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1 Introduction

Fractional-order calculus, that is, the theory of derivatives and integrals of non-integer order,
is firstly considered by Leibniz in 1695 [1]. Then it is applied and theoretical studied by
Abel, Liouville, and other mathematicians since the first half of the nineteenth century.
Unlike the classical integer derivative operator, fractional derivative operator is non-local
in nature, which means that the future state relies on the present state as well as all the
history of its previous states. From this point of view, fractional-order models can provide a
powerful tool to delicately depict the memory and hereditary properties of various materials
and processes and are thus receiving extensive applications in a variety of field such as
medical imaging, electronic circuit, system control, economics, biology and so on [2-6]. In
[7], Arena et al. firstly introduce fractional-order derivatives into a cellular neural networks.
Subsequently the fractional-order neural networks were proposed and designed for more
precisely modelling the real world owing to its high effective information processing and
the independent transformation of the oscillation frequency of neurons [8]. Recently, some
important and interesting results on fractional-order neural networks have been obtained
and various issues have been investigated by many authors, such as the chaotic behavior [9],
stability [10], bifurcations [11,12] and limit cycles [13] for fractional-order neural networks.

Due to the development and further application of neural networks, the complex-valued
neural networks (CVNNs), namely the input/output signals, connection weights, and activa-
tion functions are all taken from the complex field, come into being and have attracted much
interest among researchers and practitioners [14—-16]. CVNNs have advantaged superiority
in simpler network structure, shorter training time and more powerful learning ability during
complex signal processing compared to real valued neural networks (RVNNGs). For instance,
both the well-known Exclusive-OR (XOR) problem and the detection of symmetry prob-
lem can be realized by only a single complex-valued neuron with the orthogonal decision
boundaries, whereas neither of them could be accomplished by RVNNs with such a simple
network structure [17]. Furthermore, in RVNNs, we usually employ bounded and smooth
functions as activation function such as the Sigmoid type functions, however, activation
functions with such properties in CVNNs are impermissible, since on the basis of Liouvilles
theorem [18], the function which is both bounded and analytic over complex number field
must be a constant. As a result, choosing appropriate activation function is an important and
difficult task for CVNNs. According to the above discussion, despite being an extension of
RVNNs, CVNNSs are very different and more complicated compared to RVNNs. Hence, it is
necessary to analyze the dynamic behavior of CVNNSs, and considerable efforts have been
devoted to study the stability and synchronization of CVNNs [19-22]. However, there is a
little literature to consider the dynamic behavior of fractional-order CVNNSs. Until recently,
the stability and uniformly stability of this networks are investigated in [23,24], and the
synchronization of a class of fractional-order CVNNSs is discussed in [15].

As we all know, stability is one of the most concerned problems for any dynamic system.
It is worth noting that most of the existing results focus on the stability of system in the sense
of Lyapunov, including asymptotic stability, uniform stability and exponential stability, etc,
which are all recognized as infinite-time behavior of such systems. Nevertheless, in some
practical situations we may be more interested in the finite-time stability, which sustains the
trajectories do not exceed a certain threshold during a fixed short time under a given bound on
the initial conditions, since most actual networks only act over finite time. The initial concept
of finite-time stability is given in [25] for a class of integer order differential system, and then
has been extensively studied [26-30]. Very recently, finite-time stability of fractional order
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systems are considered and lots of useful results about finite-time stability of fractional-order
neural networks are put forward [31-34], while, up to now, the results on finite-time stability
of fractional-order CVNNSs are not considered in the existing literatures.

Motivated by the above discussion, the target of this paper is to establish the finite-
time stability criterion for fractional-order CVNNs with time delays. By means of Gronwall
inequality, Cauchy-Schiwartz inequality and inequality scaling techniques, some sufficient
conditions are given to admit the finite-time stability of the system. The reminder of the paper
is organized as follows. In Sect. 2, some definitions about fractional calculus and necessary
lemmas are recalled, as well as the model of network are described; Then, two sufficient
conditions admitting the finite-time stability of fractional-order CVNNs respectively with
order 0 < @ < 1/2and 1/2 < a < 1 are proposed in Sect. 3; The effectiveness of the
theoretical results is shown by two numerical simulation examples in Sects. 4 and 5 is the
conclusion of this paper.

Notations Throughout the paper, R” denotes the n dimensional real space. R"*" is a set of
n x m real matrices. The superscript “7T” represents the transpose. C, C", C"*™ respectively
denote the set of all complex number, the set of all n-dimensional complex-valued vectors
and the set of all n x m complex-valued matrices. i shows the imaginary unit, i.e. i = +/—1.
For any complex number z = x + iy € C, the notation |z| stands for the module of z,
namely |z] = /x2 + y2. Given vector z € C", ||z|| denotes the 2-norm of z, i.e. ||z]| =
(Z?z 1z 1) % C"(M, N) denotes the space consisting of n-order continuous differentiable
functions from M into N, and C(M) £ C%M, R). For function ¢ (¢) : [ty — 7, 7] — C",
define the norm [|@llc = supgefs—z.z07 19 -

2 Preliminaries

In this section, some basic definitions and results relating to fractional calculus are firstly
recalled.

2.1 Fractional Calculus and Preliminary Lemmas

Definition 2.1 [35] The fractional integral with non-integer order & > 0 of function f(x) is
defined as follows:

1 t
Dt;?ttf(t) = @/; (r— T)ailf(f) dr,
0

where I'(-) is the Gamma function I" () = fooo 2= le=t dr.

Currently there exist several definitions referring to the fractional derivative of order« > O,
including the Griinwald—Letnikov (GL) definition, the Riemann—Liouville (RL) definition
and the Caputo definition [35]. Among these definitions, the Caputo derivative has the unique
advantage in that it only claims initial conditions provided as the integer-order derivative of
f () and the function itself, which is conducive to express some well-understood features of
physical situations, making it more applicable to the real world. Therefore, our consideration
in this paper is the fractional-order neural networks with Caputo derivative, whose definition
is given below.
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Definition 2.2 [35] The Caputo derivative of fractional order « of function f(x) is defined
as follows:

—(n—a) r(n 1 ! n—a—1 g(n
Cop £0 =D £ 00 = s [ = O,
0

wheren — 1 <a <neZ™ .

For simplicity Dy, ¢ and OCD;" are respectively rewritten by D~ and D%, and some prop-
erties on these two operator are introduced.

Lemma 2.1 [36]If f(t) € C'[0, 00), andn — 1 < a < n € ZT, then

(1) DD P f6) =D P f(1), a,B>0;
(2) DYD™f(1) = f(1), a=0; ,
(3) DD f(1) = f(1) = i /i HfP(©0), «=0.

Now some well-known inequalities will be introduced for the proofs of main results in
this paper.

Lemma 2.2 (Holder inequality [37]) Assume that q,p > 1, and % + = 1, if

IFOIP, 1819 € LN(RQ), then f()g(-) € L'(Q) and

1/p 1/q
/ lf(x)g(x)ldx§< f If(x)l"dX> ( / |g<x)|qu) , )
Q Q Q

where LY (Q) is the Banach space of all Lebesgue measurable functions f : Q@ — R with

fg | f(x)]dx < oo.
Especially, let p, q = 2, it reduces to the Cauchy-Schwartz inequality:

2
( / If(x)g(x)ldx> < / |f(0)Pdx - / lg(x)[*dx. )
Q Q Q

Lemma2.3 [38]LetneN, w> 1,andx; e RT,i =1,...n, then

n w n
(D) =
i=1 i=1

Lemma 2.4 (Gronwall inequality [39]) If

Q=

t
(0 < h() + / k(s)x(s)ds, 1 € [f0. T).
1

0

where all the functions involved are continuous on [ty, T), T < 0o, and k(t) > 0, then x(t)
satisfies

1 12
() 5h(z)+/ k(s)h(s)exp(/ kdu)ds, 1 € [1,, T). 3)

1‘0 s

If, in addition, h(t) is nondecreasing, then

t
x(t) < h(t)exp(/ k(u)du), telt, T).

N
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2.2 Model Description

In this paper, we consider the following fractional-order CVNNs with time delays:

Dzj(t) = —cjzj(t) + Zajkfk(Zk(l)) + ijkgk(zk(t —1)+Uj, @
k=1 k=1

zi(t) = ¢i (1), te€lt—r1, 1ol

where j = 1,2, ..., n, or in the vector form
D%z(t) = —Cz(t) + AF(z(t)) + BG(z(t — 7)) + U, 5)
() =), telto—r1, tol,

where 0 < o < 1, n is the number of neurons, z(1) = (z1(t), 22(¢), . .., z,(t))T € C" is the

state vector, F (z(1)) = (f1(z1(1). ..., fa@a®ONT.Gz(1) = (g1(z1(1)). - ... gu(za ()T,
and f;(-), g;j(-) : C" — C denote the activation functions of the jth neuron without and with
time delays; A = (@ji)nxn, B = (bji)nxn € C"*" are, respectively, the connection weight

matrix without and with time delays; C = diag{ci, c2, ..., ¢,} € R"" with ¢; > 0 is the
self-feedback connection weight matrix, U = (Uy, Ua, .. ., Un)T € C" is the external input
vector; tg is the initial time for observation of the system, ¢ (t) = (¢1(¢), 12(?), ..., ¢n N’ e

C([ty — 7, 1], C") is the initial function.

Definition 2.3 [28] Set a time 7' > 0, given positive numbers §, € with § < €, a solution
z(t, to, ¢) of system (5) is said to be finite-time stable with respect to (¢, J, 8, €), if for any
solution 7'(t, to, ¢') of (5), |¢' — ¢llc < § implies |2/ (¢, tg, ¢') — z(t, 19, P)|| < €, Vt €
J = [to, to + T, where ¢ (1), ¢’ (¢) for t € [t9 — 7, to] is initial functions.

System (5) is said to be finite-time stable with respect to (ty, J, 8, €) if any solution z(¢)
of (5) is finite-time stability with respect to (z, J, 8, €).

Remark 2.1 The finite-time stability, also called short-time stability, is initial introduced in
[25]. Inspired by LaSalle and Lefschet’s “brief discussion” on practical stability in [40], the
stability defined constant set trajectory bounds over finite time interval is proposed by Weiss
and Infante [25] for continuous-time systems, and further development on such theory is
explored by Lam and Weiss in [41]. Then, a more vivid concept called “practical stability
with settling time” is in consideration in [42,43] by Gruji¢. Essentially, these definitions
all consist of maintaining the system response within a certain threshold over a short time
interval, based on the preset range of initial value change, which is as described by Definition
2.3.

Remark 2.2 1t should be pointed out that the finite-time stability and the stability in the
sense of Lyapunov are different concepts, because Lyapunov stability or asymptotic stability
does not contain finite-time stability, and vise versa [28]. Besides, the finite-time stability
considered here is also quite different from the fixed-time stability or finite-time stability
in [44] and [45] , which requires the trajectory of system both finite-time attractive and
Lyapunov stable, noting that the latter is a special case of Lyapunov stability. Sometimes
a system can be stable or asymptotically stable but yet no use at all due to its undesirable
transient performances. Consequently, it may be helpful to study its stability within a certain
subset of the state space which are defined a priori over a finite time interval. That is the
prime task of this paper.
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To facilitate in establishing our main results, the following assumptions are utilized.

Assumption 1 Let z = x + iy, F(z(t)) and G(z(t — 7)) are analytic and can be expressed
by separating their real and imaginary parts as
F(z(0) = FR(x (1), y@) +iF! (x(1), y(1)),
G(z(t — 1) = GR(x(t — 1), yt — 1) +iG (x(t — 1), y(t — 7)),

where FF(x,y) = (fFGer, y0)soon fX G )T, GRG,y) = (€Y Ger, y)s oy g Cun,
ya)T,and f5(x, y), g5(x, y) : R* — R are real differentiable, j = 1,2, ..., n; k = R, I.

Similarly, the complex matrices A and B can be separated by A = AR +iAl, B =
BR +iB!, andlet A = |AR|, A = |A|, B = |B||, B =|B'|.

Assumption 2 fj’.‘(-, 9, glj‘. ¢, )k=R,I;j=1,2,...,n) satisfy the Lipschitz conditions
in R2, that is, for any (u, v), (u’,v') € R2, there exist positive constants F ]f, G’;, such that

IR ) = ) < FS @ —u)? + o = )2,
185 V) — gk v < GV — w2+ v =2 k=R I:j=12...n

Remark 2.3 Noting thatforany z, 7/ € C",letz = x+iy, 7/ = x'+iy’,then (x, y), (x/, y') €
R"*2_ and we have

1/2 172

n n
/ / 2 ’ 2 ’ 2
I =zl =| D)1z} -zl = [ Do =X+ 1y — v
j=1

j=1

Letting F = max| <<y {FjR} and using Assumption 2, one can easily obtain

1/2
n
IFRG ) = FRG )l = [ D 1FR G v) = fRa opP | < FliZ =zl (6)
j=1
Similarly, it could be derived
IFIG, vy — Fle, y)ll < FllZ -z, @)

IGR(',y) =GR, Il < Gl —zll, I1G' ', y) = G (x, Il < Gl —zll, ®)
where F = maxlsjf,,{Fj’}, G = maxlsjsn{Gf}, and G = maxlsjsn{Gj.}.

For convenience, we set fop = 0 throughout this paper and then our initial interval is
[—7, 0]. Assuming that z(¢) and 7(¢) are two solution of (5) with different initial functions
¢ (1) and ¢/(t) fort € [—1,0],lete(r) = 7/(t) — z(2), O(t) = ¢'(t) — ¢ (), one has the error
system

(C))

D%e(t) = —Ce(t) + A[F (Z' (1)) = F(z()] + BIG(Z'(r — 7)) — G(z(t — 1)),
e(t)y=0(t), tel-t, 0],

From Definition 2.3, the finite-time stability for system (5) is equivalent to the finite time
stability of trivial solution for the error system (9). Thus we just consider system (9) hereafter.
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3 Main Results

In this section, we derive the sufficient conditions for finite-time stability of a class of
fractional-order complex-valued neural networks with time delays, which are discussed into
two cases: % <a<landO0 < o < % For simplification, the following notations are
employed:

zZ) =x@®) +iy@), t=0; ®@)=¢@) +ip@t), tec[-1,0] (10)
) =X +iy @), t>=0;, ®@)=¢'(t)+i¢'(t), te[-7,0] (11)
ety =x'(t) —x@), e@)=y'(t)—y@), x()=x(—1). (12)

Then from (12), e(t) = e(t) + ie(t), and by means of (10), (11) and (9), we have

DY%(t) = —Cé(t) + AR [FR(x’, vy — FR(x, y)] — Al [F’(x’, V) — Fl(x, y)]
+B% [GR (. v) = GRere vo) | = BT [6 (v = G (e vo) | (13)
D¥e(t) = —Cé(t) + ARIF (X', y)) — F'(x, 1+ AT[FR(, y)) — FR(x, )]
+BR (G, v1) = G (e yo) | + BT [GRGxt v = GR Gy | (14

Theorem 3.1 When % <« < 1, if Assumptions 1 and 2 holds and

5)

8+ (4N + MN +2M)e+N)t ¢
< o
2+N b)

forallt € J = [0, T], then system (9) is finite time stable with respect to [ty, J, §, €], where

_ 4T'Qa — D[(BG + BG)? + (BG + BG)?](1 — e™?")
- 49T2 (@)

N 80 Q2o — D[ICI? + (AF + AF)> + (AF + AF)*> + [(BG + BG)? + (BG + BG)*1e™ "]
a 49T2 () ’

M

)

(16)
Proof Based on Lemma 2.1, the system (13) can be expressed by

e(t) = é(0) + D™ {—CE(o + ARTFR(, 3y — FR(x, p)]1 = ATTFI () — FI(x, )]

+ BRGR (e} v) = GR e, 3ol = B'G! (54, ¥)) = G (e, y0)]|

1 t
=20 + = — f (t = 5 {=Céts) + ARIFR (2 (9), ¥/ () = FR(x(6), ()]
L) Jo

— AFI (X (5), ¥/ (5)) = FL(x(5), y()1 + BRIGR (X (5), yi.(5))
— GR(xr(5), ye (51— BT [GT(xL(5), y.(5)) — G (x1 (), yr (s))]] ds.
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568 X. Ding et al.

From Assumption 2 and Egs. (6)—(8), it yields

eI < lle(O)]| + m/ t — ) YICHIEs)| + AF e(s)ll + AF|le(s)]]

+BGllec ()]l + BGIIez(S)II} ds = [le(0)]l

t
+%/ (t — )" 1||C||||e(s)||d3+m/ (t =) '[AF + AF]e(s)ds

+ e )/ (t —5)* '[BG + BG]|le. (s)]|ds. (17)

By using the Cauchy-Schwartz inequality (2), one has

t t
fo (t — 9 CHlE)ds = €] /O (1 — ) e e~ 12(s) ds

t : , :
5( / (r—s)z"—zezfds) el ( / e—zsné(s)nzds) .
0 0

(18)

Similarly, we have

t
/ (t — ) '[AF + AF]|le(s)||ds

1
; 1
(/ (t — 20{ 2 2vds> (AF-I—AF) (/ e*2S||e(s)||2ds>2 , (19)
0

/ (t — $)* ' [BG + BGlllec (s)||ds
0

1 1
t 5 t b
< (/ (1 —s)2“*2e23‘ds>2 -(BG + BG) (/ e*23‘||e,(s)||2ds>2 ) (20)
0 0

Noting that the expression of Gama function I'(«) = fooo 1*le~!dr, we obtain

t t t
/ (t — S)Za—2e2sds — / v2a—262t—2vdv — eZt / v2a—2e—2vdv
0 0 0

2t 2t

2t 2
_ 2;_] /O W2y < :TF(Z()[ 1. 1)

Substituting (18)—(21) into (17), it could be derived

1 1
C 2 2t 2 t 2
120l < e + 1<l ( P (a - 1)) ( / e—%né(s)nzds)
') 0
1 22! 3 __ . t o 5 2
+ % < e I'a — 1)) -3 (AF + AF) (/0 e [le(s)]| ds)

. 1
+(BG + BG) (/ e ||er(s)||2ds) i } . (22)
0
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From Lemma 2.3, and let n = 4, w = 2, it follows from (22) that

262t
= ree-1
M) 4« @D

4|2 2¢*
M2() 4¢

t
e < 4120y + Qo —1) / e 2 |e(s) )2 ds +
0

t t
: {(AF + Aﬁ)zf e > |le(s)||>ds + (BG + Eé)z/ e ||e,(s)||2ds} )
0 0
(23)

From the initial condition of system (9), we can get

P t t—1
/0 e Hlec ()] 2ds = /0 e Xle(s — 1)||Pds = / e 2D e (u) P du
-7

0 t
<e_27/ e—2“||e(u)||2du+e—2ff e 2" |le(u) || *du
0

-7

0 t
= / e N0)|Pds + e / e le(s)]7ds
0

-7

0 t
< ||9||2e—2ff e—ZSdere—Zf/ e > le(s) || *ds
—7 0

_ ”9”2 1 27 27 ! —2s 2d 24
_T( —e )—l—e A e “le(s)||~ds. 24)

Thus (23) can be written by

8e2T' (2 — 1) NV
H IR [ e e s
@4 0

82T QRa—1) -~ - ~,0% 5
—————(BG+BGP?—C (1—e ™"
FZ(OZ)4O‘ ( + ) 2 ( ¢ )

8eX T2 — 1)
"2 (a)4¢

le)* < 412(0) )1 +

t
[(AF + AF)* + (BG + BG)%‘”]/ e le(s)||>ds. (25)
0

Applying the similar techniques, we can obtain the estimation of imaginary part for the
solution of system (9) as follow

8T (2u — 1

i _ ) Y
le@)|* < 41E0))1* + P ||C||2/0 e ||e(s) 1 *ds

8XT Q2 —1) -~ -, 0% o

W(EG—i—BG) T(1—e )
2t _ L o !

Se TCe =Dy 3F + AF) + (BG + BG)%*ZT]/ e le(s)]Pds. (26)
2 (a)de 0
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Note that |le(s)]|2 = [le(s)]|® + [|é(s)||%, for s € [0, ¢], the combination of (25) and (26)
induces

8¢ (2a — 1)
2 (a)4e
8¢X'T'(2a — 1) ) 012 8e*T(2a — 1)
2 ()4 2 2 (a)4*

: {(AF Y AR 4 (AF + AF) + [(BG +BG)? + (BG + BG)Z] e—Zf}
t
/ e Hle(s)|ds,
0

which is equivalent to

t
le(®) 1> < 41e)]* + el /0 e le(s)]*ds

BBG+BGV+4EG+BGV]U—

41— e I'Qa—1)
49T2(ar)

le@Pe™ < {4e—2f +
8T (20 — 1 T S
%(a)) AICI? + (AF + AF)? + (AF + AF)* + [ (BG + BG)?

t
H(BG + 1}6)2] e‘zf] f e le(s)]|2ds
0

[(8G+ By +(BG + 867 ]} 1012

t
£ [4e + M1IOI + N / 2 le(s)|2ds, o
0
where M, N is the form of (16). From the Gronwall inequality (3), one has
t
le@)lI7e™" < [4e™>" + M1IIOIIE + / Nide ™ + M1|j6]|2eh Voids
0

8¢ 2 4+ (AN + MN +2M)eN!

= SN 16112
Thus
8+ (4N + MN + 2M)eF+Nt
le()]*> < SN 1611 (28)

It follows that when ||0||¢c < & and if (15) is satisfied for all ¢ € J, then |le(?)| < €, from
Definition 2.3, system (5) is finite-time stable with respect to (tg, J, 8, €).

Theorem 3.2 When O < o < 1/2, if assumption 1 and 2 are satisfied, and

5q—

o 275 (2 e +MN+qM)e(N+q>f

<

; (29)

SN

q+ N
forallt € J =0, T], then system (5) is finite time stable with respect to (to, J, 8, €), where
p=1+4+a,qg=1+1/a, and
Fpla—1)+1)
Fp(a)pp(a D+1

[ G+ BG)! + (BG + BG)*
_ [F(p(a -D+ 1)}

)

] 1 —e 9"

7 (o) pple=DF1 |C||q + (AF + AF)1 + (AF + AF)4

+[ (BG + BGY + (BG + BG)t |07} (30)
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Proof As the same in Theorem 3.1, we have the following estimation for the real part of
solution of system (9).

e < IIe(O)Il+m/ t =9 1I|C||||€(S)|IdS+7/ =)'

['(a)
Fllle(s)llds + ——

Fa )/(t $)*"'[BG + BGllle; (s)||ds. 3D

Asp=1+a,qg =1+ 1/a,obviously p,qg > 1 and 1/p + 1/¢g = 1. By using the Holder
inequality (1), one has

1 1
/0(t—S)‘X*lIICIIIIE(S)IIdSZ/ (t =)' [Clle " lle(s)llds

1 P ;
( / (t — )P %m) S[tell ( / e*qfué(s)uqu)
0

(32)
Similarly, we have
t _ - ~ o~
/ (t —)* VAF + AF]|le(s)||ds
0
. 1
— _ ~ ~ q
(/ (t — s)P@=D '”ds> [AF + AF] </ —qf||e(s)||qu> , (33)
t R ~ o~
[ @ =BG + Blelas
0
: oo i
< (/ (t—s)W*')ePSds) -[BG + BG] (/ e*qsuer(s)u”lds) (34)
0 0
Noting that the expression of function I'(-), we derive
t t
f (t — s)P@DePsgg = e”’/ VP Pe Py
0 0
el! pt e p el!
(35)

Substituting (32)—(35) into (31), one obtains

1 1
= . ICIl [e?'T(pa—p+ 177 L asys 4
eI < lleO)ll + @) |: PYICEE ] : |:/0 e ||€(S)||qd5]
1 1
I [P T(pa—p+1)]7 o L s q
+ r@) |: pa+ :| : [[AF + AF] </0 e ! ||e(s)||qu>

, :
+[BG + BG] (/ e—qsne,(s)nqu) } .
0

(36)
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From Lemma 2.3, and let n = 4, w = g, it follows from (36) that

q
- _ PIT(pa—p+1)]7 (! .
q q—1 q g-—1 q|€ P P . —gs q
leON? <47 le(O)|7 + 4777 C|| [ [ (o) pPa—DF1 } /Oe lle(s)||?ds

9
[P Tpa—p+1D)]7 [ 2, 7=
+ 44 [Fp(a)pp(“_1)+1 -{[AF+AF]q

t

t
/ e~ |le(s)||7ds + [BG + EG]‘// e*‘”||et(s)||'1ds}. (37)
0 0

From the initial condition of system (9), we can get

t t 1—T
/ e e (s)]|9ds = / e le(s — D)|%ds = / e~ |le(u) |1 7du
0 0 _

T

0 t
< e_qr/ e_q“||e(u)||qdu+e_qT/ e "|le(u)||9du
0

T

-7

0 t

< ||9||qe_q7/- e_qsds—i—e_‘”/ e 1 e(s)|9ds
T 0

_lege

0 t
= / e~ 0 (s)[9ds + 79" / e lle(s)]|ds
0

'
(1—e %) e 97 /0 e T |le(s)||9ds. (38)

Thus (37) can be estimated by

I ¥
[BG + BG]“%(I —e747)

1

_ _ PIT(pa —p+ 177
q q-1 a4 g4a-1[¢ P P

e < 47 [le(0)I* + 4 [ TP (@) pre@ D1 ]

q

_ P Tpa—p+ DT [

+4 l”c”q[ an | / e~ 12(s)]|7ds
[P (a)p? 0

q
e’ T (pa—p+ 177 - -~ - - -~
+4q—‘[ Fp(g)’pp(af’lm)} -[[AF+AF]q+[BG+BG]qe_‘”}

t
/ e 1 |le(s)||9ds. (39)
0

Applying the similar strategies, we can obtain

q

PIT(pa—p+ D7 =x == [I0]2
5 q 9—1)5 q qa—1|¢ P p . q C1 _ 4t
le®)]|? <497 ||e(0)]|? + 4 [Fﬁ(a)pf’(“””l] [BG + BG] p (1—¢e197)

q

B eP'T(pa—p+1)]r reo

+47 l”C”q[ @111 / e le()]ds
P (a)p? 0

q
4441 [e"’F(pa —p+ 1)]1'

TP (a)pr@-D+l | [[AF + AF)" +[BG + Bé]qe—qz}

t
/ e 1 |le(s)||9ds. (40)
0
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Since 0 <o < 1/2,9/2 = (1+1/a)/2 > 3/2, then applying Lemma 2.3, and let n = 2,
w = q/2, it follows from (39) and (38) that

le@) 1 = (le@®H?F = UleO1? + 1613 F <22 (e + 12)11)
P T(pa—p+ 177 (1—e47)
['7(a)pre—b+l } q

eP'T(pa—p+1)77
7 (a)prle—b+l

5¢=6  _ - 5¢—6
<272 [[le@]7 + [le(O) |71+ 22 [

(BG + BGY + (BG + BG0)Y + 277 [

: {(AF L AF)Y + (AF + AF) + [(BG + BG) + (BG + Bé)q]e—‘“}

eP'T(pa — p + 1)i|7>

t 54—6
. —qs q q
/0 e le(s)ds + 270 €| [ T

t
/O e P ([le)|? + lle(s)[7)ds. 41)
Noting that a® + b* < (a + b)®, fora, b > 0 and w > 1, hence

e + 12619 = (eI + (e 1)
< (lZ®IP + 1)1 = le)I?. s €[0.1]. (42)

Applying (42) to (41), and multiplying by e =4’ on both sides of (41), we have

5¢—6

le()[[9e™" < 2% [le(0) |71 + 277 [

T(po—p+1) 77 (1—e7)
Fp(a)pﬁ(a*1)+l q

T(pa—p+1) 75
[‘P((x)pp(a—lHl

(BG + BG) + (BG + BGYy11|0% +27 [

: {(AF Y AFY! 4 (AF + AF)? + [(BG + BG)? + (BG + éc’;)‘f]e—‘”}
v 506 T(pa—p+D T [1 .

. —qs q -3 qg| - =~ @ 7 . —qs q

/0 e Ple()*ds + 2727 | C|l [Fp(a)p,,(a,]m} /O e lle(s)I*ds

q
54—6 sg=6 [ T'(pa —p+1) 17 (1 —e™97) - - -~

qt . q

< [2 2 e 14272 |:FP(a)pP(°‘*1)+1 p [(BG + BG)

T(pa—p+1) F

oz i L a0 [ Tpe—p+ 1)
+(BG + BG) ]}”9”C+2 2 [Fp(a)pp(a—l)—H

: [||C||‘f + (AF + AF)? + (AF + AF)1
t
+ [(BG 4+ BG)? + (BG + Bé)q]e—'ﬂ] / e~ le(s)||ds (43)
0

—6 -~ ~ t
2 M e 4 ) + N / 5 le(s)]ds, (44)
0
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where M, N is the form of (30). From the Gronwall inequality (3), one has

le@)[[7e="

IA

546 - I s4-6 -~ ot
(2%3—41+M)”9”1é+”9“‘é/ (2%€_qs+M)Nejs'Nd“ds
0

ZSqT_ﬁqe_qt + (25(17_61\7 +MN +q1\~4)e1\7t

= e [ (45)
q
which is equivalent to
2%+ Q5N+ MN + gMyeN+ar
le)l < * Yy 0llc-
q

It follows that when ||0]c < § and if (29) is satisfied, then |le(?)|| < € for all ¥ € J, from
Definition 2.3, system (5) is finite-time stable with respect to (g, J, 8, €).

Remark 3.1 Reference [24] investigated the uniform stability of system (4), but the conditions
are so tedious and complicate that it is hard to meet in reality. References [33,34] considered
the finite-time stability only for linear time invariant RVNNs. References [31,32] proposed
some criterions for the finite-time stability of nonlinear fractional-order neural networks, just
confined to real number field. Here, a popular fractional-order nonlinear delayed CVNNSs are
discussed. It is worth mentioning that if the parameters, states, and activation functions in
system (5) are all specially selected from real number field, resulting a fractional-order real-
valued system, our results are still valid. As long as set the parameters associated with the
imaginary parts in Theorem 1 and Theorem 2 as zero, we can get conclusions similar to [32],
which means, to some extent, our results include those of [32].

Remark 3.2 In practice, the selection for the setting time 7 largely relies on the parameters
such as «, 7, 8 and ¢. By the aid of values for the above parameters and (15) [or (29)], we
could obtain an approximation namely 7, for the setting time 7', which called “estimate
time”, then given a time 7 being no more than 7, the system is finite-time stability.

4 Numerical Examples

In this section, to demonstrate the effectiveness of our proposed theoretical results, two
numerical simulations for fractional-order CVNNs models will be carried out. Dealing with
fractional delayed models, the frequently used numerical method is the modified predictor-
corrector algorithm, see [46,47] and references therein.

Example 1 Consider a two-neuron fractional-order Hopfield neural networks described as

D%(t) = —Cz(t) + AF(z(1)) + BG(z(t — 1)) + U, (46)

C— 03 0 A= 0.1-0.2i 02-0.3i
“\0045)°7 T \0240.3i —0.1 —0.2i)’

B— —0.1+0.51 0.3 —-0.4i U= 045+ 041\
N 03404 —02405i)"7 " \0.754+0.5i)"°

where
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F2) = (fi1), 22", G(2) = (g1(z1), g2(z2) ", and for j = 1,2

1 —exp(=2x; — yj) ; 1

l+exp(—2x; —y;)  14exp(—x;+2y;)’
1 l—exp( 2xj —yj)

1 +exp(—x; +2y;) 1 +exp(—2x; — yJ)

fizj) =

gi(zj) =

So|IC|l =0.45, A = 0.3, A = 0.3606, B = 0.4541, B = 0.6403. Obviously, the system
satisfies Assumptions 1 and 2 with F = ﬁ/Z, F = ﬁ/4, G = \/3/4, G = ﬁ/Z. Then
we aim to check the finite-time stability with respectto (tp =0, J = [0, 7],§ =0.1,e = 1).
When o = 0.88, T = 0.1, it could be calculated that M ~ 0.3723, N =~ 5.3470, from the
condition (15) of Theorem 1, it immediately follows

\/ 8 +24.1233exp (7.34701) 1
-
7.3470 0.1’
then the estimated time of finite-time stability is 7, &~ 0.4635, this means for given 7" which

less than 0.4653, the considered system is finite-time stability. For simulations, the following
five different initial states are considered respectively:

1 0.1+41 2, {0.05+ 1.0ii 3. ( 0.08+1.051
o ()= (—1.52+2.3i>’ o= <—1.58+2.4i C PO =55 42351)
4, (0.03+ 1.08i 5. (0094107 _
0= (—0.6 +24i) TO=\ 163 1238) 1000
Also, trajectories corresponding to these initial values are depicted in Fig. 1. Especially,
the error between the solutions under initial values ¢° and ¢ and its norm are respectively
illustrated in Figs. 2, 3. As shown in Fig. 1, the difference, between any two trajectories of
the system with initial error no more than 4, does not exceed € over interval time [0, T'], and

Figs. 2, 3 more accurately confirm this point. Thus, the results of Theorem 1 are verified by
means of this simulation.

Example 2 Consider a CVNNS as described in (46), where

050 —-03+0.210.2 -0.1i
0 0.6 0.14+0.2i 0.2+40.3i

(01—051 03+041> U=(0.2—0.1i>
04 —-031i —0.2+40.1i 03+04i)"
1-
1

exp(—x;) 1 ¢z = 1 —exp(—=y;) . 1

(zj) = i , 1 ,
13 +exp(—x;) 1 +exp(—y;) 1+exp(—y;) 1 +exp(—x;)

ji=12

Then ||C|| = 0.6, A = 0.3623, A = 0.3623, B = 0.4515, B = 0.7073. Clearly, the
system satisfies Assumptions 1 and 2 with F = 0.5, F = 0.25,G = 0.5, G = 0.25. Next
there is the task to test the finite-time stability with respect to (fp = 0; J = [0,T],8 =
0.1,¢ = 1). When o = 0.48,t = 0.3, according to (30), it could be derived that p =
l4+a=148,g =1+ 1/a = 3.0833, M ~ 17492, N ~ 17.4862 and from the condition
(29) of Theorem 2, we have

3}083\3/ 80.6046 + 62.1222exp (20.56951) 1
_ L
20.5695 0.1’
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1.1

(a) (b)
0.1 1.08
0.08 /¥ 1.06

S >
1.04
1.02},
0.02 1
0 5 10 15
t

-1.52 2.4

(GY]
-1.54 2.38
-1.56 2.36

[aV] N \
X > N\
-1.58 2.34 N
™
-1.6 2.32 ——
-1.62 2.3
5 10 15 0 5 10 15

t

Fig. 1 Trajectories of the neural networks with &« = 0.88, ¢ = 0.1 under different initial values. a The real

part of z1 (¢). b The imaginary part of z1 (¢). ¢ The real part of z5(¢). d The imaginary part of z,(¢)

Fig. 2 The time evolution of
error for solutions of the system
witha = 0.88, 7 = 0.1

ej(t), ej(t)

0.04

0.02

-0.02

-0.04

-0.06

-0.08

ei(t)
ei(t)
e(t)
(t)

n

10

20

then it could be obtained that the estimated time of finite-time stability is 7, ~ 0.2913. For
numerical simulations, the following five initial states are considered respectively:

0.7 4 0.56i 0.75 + 0.5i 0.73 +0.51i
1 _ 2 _ 3 _
¢ 1) = (0.25+ 1.41i)’ ¢ = <0.27+ 1.39i>’ ¢ (1) = (0.23 + 1.421)’

4 (0694053 s (0.7240.54i -
¢(’)_<0.24+1.451 C 0= 008 4 1.441) 0 PO
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Fig. 3 The time evolution of
error norm of solutions
a=0.88,7=0.1

le@l

0.8 0.58

0.78 os6f
0.76
x
0.74 0.52}/
0.72 0.5
0.7 0.48
0 0 5 10 15

(o)

0.28

0.2 1.38
0 5 10 15 0 5 10 15

t t

Fig. 4 Trajectories of the neural networks with @ = 0.48, © = 0.3 under different initial values. a The real
part of z1 (). b The imaginary part of z1 (7). ¢ The real part of z5 (7). d The imaginary part of z, (¢)

Trajectories corresponding to these initial values are showed in Fig. 4. Take the solutions
referring to initial values ¢>4 and ¢1 into extra consideration, the error between them and its
norm are respectively described in Figs. 5, 6. From Figs. 4, 5, 6, it can be directly observed
that the numeric conclusions affirm Theorem 2.
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Fig. 5 The time evolution of 0.05
error for solutions of the system
withae =048, 7 =0.3

el(t)
0.04 - ONE
e (t)
ét) ||

0.03

0.02} 1
0.01 \K

<01l —— ]

-0.02¢

ej(t), ej(t)

-0.03f
-0.041

-0.05

Fig. 6 The time evolution of 0.06
error norm for solutions with
a=048,7=03

0.04 1

le@]

5 Conclusions

In this paper, the non-Lyapunov point of view (finite-time stability) of fractional-order
CVNNs with time delays have been studied. Not as in integer-order systems, it is hard
to search Lyapunov functionals for fractional order cases, causing more difficulties in con-
sideration of infinite-time behavior for such systems. Most important, sometimes it is more
critical to study its stability within a certain subset of the state space which are defined a
priori over a finite time interval. As a result, the finite-time stability is reasonable and prac-
tical. Refer to methods and theoretical foundations, Gronwall inequality, Cauchy—Schiwartz
inequality and some inequality scaling techniques are all employed to analysis our model.
Some sufficient conditions are obtained for admitting the finite-time stability of the system.
Finally, the effectiveness of the theoretical results is showed with the help of two numerical
examples. It is worth mentioning that for an exploration of fractional-order CVNNSs, our
results may be somewhat conservative, which require to be relaxed in the future.
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