∥∥∞

}
,

where t0 = max{[−θ, 0]T}. Then Z∗ (·) is said to be globally exponential stable.

Theorem 2 Let (H1)−(H3) hold. The unique pseudo-almost periodic solution of system (2)
is globally exponentially stable.

Proof From Theorem 1 the system (2) has one and only one pseudo-almost periodic solution
on time scales Z∗(t) = (x∗

1 (t), . . . x
∗
n (t), S

∗
1 (t), . . . , S

∗
n (t))

T ∈ R
n with the initial condition

ψ∗(t) = (ϕ∗
1 (t), . . . , ϕ

∗
n (t), φ

∗
1 (t), . . . , φ

∗
n (t))

T .
Let Z(t) = (x1(t), . . . , xn(t), S1(t), . . . , Sn(t)) one arbitrary solution of (2) with initial con-
dition ψ(t) = (ϕ1(t), . . . , ϕn(t), φ1(t), . . . , φn(t))T .

From system (2) we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∇
i (t) = −αi (t)ui (t) + αi (t)

∫ t

t−ηi (t)
u∇
i (s)∇s +

n∑
j=1

Di j (t) p j
(
u j (t)

)

+
n∑
j=1

Dτ
i j (t) p j (u j

((
t − τi j (t)

)) +
n∑
j=1

Di j (t)
∫ t

t−σi j (t)
p j

(
u j (s)

)∇s

n∑
j=1

D̃i j (t)
∫ t

t−ξi j (t)
h j

(
u∇
j (s)

)
∇s + Bi (t)vi (t),

v∇
i (t) = −ci (t)vi (t) + ci (t)

∫ t

t−ςi (t)
u∇
i (s)∇s + Ei (t)pi (ui (t)) t ∈ T,

(5)

where ui (t) = xi (t) − x∗
i (t), vi (t) = Si (t) − S∗

i (t), p j (u j (t)) = f j (x j (t)) − f j (x∗
j (t)),

h j (x∇
j (t)) = f j (x∇

j (t)) − f j (x∗
j
∇(t)), for i, j = 1, . . . , n, the initial condition of (5) is

ui (s) = ϕi (s) − ϕ∗
i (s), s ∈ [−θ, 0]T, vi (s) = φi (s) − φ∗

i (s), s ∈ [−θ, 0]T, where
i = 1, . . . , n.

Multiplying the first equation in system (5) by ê−αi (t0, ρ(s)) and the second equation by
ê−ci (t0, ρ(s)), and integrating over [t0, t]T, where t0 ∈ [−θ, 0]T, we obtain
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui (t) = ui (t0) ê−αi (t, t0) +
∫ t

t0
ê−αi (t, ρ(s))

(
αi (s)

∫ t

s−ηi (s)
u∇
i (u)∇u

+
n∑
j=1

Di j (s) p j
(
u j (s)

) +
n∑
j=1

Dτ
i j (s) p j (u j

((
s − τi j (s)

))

+
n∑
j=1

Di j (s)
∫ s
s−σi j (s)

p j
(
u j (u)

)∇u

+
n∑
j=1

D̃i j (s)
∫ t

s−ξi j (s)
h j

(
u∇
j (u)

)
∇u + Bi (s)vi (s)

)
∇s,

vi (t) = vi (t0)ê−ci (t, t0) + ∫ t
t0
ê−ci (t, ρ(s))

(
ci (s)

∫ s
s−ςi (s)

v∇
i (u)∇u

+ Ei (s)pi (ui (s))) ∇s, t ∈ T,

(6)

Now, we define Gi , Gi , Hi and Hi as follows:

Gi (w) = α−
i − w −

⎛
⎝ exp

(
w sup

s∈T
ν(s)

) (
α+
i η+

i exp
(
wη+

i

) +
n∑
j=1

D+
i j L j

+
n∑
j=1

(Dτ
i j )

+L j exp
(
wτ+

i j

)
+

n∑
j=1

D
+
i j L jσ

+
i j exp

(
wσ+

i j

)

+
n∑
j=1

D̃+
i j L jξ

+
i j exp

(
wξ+

i j

)
+ B+

i

⎞
⎠ ,

Gi (w) = c−
i − w −

(
exp

(
w sup

s∈T
ν(s)

)
c+
i ς+

i exp
(
wς+

i

) + E+
i Li

)
,

Hi (w) = α−
i − w −

(
α+
i exp

(
w sup

s∈T
ν(s) + α−

i − β

) (
α+
i η+

i exp
(
wη+

i

)

+
n∑
j=1

D+
i j L j +

n∑
j=1

(Dτ
i j )

+L j exp
(
wτ+

i j

)
+

n∑
j=1

D
+
i j L jσ

+
i j exp

(
wσ+

i j

)

+
n∑
j=1

D̃+
i j L jξ

+
i j exp

(
wξ+

i j

)
+ B+

i

⎞
⎠ ,

Hi (w) = c−
i − w −

(
c+
i exp

(
w sup

s∈T
ν(s) + c−

i − w

)
c+
i ς+

i exp
(
wς+

i

) + E+
i Li

)
,

where i = 1, . . . , n, w ∈]0,+∞[.
From (H3), we have

Gi (0) = α−
i −

⎛
⎝α+

i η+
i +

n∑
j=1

(
D+
i j + (Dτ

i j )
+ + D

+
i jσ

+
i j + D̃+

i j ξ
+
i j

)
L j + B+

i

⎞
⎠ > 0,

Gi (0) = c−
i − (c+

i ς+
i + E+

i Li ) > 0,

Hi (0) = α−
i −(

α+
i +α−

i

)
⎛
⎝α+

i η+
i +

n∑
j=1

(
D+
i j +(Dτ

i j )
++D

+
i jσ

+
i j + D̃+

i j ξ
+
i j

)
L j +B+

i

⎞
⎠>0,

Hi (0) = c−
i − (c+

i + c−
i )(c+

i ς+
i + E+

i Li ) > 0, i = 1, . . . , n.
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Since the functions Gi (.), Gi (.), Hi (.) and Hi (.) are continuous on [0,+∞) and Gi (w),
Gi (w), Hi (w), Hi (w) −→ −∞ when w −→ +∞, it exist ηi , η̄i , εi , ε̄i > 0 such as
Hi (ηi ) = Hi (η̄i ) = Gi (εi ) = Gi (ε̄i ) = 0 and Gi (w) > 0 for w ∈ (0, ηi ), Gi (w) >

0 for w ∈ (0, η̄i ), Hi (w) > 0 for w ∈ (0, εi ), H̄i (w) > 0 for w ∈ (0, ε̄i ). Let a =
min
1≤i≤n

{ηi , η̄i , εi , ε̄i }, we obtain

Hi (a) ≥ 0, Hi (a) ≥ 0, Gi (a) ≥ 0, and Gi (a) ≥ 0, i = 1, . . . , n.

So, we can choose the positive constant 0 < γ < min
1≤i≤n

{a, α−
i , c−

i },
such that Hi (γ ) > 0, Hi (γ ) > 0, Gi (γ ) > 0 and Gi (γ ) > 0, i = 1, . . . , n. which

imply that, for i = 1, . . . , n

1

α−
i − γ

n∑
j=1

⎛
⎝exp(γ sup

s∈T
ν(s))

⎛
⎝α+

i η+
i +

n∑
j=1

(
D+
i j + (Dτ

i j )
+ + D

+
i jσ

+
i j

+ D̃+
i j ξ

+
i j

)
L j + B+

i

⎞
⎠
⎞
⎠ < 1,

1

c−
i − γ

(
exp(γ sup

s∈T
ν(s))c+

i ς+
i + E+

i Li

)
< 1,

⎛
⎜⎝1 +

α+
i exp(γ sup

s∈T
ν(s))

α−
i − γ

⎞
⎟⎠

n∑
j=1

⎛
⎝exp(γ sup

s∈T
ν(s))

⎛
⎝α+

i η+
i +

n∑
j=1

(
D+
i j + (Dτ

i j )
+

+ D
+
i jσ

+
i j + D̃+

i j ξ
+
i j

)
L j + B+

i

⎞
⎠
⎞
⎠ < 1,

⎛
⎜⎝1 +

c+
i exp(γ sup

s∈T
ν(s))

c−
i − γ

⎞
⎟⎠(

c+
i ς+

i + E+
i Li

)
< 1,

Let

K = max
1≤i≤n

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α−
i

α+
i η+

i +
n∑
j=1

(
D+
i j + (Dτ

i j )
+ + D

+
i jσ

+
i j + D̃+

i j ξ
+
i j

)
L j + B+

i

,

c−
i

c+
i ς+

i + E+
i Li

}
. (7)

By hypothesis (H3), we have K > 1, therefore,

‖Z(t) − Z∗(t)‖ ≤ K ê
νγ (t, t0)‖ψ‖0, ∀t ∈ [t0, 0]T, (8)

where 
νγ ∈ R+
ν . We claim that

‖Z(t) − Z∗(t)‖ ≤ K ê
νγ (t, t0)‖ψ‖0, ∀t ∈ [t0,+∞)T. (9)
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To prove (9), we show that for any � > 1, the following inequality holds:

‖Z(t) − Z∗(t)‖ ≤ �K ê
νγ (t, t0)‖ψ‖0, ∀t ∈ [t0,+∞)T. (10)

If (10) is not true, then there must be some t1 ∈ (0,+∞)T, d ≥ 1 such that

‖Z(t1) − Z∗(t1)‖ = d�K ê
νγ (t1, t0)‖ψ‖0, (11)

and
‖Z(t) − Z∗(t)‖ ≤ d�K ê
νγ (t, t0)‖ψ‖0, t ∈ [t0, t1]T. (12)

By (6), (11), (12) and (H1)−(H3), we have for i = 1, . . . , n

|ui (t1)| ≤ ê−αi (t1, t0)‖ψ‖0 + d�K ê
νγ (t1, t0)‖ψ‖0
∫ t1

t0
ê−αi (t1, ρ(s))êγ (t1, ρ(s))

×
⎛
⎝α+

i

∫ s

s−ηi (s)
êλ(ρ(u), u)∇u +

n∑
j=1

D+
i j L j êγ (ρ(s), s)

+ (Dτ
i j )

+L j êγ (ρ(s), s − τi j (s)) +
n∑
j=1

D
+
i j L j

∫ s

s−σi j (s)
êγ (ρ(u), u)∇u

+
n∑
j=1

D̃+
i j L j

∫ s

s−ξi j (s)
êγ (ρ(u), u)∇u + B+

i

⎞
⎠∇s

≤ ê−αi (t1, t0)‖ψ‖0 + d�K ê
νγ (t1, t0)‖ψ‖0
∫ t1

t0
ê−αi (t1, ρ(s))êγ (t1, ρ(s))

×
⎛
⎝α+

i êλ(ρ(s), s − ηi (s)) +
n∑
j=1

D+
i j L j êγ (ρ(s), s)

+(Dτ
i j )

+L j êγ (ρ(s), s − τi j (s)) +
n∑
j=1

D
+
i j L j

∫ s

s−σi j (s)
êγ (ρ(u), u)∇u

+
n∑
j=1

D̃+
i j L j

∫ s

s−ξi j (s)
êγ (ρ(u), u)∇u + B+

i

⎞
⎠∇s

≤ ê−αi (t1, t0)‖ψ‖0 + d�K ê
νγ (t1, t0)‖ψ‖0
∫ t1

t0
ê−αi (t1, ρ(s))êγ (t1, ρ(s))

×
⎛
⎝α+

i η+
i exp

[
γ

(
η+
i + sup

s∈T
ν(s)

)]
+

n∑
j=1

D+
i j L j exp

(
γ sup

s∈T
ν(s)

)

+ (Dτ
i j )

+L j exp

[
γ

(
τ+
i j + sup

s∈T
ν(s)

)]
+

n∑
j=1

D
+
i j L j exp

[
γ

(
σ+
i j + sup

s∈T
ν(s)

)]

+
n∑
j=1

D̃+
i j L j exp

[
γ

(
ξ+
i j + sup

s∈T
ν(s)

)]
+ B+

i

⎞
⎠∇s
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≤ d�K ê
νγ (t1, t0)‖ψ‖0
{
1

K
ê−αi⊕νγ (t1, t0) +

[
exp

(
γ sup

s∈T
ν(s)

)

×
⎛
⎝α+

i η+
i exp(γ η+

i ) +
n∑
j=1

D+
i j L j +

n∑
j=1

(Dτ
i j )

+L j exp(γ τ+
i j )

+
n∑
j=1

D
+
i jσ

+
i j L j exp(γ σ+

i j ) +
n∑
j=1

D̃+
i j L jξ

+
i j exp(γ ξ+

i j )

⎞
⎠

+ B+
i

] 1 − ê−αi⊕νγ (t1, t0)

α−
i − γ

}

≤ d�K ê
νγ (t1, t0)‖ψ‖0
{
1

K
− 1

α−
i − γ

(
exp

(
γ sup

s∈T
ν(s)

) (
α+
i η+

i exp(γ η+
i )

+
n∑
j=1

D+
i j L j +

n∑
j=1

(Dτ
i j )

+L j exp(γ τ+
i j )

+
n∑
j=1

D
+
i jσ

+
i j L j exp(γ σ+

i j ) +
n∑
j=1

D̃+
i j L jξ

+
i j exp(γ ξ+

i j )

⎞
⎠

+ B+
i

]
ê−αi⊕νγ (t1, t0) + 1

α−
i − γ

(
exp

(
γ sup

s∈T
ν(s)

(
α+
i η+

i exp(γ η+
i )

+
n∑
j=1

D+
i j L j +

n∑
j=1

(Dτ
i j )

+L j exp(γ τ+
i j )

+
n∑
j=1

D
+
i jσ

+
i j L j exp(γ σ+

i j ) +
n∑
j=1

D̃+
i j L jξ

+
i j exp(γ ξ+

i j )

⎞
⎠ + B+

i

⎞
⎠
⎫⎬
⎭

≤ d�K ê
νγ (t1, t0)‖ψ‖0. (13)

In addition, we have

|vi (t1)| ≤ ê−ci (t1, t0)‖ψ‖0 + d�K ê
νγ (t1, t0)‖ψ‖0
∫ t1

t0
ê−ci (t1, ρ(s))êγ (t1, ρ(s))

×
(
c+
i

∫ s

s−ςi (s)
êγ (ρ(u), u)∇u + E+

i Li

)
∇s

≤ ê−ci (t1, t0)‖ψ‖0 + d�K ê
νγ (t1, t0)‖ψ‖0
∫ t1

t0
ê−ci⊕νγ (t1, ρ(s))

× (
c+
i ς+

i êγ (ρ(s), s − ςi (s)) + E+
i Li

)∇s

≤ ê−ci (t1, t0)‖ψ‖0 + d�K ê
νγ (t1, t0)‖ψ‖0
∫ t1

t0
ê−ci⊕νγ (t1, ρ(s))

×
(
c+
i ς+

i exp

[
γ

(
ς+
i + sup

s∈T
ν(s)

)]
+ E+

i Li

)
∇s

≤ d�K ê
νγ (t1, t0)‖ψ‖0
{[

1

K
− 1

c−
i − γ

(
exp

[
γ

(
ς+
i + sup

s∈T
ν(s)

)]

123



736 A. Arbi, J. Cao

+ E+
i Li

)]
ê−ci⊕νγ (t1, t0) + 1

c−
i − γ

(
exp

[
γ

(
ς+
i + sup

s∈T
ν(s)

)]
+ E+

i Li

)}

≤ d�K ê
νγ (t1, t0)‖ψ‖0.
We can easily obtain some upper bound of the derivative |u∇

i (t1)| and |u∇
i (t1)| as follow:

|u∇
i (t1)| ≤ d�K ê
νγ (t1, t0)‖ψ‖0, (14)

and
|v∇

i (t1)| ≤ d�K ê
νγ (t1, t0)‖ψ‖0. (15)

From (13) to (15), we obtain

‖Z(t1) − Z∗(t1)‖ < d�K ê
νγ (t1, t0)‖ψ‖0. (16)

which contradicts (11), therefore (10) holds. Letting � −→ 1, then (9) holds. This implies
that only pseudo-almost periodic solution of system (2) is globally exponentially stable.

Theorem 3 Suppose that assumptions (H1)−(H3) hold.

Let y∗ (·) = (
x∗
1 (·) , . . . , x∗

n (·) , , S∗
1 (·) , . . . , , S∗

n (·))T be a pseudo-almost periodic solution
of system (2). If

min

⎧⎨
⎩α−

i −
n∑
j=1

L j

(
D+
i j + (Dτ

i j )
+ + (Di j )

+σ+
i j + (D̃i j )

+ξ+
i j

)
− E+

i Li ,

c−
i − B+

i

⎫⎬
⎭ > 0,

then all solutions ψ = (ϕ1, . . . , ϕn, φ1, . . . , φn) of (2) satisfying

x∗
i (0) = ϕi (0) , S∗

i (0) = φi (0) , 1 ≤ i ≤ n,

converge to its unique pseudo-almost periodic solution y∗.

Proof Let y∗ (·) = (
x∗
1 (·) , . . . , x∗

n (·) , S∗
1 (·) , . . . , S∗

n (·)) be a solution of (2) and ψ (·) =
(ϕ1 (·) , . . . , ϕn (·) , φ1 (·) , . . . , φn (·)) be a pseudo almost periodic solution of (2). First, one
verifies without difficulty that

(
x∗
i (t) − αi (t)

∫ t

t−ηi (t)
xi (u)∇u

)∇
−
(

ϕ∗
i (t) − αi (t)

∫ t

t−ηi (t)
ϕi (u)∇u

)∇

= −αi (t)
(
x∗
i (t − ηi (t)) − ϕi (t − ηi (t))

) +
n∑
j=1

Di j (t)
[
f j (x

∗
j (t)) − f j (ϕ j (t))

]

+
n∑
j=1

Dτ
i j (t)

[
f j (x

∗
j

(
t − τi j (t)

)
) − f j (ϕ j

(
t − τi j (t)

)
)
]

+
n∑
j=1

Di j (t)

t∫

t−σi j (t)

[
f j (x

∗
j (t − u)) − f j (ϕ j (t − u))

]
∇u

+
n∑
j=1

D̃i j (t)

t∫

t−ξi j (t)

(
f j
(
(x∗

j )
∇ (u)

)
− f j

(
ϕ∇
j (u)

))
∇u,
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and

S∇
i (t) − φ∇

i (t) = −ci (t) (Si (t − ςi ) − φi (t − ςi )) + Ei (t) ( fi (xi (t)) − fi (ϕi (t))) .

then,

S∇
i (t) − φ∇

i (t) = −ci (t) (Si (t − ςi ) − φi (t − ςi )) + Ei (t) ( fi (xi (t)) − fi (ϕi (t))) .

then

(
S∗
i (t) − ci (t)

∫ t

t−ηi (t)
Si (u)∇u

)∇
−
(

φ∗
i (t) − ci (t)

∫ t

t−ηi (t)
φi (u)∇u

)∇

= −ci (t) (Si (t) − φi (t)) + Ei (t) ( fi (xi (t)) − fi (ϕi (t))) .

Now, consider the following (ad-hoc) Lyapunov–Krasovskii functional

V : R −→ PAP (T,Rn)

t �−→ V1(t) + V2(t) + V3(t) + V4(t) + V5(t),

where

V1(t) =
n∑

i=1

∣∣∣∣
(
x∗
i (t) − αi (t)

∫ t

t−ηi (t)
xi (u)∇u

)
−
(

ϕ∗
i (t) − αi (t)

∫ t

t−ηi (t)
ϕi (u)∇u

)∣∣∣∣ ,

V2 (t) =
n∑
j=1

n∑
i=1

t∫

t−τ j (t)

L j

(
D+
i j + (Dτ

i j )
+) ∣∣x∗

i (s) − ϕi (s)
∣∣∇s,

V3 (t) =
n∑
j=1

n∑
i=1

t∫

t−σi j (t)

t∫

t−s

L j D
+
i j

∣∣x∗
i (u) − ϕi (u)

∣∣∇u ∇s,

V4 (t) =
n∑
j=1

n∑
i=1

t∫

t−ξi j (t)

0∫

s

L j D̃
+
i j

∣∣∣(x∗
i )∇ (u) − (ϕi )

∇ (u)

∣∣∣∇u ∇s.

and

V5(t) =
n∑

i=1

∣∣∣∣
(
S∗
i (t) − ci (t)

∫ t

t−ηi (t)
Si (u)∇u

)
−
(

φ∗
i (t) − ci (t)

∫ t

t−ηi (t)
φi (u)∇u

)∣∣∣∣ .

Let us calculate the upper right Dini derivative D+V (t) of V along the solution of the
equation above. Then one has
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DV+
1 (t) ≤ −

n∑
i=1

α−
i

∣∣x∗
i (t) − ϕi (t)

∣∣ +
n∑

i=1

n∑
j=1

D+
i j

∣∣∣ f j (x∗
j (t)) − f j (ϕ j (t))

∣∣∣

+
n∑

i=1

n∑
j=1

(Dτ
i j )

+
∣∣∣ f j (x∗

j

(
t − τ j (t)

)
) − f j (ϕ j

(
t − τ j (t)

)
)

∣∣∣

+
n∑

i=1

n∑
j=1

D
+
i j

t∫

t−σi j (t)

∣∣∣ f j (x∗
j (t − u)) − f j (ϕ j (t − u))

∣∣∣∇u

+
n∑

i=1

n∑
j=1

D̃+
i j

t∫

t−ξi j (t)

∣∣∣ f j
(
(x∗

j )∇ (u)
)

− f j
(
ϕ∇
j (u)

)∣∣∣∇u

≤ −
n∑

i=1

α−
i

∣∣x∗
i (t) − ϕi (t)

∣∣ +
n∑

i=1

n∑
j=1

D+
i j L j

∣∣∣x∗
j (t) − ϕ j (t)

∣∣∣

+
n∑

i=1

n∑
j=1

(Dτ
i j )

+L j

∣∣∣x∗
j

(
t − τ j (t)

) − ϕ j
(
t − τ j (t)

)∣∣∣

+
n∑

i=1

n∑
j=1

D
+
i j

t∫

t−σi j (t)

L j

∣∣∣(x∗
j (t − u) − ϕ j (t − u)

∣∣∣∇u

+
n∑

i=1

n∑
j=1

D̃+
i j

t∫

t−ξi j (t)

L j

∣∣∣(x∗
j )

∇ (u) − ϕ∇
j (u)

∣∣∣∇u + B+
i |Si (t) − φi (t)|

Obviously,

DV+
2 (t) ≤

n∑
j=1

n∑
i=1

L j (D
+
i j + (Dτ

i j )
+)

[∣∣x∗
i (t) − ϕi (t)

∣∣ − ∣∣x∗
i

(
t − τi j (t)

) − ϕi
(
t − τi j (t)

)∣∣]

≤
n∑

i=1

n∑
j=1

L j (D
+
i j + (Dτ

i j )
+)

∣∣x∗
i (t) − ϕi (t)

∣∣

−
n∑

i=1

n∑
j=1

L j (D
+
i j + (Dτ

i j )
+)

∣∣x∗
i

(
t − τ j (t)

) − ϕi
(
t − τ j (t)

)∣∣

and

DV+
3 (t) ≤

n∑
j=1

n∑
i=1

L j D
+
i j

∫ t

t−σi j (t)

[∣∣x∗
i (t) − ϕi (t)

∣∣ − ∣∣x∗
i (t − s) − ϕi (t − s)

∣∣]∇s

≤
n∑
j=1

n∑
i=1

L j D
+
i j

∫ t

t−σi j (t)

∣∣x∗
i (t) − ϕi (t)

∣∣∇s

−
n∑
j=1

n∑
i=1

L j D
+
i j

∫ t

t−σi j (t)

∣∣x∗
i (t − s) − ϕi (t − s)

∣∣∇s.
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Reasoning in a similar way, we can obtain the following estimation

DV+
4 (t) =

n∑
j=1

n∑
i=1

∫ t

t−ξi j (t)

0∫

s

L j D̃
+
i j

∣∣∣(x∗
i )∇ (u) − ϕ∇

i (u)

∣∣∣∇u ∇s

≤ −
n∑
j=1

n∑
i=1

L j D̃
+
i j

∫ t

t−ξi j (t)

∣∣∣(x∗
i )∇ (s) − ϕ∇

i (s)
∣∣∣∇s,

and,

DV+
5 (t) = −c−

i

∣∣S∗
i (t) − φi (t)

∣∣ + E+
i | fi (xi (t)) − fi (ϕi (t))|

≤ −c−
i

∣∣S∗
i (t) − φi (t)

∣∣ + E+
i Li

∣∣x∗
i (t) − ϕi (t)

∣∣ .
By using the inequality

D+ (F1 + F2) ≤ D+ (F1) + D+ (F2) ,

we get

D+ (V (t)) ≤ DV+
1 (t) + DV+

2 (t) + DV+
3 (t) + DV+

4 (t)

≤ −
n∑

i=1

n∑
j=1

max
{
α+
i − D+

i j L j − (Dτ
i j )

+L j − D
+
i jσ

+
i j L j

− D̃+
i j ξ

+
i j L j − E+

i Li , c
+
i − B+

i

}
‖y∗ (t) − ψ (t) ‖

= −
n∑

i=1

βi‖y∗ (t) − ψ (t) ‖ < 0.

By integrating the above inequality from t0 to t , we get

V (t) +
n∑

i=1

βi

t∫

t0

‖y∗ (t) − ψ (t) ‖∇s < V (t0) < +∞.

Now, we remark that V (t) > 0. It follows that

lim
t→+∞ sup

t∫

t0

βi‖y∗ (s) − ψ (s) ‖∇s < V (t0) < +∞.

Note that y∗ (·) is bounded on R
+. Therefore

lim
t→+∞ ‖y∗ (t) − ψ (t) ‖ = 0.

The proof of this theorem is now completed.

Remark 5 Theorem 1, Theorem 2 and Theorem 3 are new even for the both cases of differ-
ential equations (T = R) and difference equations (T = Z).

Remark 6 The model studied in [16] is considered without leakage time-varying delays and
the system investigated have not contained some information about the derivative of the past
state. In addition, the coefficients ai (i = 1, . . . , n) (playing the role of αi (·) in our work) are
constant. Furthermore, using the outcomes in this manuscript we can generalize the sufficient
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conditions for keeping the original system of the model, with leakage time-varying delays
and contained some information about the derivative of the past state, to be stable. Besides,
by the technique in the paper [16], we can study the Hopf bifurcation of the novel class of
competitive neutral-type neural networkswithmixed time-varying delays and leakage delays.

6 Example and Computer Simulations

In this section, we will present an example to illustrate the feasibility of our results that were
derived in the previous sections.

In system (3), let i, j = 1, 2, and take coefficients as follows:

α1(t) = α2(t) = 0.73 + 0.02 cos(16π t), f1(x) = f2(x) = 0.1 arctan x;(
D11(t) D12(t)
D21(t) D22(t)

)
=
(
D̃11(t) D̃12(t)
D̃21(t) D̃22(t)

)
=
(
D̄11(t) D̄12(t)
D̄21(t) D̄22(t)

)
=
(

sin(t)
15

sin(t)
15

cos(t)
15

cos(t)
15

)
;

B1(t) = 0.15 cos(
√
3t); B2(t) = 0.13 cos(

√
2t);

c1(t) = 0.55 + 0.02 sin(16π t);
c2(t) = 0.54+0.02 sin(16π t); E1(t)=0.12 sin(t); E2(t)=0.12 cos(

√
3t);

I1(t) = 0.02 sin(
√
3t); I2(t) = 0.04 cos(

√
5t); J1(t) = 0.04 cos(t);

J2(t) = 0.1 sin(
√
5t); η1(t) = 0.07 cos(

√
2t); η2(t) = 0.02 cos(

√
2t);

ς1(t) = 0.02 cos(
√
3t); ς2(t) = 0.02 cos(

√
3t); τ11(t) = 0.02 sin(

√
2t);

τ12(t) = 0.03 sin(
√
2t); τ21(t) = 0.02 cos(

√
2t); τ22(t) = 0.03 sin(

√
2t);

σ11(t) = 0.04 cos(
√
2t); σ12(t) = 0.02 sin(

√
2t); σ21(t) = 0.03 cos(

√
3t);

σ12(t) = 0.02 cos(
√
3t); ξ11(t) = 0.03 cos(

√
2t); ξ12(t) = 0.05 sin(

√
2t);

ξ21(t) = 0.02 sin(
√
2t); ξ22(t) = 0.04 cos(

√
2t).

By a simple calculation, we have

α+
1 = 0.75, α−

1 = 0.71, α+
2 = 0.75, α−

2 = 0.71,

c+
1 = 0.57, c−

1 = 0.53, c+
2 = 0.56, c−

2 = 0.52,(
D+
11 D+

12
D+
21 D+

22

)
=

(
D̃+
11 D̃+

12
D̃+
21 D̃+

22

)
=
(
D̄+
11 D̄+

12
D̄+
21 D̄+

22

)
=
( 1

20
1
20

1
20

1
20

)
;

I+
1 = 0.02; I+

2 = 0.04; J+
1 = 0.01; J+

2 = −0.1;
B+
1 = 0.15; B+

2 = 0.13; E+
1 = 0.12; E+

2 = 0.12;
η+
1 = 0.07; η+

2 = 0.02; ς+
1 = 0.02; ς+

2 = 0.02;
(σ+

i j )1≤i, j≤2 =
(
0.04 0.02
0.03 0.02

)
; (ξ+

i j )1≤i, j≤2 =
(
0.03 0.05
0.02 0.04

)
;

We can take L1 = L2 = 0.1, r = 0.5 and we have

M1 = α+
1 η+

1 r +
2∑
j=1

(
D+
1 j + (Dτ

1 j )
+ + D

+
1 jσ

+
1 j

+ D̃+
1 jξ

+
1 j

)
(L jr + | f j (0)|) + B+

1 r + I+
1 ,

= 0.75 × 0.07 × 0.5 + ( 1
20 + 1

20 + 1
20 × 0.04 + 1

20 × 0.03
)
(0.1 × 0.5 + 0.1)
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+ ( 1
20 + 1

20 + 1
20 × 0.02 + 1

20 × 0.05
)
(0.1 × 0.5 + 0.1)

+ 0.15 × 0.5 + 0.02

= 0.0773.

M1 = α+
1 η+

1 +
2∑
j=1

(
D+
1 j + (Dτ

1 j )
+ + D

+
1 jσ

+
i j + D̃+

1 jξ
+
1 j

)
L j + B+

1 ,

= 0.75 × 0.07 + ( 1
20 + 1

20 + 1
20 × 0.03 + 1

20 × 0.02
)
(0.1 × 0.5 + 0.1)

+ ( 1
20 + 1

20 + 1
20 × 0.02 + 1

20 × 0.04
)
(0.1 × 0.5 + 0.1) + 0.13

= 0.2132.

N1 = c+
1 ς+

1 r + E+
1 (L1r + | f1(0)|) + J+

1

= 0.57 × 0.02 × 0.5 + 0.12(0.1 × 0.5 + 0.1) + 0.01

= 0.0337,

N 1 = c+
1 ς+

1 + E+
1 L1

= 0.57 × 0.02 + 0.12 × 0.1

= 0.0234.

M2 = α+
2 η+

2 r +
2∑
j=1

(
D+
2 j + (Dτ

2 j )
+ + D

+
2 jσ

+
2 j + D̃+

2 jξ
+
2 j

)
(L jr + | f j (0)|) + B+

2 r + I+
2

= 0.75 × 0.02 × 0.5 + ( 1
20 + 1

20 + 1
20 × 0.03 + 1

20 × 0.02
)
(0.1 × 0.5 + 0.1)

+ ( 1
20 + 1

20 + 1
20 × 0.02 + 1

20 × 0.04
)
(0.1 × 0.5 + 0.1) + 0.13 × 0.5 + 0.04

= 0.143,

M2 = α+
2 η+

2 +
2∑
j=1

(
D+
2 j + (Dτ

2 j )
+ + D

+
2 jσ

+
2 j + D̃+

2 jξ
+
2 j

)
L j + B+

2

= 0.75 × 0.02 +
(

1

20
+ 1

20
+ 1

20
× 0.03 + 1

20
× 0.02

)
× 0.1

+
(

1

20
+ 1

20
+ 1

20
× 0.02 + 1

20
× 0.04

)
× 0.1 + 0.13

= 0.165,

N2 = c+
2 ς+

2 r + E+
2 (L2r + | f2(0)|) + J+

2

= 0.56 × 0.02 × 0.5 + 0.12(0.1 × 0.5 + 0.1) − 0.1

= −0.0764,

N 2 = c+
2 ς+

2 + E+
2 L2

= 0.56 × 0.02 + 0.12 × 0.1

= 0.0232.

The conditions (H1) and (H2) are satisfied and it is easy to verify

max

{
M1

α−
1

,
M2

α−
2

,

(
1 + α+

1

α−
1

)
M1,

(
1 + α+

2

α−
2

)
M2,

N1

c−
1

,

(
1 + c+

1

c−
1

)
N1,

N2

c−
2

,

(
1 + c+

2

c−
2

)
N2

}
≤ 0.5,
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Fig. 1 The trajectories of x1, x2, S1 and S2 for t ∈ [0, 150] (continuous case T = R)

0 50 100 150

0

0.5

1

1.5

2

Time (n)

S
1, S

2, x
1, x

2

S1
S2
x1
x2

Fig. 2 The trajectories of x1, x2, S1 and S2 in the discrete case T = Z

and

max

{
M1

α−
1

,
M2

α−
2

,

(
1 + α+

1

α−
1

)
M1,

(
1 + α+

2

α−
2

)
M2,

N 1

c−
1

,
N 2

c−
2

,

(
1 + c+

1

c−
1

)
N 1,

(
1 + c+

2

c−
2

)
N 2

}
≤ 1,

so, condition (H3) holds. Therefore, using Theorem 1 and Theorem 2, we conclude that
system (2) has only one pseudo-almost periodic solution. Besides, this unique solution is
globally exponentially stable.

Figures 1, 2, 3 and 4 confirm that the proposed conditions in our theoretical results are
effective for this example. Furthermore, it can be easily seen that the solutions of the system
in this example for the both continuous time and discrete time are exponentially stable
(Figs. 1, 2). Besides, it is clear that from a certain time we have the same distance between
the two pseudo-almost periodic trajectories of the orbit (Figs. 3, 4).

Remark 7 In many cases, the delays in leakage terms have a negative effect on ensuring
the stability of the system. In this case, people usually take a small value to the delays in

leakage terms, such as max
i=1,2

ηi (t) = (1+| sin(t)|)
2000 ≤ 1

1000 and max
i=1,2

ηi (t) = 0.1, respectively
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Fig. 3 In the left figure, the orbits of x1−x2. In the right figure, the orbits of S1−S2
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Fig. 4 In the left figure, the orbits of x1−S1. In the right figure, the orbits of x2−S2

in the examples of references ([11,13]). When η+
1 = 0.07, η+

2 = 0.02, ς+
1 = 0.02 and

ς+
2 = 0.02, their condition swill not be satisfied, but ours can. Therefore, our conditions are

less conservative than that in ([11,13]).

7 Conclusion and Open Problem

As it is widely known, the leakage delay has great impact on the dynamical behavior of
neutral-type neural networks. Hence, it is necessary and rewarding to investigate the leakage
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delay effects on the dynamic behaviors of pseudo-almost periodic solution of competitive
neutral-type neural networks. It is the first time that a class of neutral-type competitive with
mixed delays and leakage delays on time-space scales is presented. In addition, the existence
and exponential stability of pseudo almost periodic solutions for the system of equation
modeling this system are also considered. The problem is investigated for the differential
equations and difference equations. In the best of our knowledge, the model is general in the
meaning that is considered with mixed time-varying delays and leakage time-varying delays.
Finally, we formulate some open problems. We would like to extend our results to more
general competitive neural networks with mixed time-varying delays and leakage delays,
such as high-order competitive neural networks models.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ST M :x∇
i (t) = −αi (t)xi (t − ηi (t)) +

n∑
j=1

Di j (t) f j
(
x j (t)

)

+
n∑
j=1

Dτ
i j (t) f j

(
x j

(
t − τi j (t)

)) +
n∑
j=1

n∑
k=1

Ti jk fk(xk(t − χk(t))) f j (x j (t − χ j (t)))

+
n∑
j=1

Di j (t)
∫ t

t−σi j (t)
f j
(
x j (s)

)∇s +
n∑
j=1

D̃i j (t)
∫ t

t−ξi j (t)
f j
(
x∇
j (s)

)
∇s

Bi
n∑
j=1

mi j (t)y j + Ii (t) ,

LT M :m∇
i j (t) = −ci (t)mi j (t − ςi (t)) + y j Ei (t) fi (xi (t)) + Ji (t), t ∈ T,

(17)
where, for all i, j, k = 1, . . . n, Ti jk are the second-order connection weights of delayed
feedback.

And stochastic high-order competitive neural networks model on time-space scales with
mixed time-varying delays and leakage delays:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ST M :∇xi (t) =
[
−αi (t)xi (t − ηi (t)) +

n∑
j=1

Di j (t) f j
(
x j (t)

)

+
n∑
j=1

Dτ
i j (t) f j

(
x j

(
t − τi j (t)

)) +
n∑
j=1

n∑
k=1

Ti jk fk(xk(t − χk(t))) f j (x j (t − χ j (t)))

+
n∑
j=1

Di j (t)
∫ t

t−σi j (t)
f j
(
x j (s)

)∇s +
n∑
j=1

D̃i j (t)
∫ t

t−ξi j (t)
f j
(
x∇
j (s)

)
∇s

+ Bi
n∑
j=1

mi j (t)y j + Ii (t)

]
∇t +

n∑
j=1

κi j (x j (t))∇ω j (t),

LT M :∇mi j (t) = [−ci (t)mi j (t − ςi (t)) + y j Ei (t) fi (xi (t)) + Ji (t)
]∇t

+
n∑
j=1

δi j (mi j (t))∇ω j (t), t ∈ T,

(18)
where ω(t) = (ω1(t), . . . , ωn(t))T, (t ∈ T) is the n-dimensional Brownian motion defined
on complete probability space (Ω,F,P); δi j are Borel measurable functions; A = (δi j )n×n

is the diffusion coefficient matrix.
The corresponding results will appear in the near future.
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