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Abstract The concept of deep dictionary learning (DDL) has been recently proposed.Unlike
shallow dictionary learningwhich learns single level of dictionary to represent the data, it uses
multiple layers of dictionaries. So far, the problem could only be solved in a greedy fashion;
this was achieved by learning a single layer of dictionary in each stage where the coefficients
from the previous layer acted as inputs to the subsequent layer (only the first layer used
the training samples as inputs). This was not optimal; there was feedback from shallower
to deeper layers but not the other way. This work proposes an optimal solution to DDL
whereby all the layers of dictionaries are solved simultaneously.We employ theMajorization
Minimization approach. Experiments have been carried out on benchmark datasets; it shows
that optimal learning indeed improves over greedy piecemeal learning. Comparison with
other unsupervised deep learning tools (stacked denoising autoencoder, deep belief network,
contractive autoencoder and K-sparse autoencoder) show that our method supersedes their
performance both in accuracy and speed.

Keywords Deep learning · Dictionary learning · Optimization

1 Introduction

Today success of deep learning extends beyond academic circles into public knowledge.
Perhaps it is the most influential machine learning paradigm of the last decade. Dictionary
learning on the other hand enjoyed success, but only within the realms of academia. The
recently proposed ‘deep dictionary learning’ (DDL) [1] combines these two representation
learning frameworks.

Dictionary learning is a synthesis representation learning approach; it learns a dictionary
so that it can generate/synthesize the data from the learned coefficients. This is a shallow
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Fig. 1 a Single representation layer neural network. b Segregated neural network

approach—learning only one level of dictionary. DDL extends it to multiple levels. The
technique has been proposed in [1]; thorough experimentation [2] showed that it performs
better than other unsupervised representation learning tools like stacked denoising autoen-
coder (SDAE) and deep belief network (DBN). DDL showed promise in an application in
hyperspectral imaging [3]; where it was able to show that it significantly surpasses other deep
learning techniques when training samples are limited.

However the solution to DDL has been far from optimal; it has a greedy solution. In
the first level, the dictionary and the coefficients are learnt from the training data as input.
In subsequent levels, the coefficients from the previous level acts as input to dictionary
learning. Therefore deeper layers are influenced by shallower ones, but not vice versa. Other
deep learning tools (stacked autoencoder, DBN) also follow a greedy learning paradigm, but
the issue of feedback from deeper to shallower layers is resolved during the fine-tuning stage.

In this work we propose to rectify this issue; we will learn all the levels of dictionary (and
the coefficients) in one optimization problem. However we will not be following the heuristic
greedy pre-training followed by fine-tuning paradigm usually employed in deep learning. Our
solution will be mathematically elegant. The entire DDL problem will be solved in one go
using the Majorization Minimization approach.

The rest of the paper will be organized into several sections. Deep dictionary learning and
its relationship with other deep learning tools will be discussed in the following section. Our
proposed solution is derived in Sect. 3. Experimental results will be shown in Sect. 4. Finally
the conclusions of this work and future direction of research will be discussed in Sect. 5.

2 Background

2.1 Representation Learning

Although deep learning has its roots in neural networks, today its reach extends well beyond
simple classification. What is more profound is its abstract representation learning ability. It
is believed that by going deeper, one can learn more abstract representations which facilitate
analysis tasks.

Figure 1a shows the diagram of a simple neural network with one representation (hidden)
layer. The problem is to learn the network weights between the input and the representation
and between the representation and the target. This can be thought of as a segregated problem,
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Fig. 2 a Restricted Boltzmann
machine. b Deep Boltzmann
machine
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seeFig. 1b. Learning themapping between the representation and the target is straightforward.
This is because once the representation is known, solving for the networkweights between the
hidden layer and the output target boils down to a simple non-linear least squares problem.
The challenge is to learn the network weights (from input) and the representation; this is
because we need to solve two variables from one input. Broadly speaking this is the topic of
representation learning.

Restricted Boltzmann machine (RBM) [4] is one technique to learn the representation
layer. The objective is to learn the network weights (W ) and the representation (H). This is
achieved by optimizing the Boltzman cost function given by:

p(W, H) = eH
T W X (1)

Basically RBM learns the network weights and the representation/ feature by maximizing
the similarity between the projection of the input (on the network) and the features in a
probabilistic sense. Since the usual constraints of probability apply, degenerate solutions are
prevented. The traditional RBM is restrictive—it can handle only binary data. The Gaussian-
Bernoulli RBM [5] partially overcomes this limitation and can handle real values between 0
and 1. However, it cannot handle arbitrary valued inputs (real or complex).

Deep Boltzmann machines (DBM) [6,7] is an extension of RBM, formed by stacking
multiple hidden layers on top of each other (Fig. 2b). The RBM and DBM are undirected
graphical models. These are unsupervised representation learning techniques. For training a
deep neural network, targets are attached to the final layer and fine-tuned with back propa-
gation.

The other prevalent technique to train the representation layer of a neural network is by
autoencoder [8,9]. The architecture is shown in Fig. 3(a).

min
W,W ′

∥
∥X − W ′φ(WX)

∥
∥2
F (2)

The cost function for the autoencoder is expressed above. W is the encoder, and W ′ is the
decoder. The activation function ϕ is usually of tanh or sigmoid such that it squashes the
input to normalized values (between 0 and 1 or −1 and +1). The autoencoder learns the
encoder and decoder weights such that the reconstruction error is minimized. Essentially it
learns the weights so that the representation φ(WX) retains almost all the information (in
the Euclidean sense) of the data, so that it can be reconstructed back. Once the autoencoder
is learnt, the decoder portion of the autoencoder is removed and the target is attached after
the representation layer.

To learn multiple layers of representation, the autoencoders are nested into one another.
This architecture is called stacked autoencoder, see Fig. 3(b). For such a stacked autoen-
coder, the optimization problem is complicated. For a two-layer stacked autoencoder, the
formulation is,

min
W1,W2,W ′

1,W
′
2

∥
∥X − W ′

1ϕ(W ′
2ϕ (W2ϕ (W1X)))

∥
∥2
F (3)
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Fig. 3 a Autoencoder. b Stacked autoencoder
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Fig. 4 Greedy learning

The workaround is to learn the layers in a greedy fashion [10]. First the outer layers are
learnt (see Fig. 4); and using the features from the outer layer as input for the inner layer, the
encoding and decoding weights for the inner layer are learnt.

For training deep neural networks, the decoder portion is removed and targets attached to
the innermost encoder layer. The complete structure is fine-tuned with backpropagation.

2.2 Deep Dictionary Learning

In recent times, the concept of deep learning extends beyond those of neural networks. Recent
studies on deep multi-task learning [11] and deep distance metric learning [12] exemplify
our point. Shallow dictionary learning continues to be an active area of research (e.g. [13])
in machine learning. The proposal of DDL [1–3] follows in a similar vein.

The standard interpretation of dictionary learning is shown in Fig. 5(a). Given the data
(X), one learns a dictionary D1 so as to synthesize the data from the learnt coefficients Z .
Mathematically this is expressed as,

X = D1Z (4)

There are several versions of supervised dictionary learning for machine learning application
[14,15]. However in this work we are only interested in the unsupervised version.
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Fig. 5 a Dictionary learning. b Deep dictionary learning

In DDL, the idea is to learn multiple levels of dictionaries. DDL proposes to extend the
shallow dictionary learning into multiple layers—leading to deep dictionary learning, see
Fig. 5b.

Mathematically, the representation at the second layer can be written as:

X = D1ϕ(D2Z2) (5)

Here the definition of ϕ remains the same as before. Extending this idea, a multi-level dic-
tionary learning problem with non-linear activation can be expressed as,

X = D1ϕ (D2ϕ(. . . ϕ(DN Z))) (6)

In dictionary learning one usually employs a sparsity penalty on the coefficients. This is
required for solving inverse problems [16] like denoising, deconvolution, compression etc;
but there is no reason (theoretical or intuitive) for adding the sparsity penalty for machine
learning problems. The seminal paper that started dictionary learning [17], did not impose
any sparsity penalty. Most recent studies in dictionary learning based computer vision use
the K-SVD algorithm (originally developed for solving inverse problems) as the workhorse
and hence are bound to use the sparsity constraint.

Without the sparsity penalty, DDL leads to,

min
D1,...DN ,Z

‖X − D1ϕ(D2ϕ(. . . ϕ(DN Z)))‖2F (7)

This problem is highly non-convex and requires solving huge number of parameters. With
limited amount of data, it will lead to over-fitting. To address these issues, a greedy approach
is followed [1–3]. With the substitution Z1 = ϕ (D2ϕ(. . . ϕ(DN Z))), Eq. (7) can be written
as as X = D1Z1 such that it can be solved as single layer dictionary learning.

min
D1,Z1

‖X − D1Z1‖2F (8)

This is solved using the method of optimal directions (MOD) [18].
For the second layer, one substitutes Z2 = ϕ(D3 . . . ϕ(DN Z)), which leads to Z1

= ϕ(D2Z2), or alternately, ϕ−1(Z1) = D2Z2; this too is a single layer dictionary learn-
ing that can be solved using MOD

min
D2,Z2

∥
∥ϕ−1(Z1) − D2Z2

∥
∥
2
F (9)

Continuing in a similar fashion till the final layer one has ZN−1 = ϕ(DN Z) or ϕ−1(ZN−1)

= DN Z . As before, the final level of dictionary and coefficients can be solved using MOD.
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This concludes the training stage. During testing, one uses the learnt multi-level dictio-
naries to generate the coefficients from the test sample. Mathematically one needs to solve,

min
ztest

‖xtest − D1ϕ (D2ϕ(. . . ϕ(DN ztest )))‖22 (10)

Using the substitution z1 = ϕ(D2ϕ(. . . ϕ(DN ztest ))), learning the feature from the first layer
turns out to be,

min
z1

‖xtest − D1z1‖22 (11)

This has a simple analytic solution in the form of pseudoinverse.
With the substitution Z2 = ϕ(D3 . . . ϕ(DN Z)), one can generate the features at the second

level by solving,

min
z2

‖z1 − ϕ(D2z2)‖22 ≡ min
z2

∥
∥ϕ−1(z1) − D2z2

∥
∥
2
2 (12)

The equivalent form has a closed form solution as well. Continuing in this fashion till the
final layer, one has

min
ztest

‖zN−1 − ϕ(DN ztest )‖22 ≡ min
ztest

∥
∥ϕ−1(zN−1) − DN ztest

∥
∥
2
2 (13)

One can note that the test phase is not very time consuming. One can precompute all the
pseudoinverse dictionaries for each level; and can multiply the inputs (after applying inverse
of the activation wherever necessary) by these pseudoinverses. Thus during testing, one just
needs to compute some matrix vector products; this is the same as any other deep learning
tool in test phase.

It must be noted that greedy DDL is not the same as deep matrix factorization [19]. Deep
matrix factorization is a special case of DDL; where the activations functions are linear. For
deep matrix factorization, owing to the linearity of the activation functions one may combine
all the levels into a single one; this would collapse the entire deep structure into an equivalent
shallow one.

3 Proposed Optimal Algorithm

Our goal is to solve (7). Prior studies on deep dictionary learning were only able to solve it
greedily in a sub-optimal fashion. For the sake of convenience the problem is repeated.

min
D1,...DN ,Z

‖X − D1ϕ (D2ϕ(. . . ϕ(DN Z)))‖2F (14)

This will be solved using a Majorization Minimization approach. The general outline is
discussed in the next sub-section. This is a popular technique in signal processing [20,21]
and machine learning [22,23], but to the best of our knowledge it has not been used for
solving deep learning problems.

3.1 Majorization Minimization

Figure 6 shows the geometrical interpretation behind the Majorization-Minimization (MM)
approach. The figure depicts the solution path for a simple scalar problem but essentially
captures the MM idea.

Let, J(x) is the function to be minimized. Start with an initial point (at k=0) xk (Fig. 6a).
A smooth function Gk(x) is constructed through xk which has a higher value than J(x) for
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Fig. 6 Majorization Minimization

all values of x apart from xk, at which the values are the same. This is the Majorization
step. The function Gk(x) is constructed such that it is smooth and easy to minimize. At each
step, minimize Gk(x) to obtain the next iterate xk+1 (Fig. 6b). A new Gk+1(x) is constructed
through xk+1 which is now minimized to obtain the next iterate xk+2 (Fig. 6c). As can be
seen, the solution at every iteration gets closer to the actual solution.
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3.2 Algorithm Derivation

We will follow an alternating minimization technique for solving the multiple levels of
dictionaries and for the final level of coefficients. In every iteration we need to solve for N
dictionaries and final level of coefficients Z .

For the first level of dictionary, we need to solve,

min
D1

‖X − D1ϕ (D2ϕ(. . . ϕ(DN Z)))‖2F (15)

Here it is assumed that the dictionaries D2 to DN and Z are constant while updating D1. For
our convenience, we can express Z1 = ϕ (D2ϕ(. . . ϕ(DN Z))). Thus (15) can be written as,

min
D1

‖X − D1Z1‖2F (16)

One does not needMajorizationMinimization to solve this. This (16) is a simple least squares
problem with a closed form solution.

Once we have solved D1, we need to solve D2, i.e.

min
D2

‖X − D1ϕ (D2ϕ(. . . ϕ(DN Z)))‖2F (17)

Expressing Z2 = ϕ(D3 . . . ϕ(DN Z)), we get

min
D2

‖X − D1ϕ (D2Z2)‖2F (18)

We need applying Majorization Minimization from now on. Here J (D2) = ‖X − D1ϕ(D2

Z2)‖2F . The majorizer for this (in kth iteration) will be,

Gk(D2) = ‖X − D1ϕ (D2Z2)‖2F + (D2 − ϕ (D2Z2)k)
T (aI − DT

1 D1)(D2 − ϕ (D2Z2)k)

= XT X − 2XT D1ϕ (D2Z2) + ϕ (D2Z2)
T DT

1 D1ϕ (D2Z2)

+ (ϕ (D2Z2) − ϕ (D2Z2)k)
T (aI − DT

1 D1)(ϕ (D2Z2) − ϕ (D2Z2)k)

= XT X + ϕ (D2Z2)
T (aI − DT

1 D1)ϕ (D2Z2)k

− 2(XT D1 + xTk (aI − DT
1 D1))ϕ (D2Z2) + aϕ (D2Z2)

T ϕ (D2Z2)

= a(−2BT
1 D1 − DT

1 D1) + c

where B1 = ϕ (D2Z2)k + 1
a D

T
1 (X − D1ϕ (D2Z2)k); c = XT X + ϕ (D2Z2)

T
k (aI

− DT
1 D1)ϕ (D2Z2)k and a is the maximum Eigenvalue of DT

1 D1.
Using the identity ‖X − Y‖22 = XT X − 2XT Y + Y T Y , one can write,

Gk(D2) = a ‖B1 − ϕ (D2Z2)‖2F − aBT
1 B1 + c (19)

Therefore,minimizing (19) is the same asminimizing the first term leaving aside the constants
independent of the variable (D2). Therefore, one can instead minimize

G ′
k(D2) = ‖B1 − ϕ (D2Z2)‖2F (20)

where B1 = ϕ (D2Z2)k + 1
a D

T
1 (X − D1ϕ (D2Z2)k).

Now (20) can be equivalently expressed as,

min
D2

∥
∥ϕ−1(B1) − D2Z2

∥
∥
2
F (21)
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Computingϕ−1 is easy since it is an elementwise operation. This (21) is a simple least squares
solution since Z2 is a constant; as mentioned several times before it has an analytic solution.
This concludes the update for D2.

The same technique is continued till deeper layers. For example, solving D3 would require
expressing Z3 = ϕ(D4 . . . ϕ(DN Z)).

Expanding Z2 in G ′
k(D2) leads to,

∥
∥ϕ−1(B1) − D2ϕ(D3 . . . ϕ(DN Z))

∥
∥
2
F (22)

Now, substituting Z3 = ϕ(D4 . . . ϕ(DN Z)) in (22) leads to,

min
D3

∥
∥ϕ−1(B1) − D2ϕ(D3Z3)

∥
∥
2
F (23)

Note that the problem (23) is exactly the same as (18). Majorization Minimization of (23)
leads to

min
D3

‖B2 − ϕ (D3Z3)‖2F (24)

where B2 = ϕ (D3Z3)k + 1
a′ DT

2 (ϕ−1(B1) − D2ϕ (D3Z3)k); a
′ being the maximum eigen-

value of DT
2 D2.

As before, solving D3 from the equivalent expression min
D3

∥
∥ϕ−1(B2) − D3Z3

∥
∥
2
F is

straightforward.
We continue this till the pre-final layer; after solving DN−1 we are left with the solution

of the final level of dictionary DN coefficients Z . Majorization Minimization would lead to
an expression similar to (24); we will have

min
DN ,Z

‖BN−1 − ϕ (DN Z)‖2F (25)

Unlike the other layers, we can solve for both the dictionary and the coefficients of the final
layer by simple alternating least squares (ALS)/MOD of the following equivalent form.

min
DN ,Z

∥
∥ϕ−1(BN−1) − DN Z

∥
∥
2
F (26)

The ALS/MOD algorithm is succinctly shown below.

Initialize: DN

Update Z: 
21

1 1min ( ) ( )N N k FZ
B D Zϕ−

− −−

Update DN: 
21

1min ( ) ( )
N

N N k FD
B D Zϕ−

− −

Note that our method is completely non-parametric; therefore there is nothing to tune,
once the number of dictionaries and the number of atoms in each are fixed by the user.

Our proposed derivation results in a nested algorithm, i.e. for one update of D1, the update
for D2 is in a loop; similarly for one update of D2, the update for D3 is in a loop and so on.
Succinctly the algorithm can be expressed as follows:
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   ….. 

Loop N
21

1 1min ( ) ( )N N k FZ
Z B D Zϕ −

− −← −

21
1min ( ) ( )

N
N N N k FD

D B D Zϕ −
−← −

    End Loop N 

   … 

   End Loop 4 

  End Loop 3 

 End Loop 2 

End Loop 1 

Initialize: D2, D3, …, DN and Z. 

Loop 1 

1

2
1 1 1min

FD
D X D Z← − where ( )1 2 (... ( ))NZ D D Zϕ ϕ ϕ=

Loop 2 

2

21
2 1 2 2min ( )

FD
D B D Zϕ −← − where 2 3( ... ( ))NZ D D Zϕ ϕ=

and   ( ) ( )1 2 2 1 1 2 2
1 ( )T

kkB D Z D X D D Z
a

ϕ ϕ= + −

Loop 3

3

21
2 3 3min ( )

FD
B D Zϕ − − where 3 4( ... ( ))NZ D D Zϕ ϕ=

  and ( ) ( )1
2 3 3 2 1 2 3 3

1 ( ( ) )
'

T
kkB D Z D B D D Z

a
ϕ ϕ ϕ−= + −

Loop 4 

To prevent degenerate solutions where some of the D’s are very high and others low, the
columns of all the dictionaries are normalized after every update.

The initialization is done deterministically. First the SVD of X is computed (X = USV T )

and D1 is initialized by the top left eigenvectors of X . For D2, the SVD of SVT is computed
and the corresponding top eigenvectors are used to initialized D2. The rest of the dictionaries
are initialized in a similar fashion. In the last level, the coefficient (Z) is initialized by the
product of the eigenvalues and the right eigenvectors of the last SVD. There can be other
randomized techniques for initialization which may yield better results, but our deterministic
initialization is repeatable and has shown to yield good results consistently.
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For our proposed algorithm ideally one needs to run the loops for several iterations. This
would be very time consuming; we found that in practice it is not required. Only the deepest
loop for updating DN and Z is solved for 5–10 iterations. The rest of the loops from 2 to N−1
are only run once. Only the outermost loop is run for a large number of iterations (∼100).

There will be no variation in the testing phase. As discussed before, once the dictionaries
are learnt, the feature generation during testing is fast—one only needs a few (equaling the
number of levels) matrix vector multiplication.

4 Experimental Evaluation

4.1 Classification

We carried our experiments on several benchmarks datasets. The first one is the MNIST
dataset which consists of 28 × 28 images of handwritten digits ranging from 0 to 9. The
dataset has 60,000 images for training and 10,000 images for testing. No preprocessing has
been done on this dataset.

We also tested on variations ofMNIST,which aremore challenging primarily because they
have fewer training samples (10,000 + 2000 validation) and larger number of test samples
(50,000). This one was created specifically to benchmark deep learning algorithms [24].

1. basic (smaller subset of MNIST)
2. basic-rot (smaller subset with random rotations)
3. bg-rand (smaller subset with uniformly distributed noise in background)
4. bg-img (smaller subset with random image background)
5. bg-img-rot (smaller subset with random image background plus rotation)

We have also evaluated on the problem of classifying documents into their corresponding
newsgroup topic. We have used a version of the 20-newsgroup dataset [25] for which the
training and test sets contain documents collected at different times, a setting that is more
reflective of a practical application. The training set consists of 11,269 samples and the test
set contains 7505 examples. We have used 5000 most frequent words for the binary input
features. We follow the same protocol as outlined in [26].

Our third dataset is the GTZANmusic genre dataset [27,28]. The dataset contains 10,000
three-second audio clips, equally distributed among 10musical genres: blues, classical, coun-
try, disco, hip-hop, pop, jazz, metal, reggae and rock. Each example in the set is represented
by 592 Mel-Phon coefficient (MPC) features. These are a simplified formulation of the
Mel-frequency cepstral coefficients (MFCCs) that are shown to yield better classification
performance. Since there is no predefined standard split and fewer examples, we have used
10-fold cross validation (procedure mentioned in [29]), where each fold consisted of 9000
training examples and 1000 test examples.

In this work our goal is to test the representation capability of the different learning tools.
Therefore the training is fully unsupervised (no class label is used). We compare against
several state-of-the-art unsupervised deep learning tools—stacked denoising autoencoder
(SDAE) [29], K-sparse autoencoder (KSAE) [30], contractive autoencoder (CAE) [31] and
deep belief network [32]. Since our goal is to show that our proposed optimal learning
algorithm yields improvement over the greedy deep dictionary learning technique proposed
before [1–3], we carry out comparison with this as well. Learned models for the popular
datasets used in this work are publicly available. For the DDL (previous [1] and proposed),
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Table 1 Comparison on KNN

Dataset SDAE KSAE CAE DBN Greedy DDL Proposed

MNIST 97.33 96.90 92.83 97.05 97.75 97.91

basic 95.25 91.64 90.92 95.37 95.80 96.07

basic-rot 84.83 80.24 78.56 84.71 87.00 87.23

bg-rand 86.42 85.89 85.61 86.36 89.35 89.77

bg-img 77.16 76.84 78.51 77.16 81.00 81.09

bg-img-rot 52.21 50.27 47.10 50.47 57.77 58.40

20-newsgroup 70.48 71.22 71.08 70.09 70.48 71.64

GTZAN 83.31 82.91 82.67 80.99 83.31 83.89

Bold indicates the best results

Table 2 Comparison on SRC

Dataset SDAE KSAE CAE DBN Greedy DDL Proposed

MNIST 98.33 97.91 87.19 88.43 97.99 98.33

basic 96.91 95.07 95.03 87.49 96.38 96.97

basic-rot 90.04 88.85 88.63 79.47 89.74 90.23

bg-rand 91.03 83.59 82.25 79.67 91.38 91.61

bg-img 84.14 84.12 85.68 75.09 84.11 84.67

bg-img-rot 62.46 58.06 54.01 49.68 62.86 63.27

20-newsgroup 70.49 71.90 71.08 71.02 71.41 72.43

GTZAN 83.37 84.09 82.70 81.21 84.72 85.71

Bold indicates the best results

Table 3 Comparison on SVM

Dataset SDAE KSAE CAE DBN Greedy DDL Proposed

MNIST 98.50 98.46 97.74 98.53 98.64 98.71

basic 96.96 97.02 96.61 97.07 97.28 97.53

basic-rot 89.43 88.75 72.54 89.05 90.34 90.75

bg-rand 91.28 90.07 85.20 89.59 92.38 92.62

bg-img 84.86 80.17 78.76 85.46 86.17 86.67

bg-img-rot 60.53 60.01 60.97 58.25 63.85 64.76

20-newsgroup 71.29 72.05 71.68 71.18 71.97 72.89

GTZAN 83.42 81.61 82.99 81.83 84.92 85.18

Bold indicates the best results

a three layer architecture is used where the number of atoms are halved in each subsequent
layer.

The generated features from the deepest level are used to train two non-parametric—
nearest neighbor (NN) (Table 1) and sparse representation based classification (SRC) [33]
(Table 2); and one parametric—support vector machine (SVM) classifier with rbf kernel
(Table 3). The results show that our proposed method yields the best results on an average.
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Table 4 Training time in seconds

Dataset SDAE KSAE CAE DBN Greedy DDL Proposed

MNIST 120,408 59,251 40,980 30,071 107 524

Basic 24,020 10,031 8290 5974 26 129

Table 5 Testing time in seconds

Dataset SDAE KSAE CAE DBN Greedy DDL Proposed

MNIST 61 52 56 50 79 51

Basic 257 206 214 155 189 189

The results are as expected. In the prior studies [1,2] it was already shown that greedyDDL
outperforms SDAE and DBN. We now see that, it also improves upon K-sparse autoencoder
and contractive autoencoder.

Since this is a new (optimal) algorithm for solving the unsupervised DDL problem, we
need to test its speed. The training and testing times for the large MNIST dataset and the
relatively smaller MNIST basic dataset are shown in Tables 4 and 5. All the algorithms are
run until convergence on a machine with Intel (R) Core(TM) i5 running at 3 GHz; 8 GB
RAM, Windows 10 (64 bit) running Matlab 2014a.

The training time of our proposed algorithm is significantly larger than the greedy
approach; this is expected. But still we are significantly faster, by several orders of mag-
nitude, compared to other deep learning tools. In terms of testing time, we are faster than
greedy DDL. This is because the greedy technique uses standard dictionary learning tools in
each level; these are always regularized by sparsity promoting penalties on the coefficients.
Thus during testing, one needs to solve an iterative optimization problem. Our formulation
on the other hand does not include sparsity promoting l1/ l0-norm; hence each level can
be solved via an analytic solution (pseudoinverse). Therefore we just need a matrix vector
multiplication. Hencewe take almost the same time as other deep learning tools while testing.

4.2 Clustering

The prior study on greedy DDL [1] applied itself to the problem of clustering. In this work
we show that our proposed optimal algorithm improves on the clustering results as well. The
experimental results have been compared with three studies; the first one being [1]. The other
two are GraphEncoder [34] and deep subspace clustering [35]. The study [35] is the most
recent and we follow the experimental protocol found there in.

In [35], experiments were carried out on the COIL20 (object recognition) and Extended
YaleB (face recognition) datasets. For both the datasets DSIFT (dense scale invariant feature
transform) and HOG (histogram of oriented gradients) features were extracted. They were
further reduced by PCA to a dimensionality of 300. Since the groundtruths (class labels) for
these datasets are available, clustering accuracy was measured in terms of NMI (normalized
mutual information), ARI (adjusted rand index) and F-score. The results are shown in Table 6
(COIL20) and Table 7 (YaleB).

The configuration of the deep network for [35] is obtained from the said reference. For the
rest (GraphEncoder, Greedy DDL and Proposed) a four tier architecture is used, 600–300–
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Table 6 Clustering results on COIL20

Method DSIFT HOG

NMI ARI F-score NMI ARI F-score

GraphEncoder [34] 89.42 78.94 80.01 84.47 78.72 80.40

Deep subspace [35] 91.19 84.80 85.58 91.19 81.92 82.86

Greedy DDL [1] 91.04 84.60 83.54 90.12 80.20 81.30

Proposed 91.38 84.92 85.56 91.37 82.24 82.82

Bold indicates the best results

Table 7 Clustering results on YaleB

Method DSIFT HOG

NMI ARI F-score NMI ARI F-score

GraphEncoder [34] 85.29 78.18 79.08 92.76 82.84 83.31

Deep subspace [35] 90.85 83.00 83.45 96.91 90.25 89.46

Greedy DDL [1] 90.20 81.83 83.42 96.82 88.97 89.13

Proposed 91.26 83.62 83.86 97.06 90.43 90.06

Bold indicates the best results

150–75—this yielded the best results; all of them use K-means clustering on the features
from the deepest level.

Note that the GraphEncoder has been titled stacked autoencoder (SAE) in [35] and a
different configuration has been used. We found that the said configuration performs better
than the one used in [35]; hence we have used the better configuration in this work. Except
the GraphEncoder, all others (inclusing ours) use tanh activation function; the GraphEncoder
uses sigmoid.

In [35], thorough experimentation was carried out with a host of other clustering tech-
niques. The deep subspace clustering method yielded the best results. So we only compare
with [35]. We see that the previous greedy DDL technique does marginally worse than deep
subspace clustering. But with our proposed optimal algorithm, the results improve signifi-
cantly and we are able to outperform [35] (only in the F-score we do slightly worse for the
COIL20 dataset—in the second place of decimal).

5 Conclusion

Anewdeep learning tool calledDDLhas been recently proposed.The idea there is to represent
the training data as a non-linear combination of several layers of dictionaries. All prior studies
were only able to solve the ensuing problem in a greedy fashion. This was a sub-optimal
solution as therewas noflowof information from the deeper to the shallower layers. This is the
first work that proposes an optimal solution to the deep dictionary learning problem; where
all the levels of dictionaries are solved simultaneously as a single optimization problem. We
invoke the Majorization Minimization framework to solve the said problem. This results in
an algorithm that is completely non-parametric.
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Experiments have been carried out for both clustering and classification problems; all on
benchmark datasets. In all of them, our method performs the best. The only downside of our
algorithm (compared to the existing greedy technique) is that ours is comparatively slower
than greedy DDL. Nevertheless, we are still several orders of magnitude faster than other
unsupervised deep learning tools.
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